Using python, I am writing a nasty cralwer system that cralws something from the websites of each local government, and total websites count to over 100, just in case their webpage changes, I have to use reload to do hot-update. But I am wondering if reload is thread safe. because say, I am reloading moudle Cralwer1 in thread 1, but at the same time, thread 2 is using Cralwer1. Will thread 1's reload cause thread 2 to fail? If so, I have to do a lock or something, otherwise, I can happily do the reload without extra work. Can any one help me out?
Is Python reload thread safe?
No.
The reload() executes all the pure python code in the module. Any pure python step can thread-switch at any time. So, this definitely isn't safe.
reload = re-execute top level code in Crawler1.
Generally speaking without more info/code sample, you can:
Encapsulate the "operational" top level code that kicks things off, e.g. put it in a function or a class, and invoke that instead of reloading the whole module. This may involve calling/adding some cleanup function.
Use a global variable, which thread1 and thread2 will flip and be aware of to prevent stepping on each other. This doesn't scale quite as well, but can perhaps prevent/delay usage of locks.
Using locks is actually not that hard,
they even support context managers:
https://docs.python.org/3/library/threading.html#with-locks
Related
My understanding is that the typical GIL manipulations involve, e.g., blocking I/O operations. Hence one would want to release the lock before the I/O operation and reacquire it once it has completed.
I'm currently facing a different scenario with a C extension: I am creating X windows that are exposed to Python via the Canvas class. When the method show() is called on an instance, a new UI thread is started using PyThreads (with a call to PyThread_start_new_thread). This new thread is responsible for drawing on the X window, using the Python code specified in the on_draw method of a subclass of Canvas. A pure C event loop is started in the main thread that simply checks for events on the X window and, for the time being, only captures the WM_DELETE_EVENT.
So I have potentially many threads (one for each X window) that want to execute Python code and the main thread that does not execute any Python code at all.
How do I release/acquire the GIL in order to allow the UI threads to get into the interpreter orderly?
The rule is easy: you need to hold the GIL to access Python machinery (any API starting with Py<...> and any PyObject).
So, you can release it whenever you don't need any of that.
Anything further than this is the fundamental problem of locking granularity: potential benefits vs locking overhead. There was an experiment for Py 1.4 to replace the GIL with more granular locks that failed exactly because the overhead proved prohibitive.
That's why it's typically released for code chunks involving call(s) to extental facilities that can take arbitrary time (especially if they involve waiting for external events) -- if you don't release the lock, Python will be just idling during this time.
Heeding this rule, you will get to your goal automatically: whenever a thread can't proceed further (whether it's I/O, signal from another thread, or even so much as a time.sleep() to avoid a busy loop), it will release the lock and allow other threads to proceed in its stead. The GIL assigning mechanism strives to be fair (see issue8299 for exploration on how fair it is), releasing the programmer from bothering about any bias stemming solely from the engine.
I think the problem stems from the fact that, in my opinion, the official documentation is a bit ambiguous on the meaning of Non-Python created threads. Quoting from it:
When threads are created using the dedicated Python APIs (such as the threading module), a thread state is automatically associated to them and the code showed above is therefore correct. However, when threads are created from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread state structure for them.
I have highlighted in bold the parts that I find off-putting. As I have stated in the OP, I am calling PyThread_start_new_thread. Whilst this creates a new thread from C, this function is not part of a third-party library, but of the dedicated Python (C) APIs. Based on this assumption, I ruled out that I actually needed to use the PyGILState_Ensure/PyGILState_Release paradigm.
As far as I can tell from what I've seen with my experiments, a thread created from C with (just) PyThread_start_new_thread should be considered as a non-Python created thread.
I've been trying to wrap my head around how threads work in Python, and it's hard to find good information on how they operate. I may just be missing a link or something, but it seems like the official documentation isn't very thorough on the subject, and I haven't been able to find a good write-up.
From what I can tell, only one thread can be running at once, and the active thread switches every 10 instructions or so?
Where is there a good explanation, or can you provide one? It would also be very nice to be aware of common problems that you run into while using threads with Python.
Yes, because of the Global Interpreter Lock (GIL) there can only run one thread at a time. Here are some links with some insights about this:
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://smoothspan.wordpress.com/2007/09/14/guido-is-right-to-leave-the-gil-in-python-not-for-multicore-but-for-utility-computing/
From the last link an interesting quote:
Let me explain what all that means.
Threads run inside the same virtual
machine, and hence run on the same
physical machine. Processes can run
on the same physical machine or in
another physical machine. If you
architect your application around
threads, you’ve done nothing to access
multiple machines. So, you can scale
to as many cores are on the single
machine (which will be quite a few
over time), but to really reach web
scales, you’ll need to solve the
multiple machine problem anyway.
If you want to use multi core, pyprocessing defines an process based API to do real parallelization. The PEP also includes some interesting benchmarks.
Python's a fairly easy language to thread in, but there are caveats. The biggest thing you need to know about is the Global Interpreter Lock. This allows only one thread to access the interpreter. This means two things: 1) you rarely ever find yourself using a lock statement in python and 2) if you want to take advantage of multi-processor systems, you have to use separate processes. EDIT: I should also point out that you can put some of the code in C/C++ if you want to get around the GIL as well.
Thus, you need to re-consider why you want to use threads. If you want to parallelize your app to take advantage of dual-core architecture, you need to consider breaking your app up into multiple processes.
If you want to improve responsiveness, you should CONSIDER using threads. There are other alternatives though, namely microthreading. There are also some frameworks that you should look into:
stackless python
greenlets
gevent
monocle
Below is a basic threading sample. It will spawn 20 threads; each thread will output its thread number. Run it and observe the order in which they print.
import threading
class Foo (threading.Thread):
def __init__(self,x):
self.__x = x
threading.Thread.__init__(self)
def run (self):
print str(self.__x)
for x in xrange(20):
Foo(x).start()
As you have hinted at Python threads are implemented through time-slicing. This is how they get the "parallel" effect.
In my example my Foo class extends thread, I then implement the run method, which is where the code that you would like to run in a thread goes. To start the thread you call start() on the thread object, which will automatically invoke the run method...
Of course, this is just the very basics. You will eventually want to learn about semaphores, mutexes, and locks for thread synchronization and message passing.
Note: wherever I mention thread i mean specifically threads in python until explicitly stated.
Threads work a little differently in python if you are coming from C/C++ background. In python, Only one thread can be in running state at a given time.This means Threads in python cannot truly leverage the power of multiple processing cores since by design it's not possible for threads to run parallelly on multiple cores.
As the memory management in python is not thread-safe each thread require an exclusive access to data structures in python interpreter.This exclusive access is acquired by a mechanism called GIL ( global interpretr lock ).
Why does python use GIL?
In order to prevent multiple threads from accessing interpreter state simultaneously and corrupting the interpreter state.
The idea is whenever a thread is being executed (even if it's the main thread), a GIL is acquired and after some predefined interval of time the
GIL is released by the current thread and reacquired by some other thread( if any).
Why not simply remove GIL?
It is not that its impossible to remove GIL, its just that in prcoess of doing so we end up putting mutiple locks inside interpreter in order to serialize access, which makes even a single threaded application less performant.
so the cost of removing GIL is paid off by reduced performance of a single threaded application, which is never desired.
So when does thread switching occurs in python?
Thread switch occurs when GIL is released.So when is GIL Released?
There are two scenarios to take into consideration.
If a Thread is doing CPU Bound operations(Ex image processing).
In Older versions of python , Thread switching used to occur after a fixed no of python instructions.It was by default set to 100.It turned out that its not a very good policy to decide when switching should occur since the time spent executing a single instruction can
very wildly from millisecond to even a second.Therefore releasing GIL after every 100 instructions regardless of the time they take to execute is a poor policy.
In new versions instead of using instruction count as a metric to switch thread , a configurable time interval is used.
The default switch interval is 5 milliseconds.you can get the current switch interval using sys.getswitchinterval().
This can be altered using sys.setswitchinterval()
If a Thread is doing some IO Bound Operations(Ex filesystem access or
network IO)
GIL is release whenever the thread is waiting for some for IO operation to get completed.
Which thread to switch to next?
The interpreter doesn’t have its own scheduler.which thread becomes scheduled at the end of the interval is the operating system’s decision. .
Use threads in python if the individual workers are doing I/O bound operations. If you are trying to scale across multiple cores on a machine either find a good IPC framework for python or pick a different language.
One easy solution to the GIL is the multiprocessing module. It can be used as a drop in replacement to the threading module but uses multiple Interpreter processes instead of threads. Because of this there is a little more overhead than plain threading for simple things but it gives you the advantage of real parallelization if you need it.
It also easily scales to multiple physical machines.
If you need truly large scale parallelization than I would look further but if you just want to scale to all the cores of one computer or a few different ones without all the work that would go into implementing a more comprehensive framework, than this is for you.
Try to remember that the GIL is set to poll around every so often in order to do show the appearance of multiple tasks. This setting can be fine tuned, but I offer the suggestion that there should be work that the threads are doing or lots of context switches are going to cause problems.
I would go so far as to suggest multiple parents on processors and try to keep like jobs on the same core(s).
I've run into situations as of late when writing scripts for both Maya and Houdini where I need to wait for aspects of the GUI to update before I can call the rest of my Python code. I was thinking calling time.sleep in both situations would have fixed my problem, but it seems that time.sleep just holds up the parent application as well. This means my script evaluates the exact same regardless of whether or not the sleep is in there, it just pauses part way through.
I have a thought to run my script in a separate thread in Python to see if that will free up the application to still run during the sleep, but I haven't had time to test this yet.
Thought I would ask in the meantime if anybody knows of some other solution to this scenario.
Maya - or more precisely Maya Python - is not really multithreaded (Python itself has a dodgy kind of multithreading because all threads fight for the dread global interpreter lock, but that's not your problem here). You can run threaded code just fine in Maya using the threading module; try:
import time
import threading
def test():
for n in range (0, 10):
print "hello"
time.sleep(1)
t = threading.Thread(target = test)
t.start()
That will print 'hello' to your listener 10 times at one second intervals without shutting down interactivity.
Unfortunately, many parts of maya - including most notably ALL user created UI and most kinds of scene manipulation - can only be run from the "main" thread - the one that owns the maya UI. So, you could not do a script to change the contents of a text box in a window using the technique above (to make it worse, you'll get misleading error messages - code that works when you run it from the listener but errors when you call it from the thread and politely returns completely wrong error codes). You can do things like network communication, writing to a file, or long calculations in a separate thread no problem - but UI work and many common scene tasks will fail if you try to do them from a thread.
Maya has a partial workaround for this in the maya.utils module. You can use the functions executeDeferred and executeInMainThreadWithResult. These will wait for an idle time to run (which means, for example, that they won't run if you're playing back an animation) and then fire as if you'd done them in the main thread. The example from the maya docs give the idea:
import maya.utils import maya.cmds
def doSphere( radius ):
maya.cmds.sphere( radius=radius )
maya.utils.executeInMainThreadWithResult( doSphere, 5.0 )
This gets you most of what you want but you need to think carefully about how to break up your task into threading-friendly chunks. And, of course, running threaded programs is always harder than the single-threaded alternative, you need to design the code so that things wont break if another thread messes with a variable while you're working. Good parallel programming is a whole big kettle of fish, although boils down to a couple of basic ideas:
1) establish exclusive control over objects (for short operations) using RLocks when needed
2) put shared data into safe containers, like Queue in #dylan's example
3) be really clear about what objects are shareable (they should be few!) and which aren't
Here's decent (long) overview.
As for Houdini, i don't know for sure but this article makes it sound like similar issues arise there.
A better solution, rather than sleep, is a while loop. Set up a while loop to check a shared value (or even a thread-safe structure like a Queue). The parent processes that your waiting on can do their work (or children, it's not important who spawns what) and when they finish their work, they send a true/false/0/1/whatever to the Queue/variable letting the other processes know that they may continue.
I am trying to run a method which has an infinite loop in it to create a video display. This method is called within another loop that handles hardware input and as such cannot loop as fast as the video, causing lag if I use the outer loop to run the video. Is there a way to start the video loop and then start the hardware loop and run them separately? Currently if I call the video loop it just sits at that loop until it returns.
Yes, you can use Python's own threading module, or a cooperative microthreading module like gevent.
Note that Python's threading mechanism carries this disclaimer for CPython (the default Python implementation on most boxes):
Due to the Global Interpreter Lock, in CPython only one thread can execute Python code at once (even though certain performance-oriented libraries might overcome this limitation). If you want your application to make better of use of the computational resources of multi-core machines, you are advised to use multiprocessing. However, threading is still an appropriate model if you want to run multiple I/O-bound tasks simultaneously.
Depending on how the underlying modules you are calling operate, you may find that while using threading, one thread won't give up control very often, if at all. In that case, using cooperative microthreading might be your only option.
Yes, you can use Python's own multiprocessing module.
Note that Multiprocessing does not have to fight the GIL and can work simultaneously for everything you give it to do.
On the other hand there is a warning with the multiprocessing module, when you spawn a process it is a completely separate python interpreter. So its not just a OS controlled thread. It is in itself an entirely different process. This can add overhead to programs but the advantage of completely dodging the GIL makes this only a mild issue.
I've been trying to wrap my head around how threads work in Python, and it's hard to find good information on how they operate. I may just be missing a link or something, but it seems like the official documentation isn't very thorough on the subject, and I haven't been able to find a good write-up.
From what I can tell, only one thread can be running at once, and the active thread switches every 10 instructions or so?
Where is there a good explanation, or can you provide one? It would also be very nice to be aware of common problems that you run into while using threads with Python.
Yes, because of the Global Interpreter Lock (GIL) there can only run one thread at a time. Here are some links with some insights about this:
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://smoothspan.wordpress.com/2007/09/14/guido-is-right-to-leave-the-gil-in-python-not-for-multicore-but-for-utility-computing/
From the last link an interesting quote:
Let me explain what all that means.
Threads run inside the same virtual
machine, and hence run on the same
physical machine. Processes can run
on the same physical machine or in
another physical machine. If you
architect your application around
threads, you’ve done nothing to access
multiple machines. So, you can scale
to as many cores are on the single
machine (which will be quite a few
over time), but to really reach web
scales, you’ll need to solve the
multiple machine problem anyway.
If you want to use multi core, pyprocessing defines an process based API to do real parallelization. The PEP also includes some interesting benchmarks.
Python's a fairly easy language to thread in, but there are caveats. The biggest thing you need to know about is the Global Interpreter Lock. This allows only one thread to access the interpreter. This means two things: 1) you rarely ever find yourself using a lock statement in python and 2) if you want to take advantage of multi-processor systems, you have to use separate processes. EDIT: I should also point out that you can put some of the code in C/C++ if you want to get around the GIL as well.
Thus, you need to re-consider why you want to use threads. If you want to parallelize your app to take advantage of dual-core architecture, you need to consider breaking your app up into multiple processes.
If you want to improve responsiveness, you should CONSIDER using threads. There are other alternatives though, namely microthreading. There are also some frameworks that you should look into:
stackless python
greenlets
gevent
monocle
Below is a basic threading sample. It will spawn 20 threads; each thread will output its thread number. Run it and observe the order in which they print.
import threading
class Foo (threading.Thread):
def __init__(self,x):
self.__x = x
threading.Thread.__init__(self)
def run (self):
print str(self.__x)
for x in xrange(20):
Foo(x).start()
As you have hinted at Python threads are implemented through time-slicing. This is how they get the "parallel" effect.
In my example my Foo class extends thread, I then implement the run method, which is where the code that you would like to run in a thread goes. To start the thread you call start() on the thread object, which will automatically invoke the run method...
Of course, this is just the very basics. You will eventually want to learn about semaphores, mutexes, and locks for thread synchronization and message passing.
Note: wherever I mention thread i mean specifically threads in python until explicitly stated.
Threads work a little differently in python if you are coming from C/C++ background. In python, Only one thread can be in running state at a given time.This means Threads in python cannot truly leverage the power of multiple processing cores since by design it's not possible for threads to run parallelly on multiple cores.
As the memory management in python is not thread-safe each thread require an exclusive access to data structures in python interpreter.This exclusive access is acquired by a mechanism called GIL ( global interpretr lock ).
Why does python use GIL?
In order to prevent multiple threads from accessing interpreter state simultaneously and corrupting the interpreter state.
The idea is whenever a thread is being executed (even if it's the main thread), a GIL is acquired and after some predefined interval of time the
GIL is released by the current thread and reacquired by some other thread( if any).
Why not simply remove GIL?
It is not that its impossible to remove GIL, its just that in prcoess of doing so we end up putting mutiple locks inside interpreter in order to serialize access, which makes even a single threaded application less performant.
so the cost of removing GIL is paid off by reduced performance of a single threaded application, which is never desired.
So when does thread switching occurs in python?
Thread switch occurs when GIL is released.So when is GIL Released?
There are two scenarios to take into consideration.
If a Thread is doing CPU Bound operations(Ex image processing).
In Older versions of python , Thread switching used to occur after a fixed no of python instructions.It was by default set to 100.It turned out that its not a very good policy to decide when switching should occur since the time spent executing a single instruction can
very wildly from millisecond to even a second.Therefore releasing GIL after every 100 instructions regardless of the time they take to execute is a poor policy.
In new versions instead of using instruction count as a metric to switch thread , a configurable time interval is used.
The default switch interval is 5 milliseconds.you can get the current switch interval using sys.getswitchinterval().
This can be altered using sys.setswitchinterval()
If a Thread is doing some IO Bound Operations(Ex filesystem access or
network IO)
GIL is release whenever the thread is waiting for some for IO operation to get completed.
Which thread to switch to next?
The interpreter doesn’t have its own scheduler.which thread becomes scheduled at the end of the interval is the operating system’s decision. .
Use threads in python if the individual workers are doing I/O bound operations. If you are trying to scale across multiple cores on a machine either find a good IPC framework for python or pick a different language.
One easy solution to the GIL is the multiprocessing module. It can be used as a drop in replacement to the threading module but uses multiple Interpreter processes instead of threads. Because of this there is a little more overhead than plain threading for simple things but it gives you the advantage of real parallelization if you need it.
It also easily scales to multiple physical machines.
If you need truly large scale parallelization than I would look further but if you just want to scale to all the cores of one computer or a few different ones without all the work that would go into implementing a more comprehensive framework, than this is for you.
Try to remember that the GIL is set to poll around every so often in order to do show the appearance of multiple tasks. This setting can be fine tuned, but I offer the suggestion that there should be work that the threads are doing or lots of context switches are going to cause problems.
I would go so far as to suggest multiple parents on processors and try to keep like jobs on the same core(s).