pyodbc.connect() works, but not sqlalchemy.create_engine().connect() - python

I am attempting to write a Python script that can take Excel sheets and import them into my SQL Server Express (with Windows Authentication) database as tables. To do this, I am using pandas to read the Excel files into a pandas DataFrame, I then hope to use pandas.to_sql() to import the data into my database. To use this function, however, I need to use sqlalchemy.create_engine().
I am able to connect to my database using pyodbc alone, and run test queries. This conection is done with the followng code:
def create_connection(server_name, database_name):
config = dict(server=server_name, database= database_name)
conn_str = ('SERVER={server};DATABASE={database};TRUSTED_CONNECTION=yes')
return pyodbc.connect(r'DRIVER={ODBC Driver 13 for SQL Server};' + conn_str.format(**config))
...
server = '<MY_SERVER_NAME>\SQLEXPRESS'
db = '<MY_DATABASE_NAME>
connection = create_connection(server, db)
cursor = connection.cursor()
cursor.execute('CREATE VIEW test_view AS SELECT * FROM existing_table')
cursor.commit()
However, this isn't much use as I can't use pandas.to_sql() - to do so I need an engine from sqlalchemy.create_engine(), but I am struggling to figure out how to use my same details in my create_connection() function above to successfully create an engine and connect to the database.
I have tried many, many combinations along the lines of:
engine = create_engine("mssql+pyodbc://#C<MY_SERVER_NAME>\SQLEXPRESS/<MY_DATABASE_NAME>?driver={ODBC Driver 13 for SQL Server}?trusted_connection=yes")
conn = engine.connect().connection
or
engine = create_engine("mssql+pyodbc://#C<MY_SERVER_NAME>\SQLEXPRESS/<MY_DATABASE_NAME>?trusted_connection=yes")
conn = engine.connect().connection

A Pass through exact Pyodbc string works for me:
import pandas as pd
from sqlalchemy import create_engine
from sqlalchemy.engine import URL
connection_string = (
r"Driver=ODBC Driver 17 for SQL Server;"
r"Server=(local)\SQLEXPRESS;"
r"Database=myDb;"
r"Trusted_Connection=yes;"
)
connection_url = URL.create(
"mssql+pyodbc",
query={"odbc_connect": connection_string}
)
engine = create_engine(connection_url)
df = pd.DataFrame([(1, "foo")], columns=["id", "txt"])
pd.to_sql("test_table", engine, if_exists="replace", index=False)

Related

Error when trying to write data to a Datamart database using pyodbc [duplicate]

I am attempting to write a Python script that can take Excel sheets and import them into my SQL Server Express (with Windows Authentication) database as tables. To do this, I am using pandas to read the Excel files into a pandas DataFrame, I then hope to use pandas.to_sql() to import the data into my database. To use this function, however, I need to use sqlalchemy.create_engine().
I am able to connect to my database using pyodbc alone, and run test queries. This conection is done with the followng code:
def create_connection(server_name, database_name):
config = dict(server=server_name, database= database_name)
conn_str = ('SERVER={server};DATABASE={database};TRUSTED_CONNECTION=yes')
return pyodbc.connect(r'DRIVER={ODBC Driver 13 for SQL Server};' + conn_str.format(**config))
...
server = '<MY_SERVER_NAME>\SQLEXPRESS'
db = '<MY_DATABASE_NAME>
connection = create_connection(server, db)
cursor = connection.cursor()
cursor.execute('CREATE VIEW test_view AS SELECT * FROM existing_table')
cursor.commit()
However, this isn't much use as I can't use pandas.to_sql() - to do so I need an engine from sqlalchemy.create_engine(), but I am struggling to figure out how to use my same details in my create_connection() function above to successfully create an engine and connect to the database.
I have tried many, many combinations along the lines of:
engine = create_engine("mssql+pyodbc://#C<MY_SERVER_NAME>\SQLEXPRESS/<MY_DATABASE_NAME>?driver={ODBC Driver 13 for SQL Server}?trusted_connection=yes")
conn = engine.connect().connection
or
engine = create_engine("mssql+pyodbc://#C<MY_SERVER_NAME>\SQLEXPRESS/<MY_DATABASE_NAME>?trusted_connection=yes")
conn = engine.connect().connection
A Pass through exact Pyodbc string works for me:
import pandas as pd
from sqlalchemy import create_engine
from sqlalchemy.engine import URL
connection_string = (
r"Driver=ODBC Driver 17 for SQL Server;"
r"Server=(local)\SQLEXPRESS;"
r"Database=myDb;"
r"Trusted_Connection=yes;"
)
connection_url = URL.create(
"mssql+pyodbc",
query={"odbc_connect": connection_string}
)
engine = create_engine(connection_url)
df = pd.DataFrame([(1, "foo")], columns=["id", "txt"])
pd.to_sql("test_table", engine, if_exists="replace", index=False)

MS Access database locked by Python

I'm writing a dataframe to an MS Access database using Python. It works, but I can't seem to close the connection (i.e. the database is locked by Python).
Here's my code:
# imports
import urllib
import pyodbc
import pandas as pd
from sqlalchemy import create_engine
# connection
connection_string = (
r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};'
r'DBQ=M:\Larry\Access\test2.accdb;'
r'ExtendedAnsiSQL=1;'
)
connection_uri = f"access+pyodbc:///?odbc_connect={urllib.parse.quote_plus(connection_string)}"
engine = create_engine(connection_uri)
# create dataframe
d = {'name':['daryl','other daryl'],'team':['a','b']}
df = pd.DataFrame(d)
# write to database
df.to_sql('test',engine,if_exists='replace',index=False)
I tried adding this after the create engine line:
conn = engine.connect()
and this after the dataframe is written to the database:
conn.close()
I don't get an error from these additions but the database is still locked. How do I close the connection so that the lock is removed?
Since you are maintaining a connection instance of the database with engine object, after operations, consider Engine.dispose() to release the resource:
...
# write to database
df.to_sql('test', engine, if_exists='replace', index=False)
engine.dispose()

Error when creating sqlalchemy engine: Driver keyword syntax error (IM012) [duplicate]

I am attempting to write a Python script that can take Excel sheets and import them into my SQL Server Express (with Windows Authentication) database as tables. To do this, I am using pandas to read the Excel files into a pandas DataFrame, I then hope to use pandas.to_sql() to import the data into my database. To use this function, however, I need to use sqlalchemy.create_engine().
I am able to connect to my database using pyodbc alone, and run test queries. This conection is done with the followng code:
def create_connection(server_name, database_name):
config = dict(server=server_name, database= database_name)
conn_str = ('SERVER={server};DATABASE={database};TRUSTED_CONNECTION=yes')
return pyodbc.connect(r'DRIVER={ODBC Driver 13 for SQL Server};' + conn_str.format(**config))
...
server = '<MY_SERVER_NAME>\SQLEXPRESS'
db = '<MY_DATABASE_NAME>
connection = create_connection(server, db)
cursor = connection.cursor()
cursor.execute('CREATE VIEW test_view AS SELECT * FROM existing_table')
cursor.commit()
However, this isn't much use as I can't use pandas.to_sql() - to do so I need an engine from sqlalchemy.create_engine(), but I am struggling to figure out how to use my same details in my create_connection() function above to successfully create an engine and connect to the database.
I have tried many, many combinations along the lines of:
engine = create_engine("mssql+pyodbc://#C<MY_SERVER_NAME>\SQLEXPRESS/<MY_DATABASE_NAME>?driver={ODBC Driver 13 for SQL Server}?trusted_connection=yes")
conn = engine.connect().connection
or
engine = create_engine("mssql+pyodbc://#C<MY_SERVER_NAME>\SQLEXPRESS/<MY_DATABASE_NAME>?trusted_connection=yes")
conn = engine.connect().connection
A Pass through exact Pyodbc string works for me:
import pandas as pd
from sqlalchemy import create_engine
from sqlalchemy.engine import URL
connection_string = (
r"Driver=ODBC Driver 17 for SQL Server;"
r"Server=(local)\SQLEXPRESS;"
r"Database=myDb;"
r"Trusted_Connection=yes;"
)
connection_url = URL.create(
"mssql+pyodbc",
query={"odbc_connect": connection_string}
)
engine = create_engine(connection_url)
df = pd.DataFrame([(1, "foo")], columns=["id", "txt"])
pd.to_sql("test_table", engine, if_exists="replace", index=False)

Extract all data from table by name in SQL Alchemy

I connect to a database in MS Access using SQL Alchemy:
import urllib
from sqlalchemy import inspect
from sqlalchemy import create_engine
connection_string = (
r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};'
r'DBQ=C:/Users/mvideo/Desktop/dataBase.accdb;'
r'ExtendedAnsiSQL=1;'
)
connection_uri = f"access+pyodbc:///?odbc_connect={urllib.parse.quote_plus(connection_string)}"
engine = create_engine(connection_uri)
print (engine.table_names())
THe result is
['Air', 'regions', 'Soil', 'water']
I get names of all tables. I want to get query from on of this table (with name of water). How should I solve my problem?
from sqlalchemy import text
t = text("SELECT * FROM water")
connection = engine.connect()
result = connection.execute(t)

Python pandas to_sql 'append'

I am trying to send monthly data to a MySQL database using Python's pandas to_sql command. My program runs one month of data at a time and I want to append the new data onto the existing database. However, Python gives me an error:
_mysql_exceptions.OperationalError: (1050, "Table 'cps_basic_tabulation' already exists")
Here is my code for connecting and exporting:
conn = MySQLdb.connect(host = config.get('db', 'host'),
user = config.get('db', 'user'),
passwd = config.get('db', 'password'),
db = 'cps_raw')
combined.to_sql(name = "cps_raw.cps_basic_tabulation",
con = conn,
flavor = 'mysql',
if_exists = 'append')
I have also tried using:
from sqlalchemy import create_engine
Replacing conn = MySQLdb.connect... with:
engine = mysql+mysqldb://<user>:<password>#<host>[:<port>]/<dbname>
conn = engine.connect().connection
Any ideas on why I cannot append to a database?
Thanks!
Starting from pandas 0.14, you have to provide directly the sqlalchemy engine, and not the connection object:
engine = create_engine("mysql+mysqldb://<user>:<password>#<host>[:<port>]/<dbname>")
combined.to_sql("cps_raw.cps_basic_tabulation", engine, if_exists='append')
Since I had the same error message and stumbled across this post I leave this here for others to find.
I found two ways to solve the duplicated table creation although I lack the insight as to why this solves it:
Either pass the database name in the url when creating a connection
or pass the database name as a schema in pd.to_sql.
Doing both does not hurt. Also, a few years later it is (again?) possible to pass the pure connection to pandas. My guess would be that in the previous answer by joris the first of my solution cases might have implicitly solved the problem.
```
#create connection to MySQL DB via sqlalchemy & pymysql
user = credentials['user']
password = credentials['password']
port = credentials['port']
host = credentials['hostname']
dialect = 'mysql'
driver = 'pymysql'
db_name = 'test_db'
# setup SQLAlchemy
from sqlalchemy import create_engine
cnx = f'{dialect}+{driver}://{user}:{password}#{host}:{port}/'
engine = create_engine(cnx)
# create database
with engine.begin() as con:
con.execute(f"CREATE DATABASE {db_name}")
############################################################
# either pass the db_name vvvv - HERE- vvvv after creating a database
cnx = f'{dialect}+{driver}://{user}:{password}#{host}:{port}/{db_name}'
############################################################
engine = create_engine(cnx)
table = 'test_table'
col = 'test_col'
with engine.begin() as con:
# this would work here instead of creating a new engine with a new link
# con.execute(f"USE {db_name}")
con.execute(f"CREATE TABLE {table} ({col} CHAR(1));")
# insert into database
import pandas as pd
df = pd.DataFrame({col : ['a','b','c']})
with engine.begin() as con:
# this has no effect here
# con.execute(f"USE {db_name}")
df.to_sql(
name= table,
if_exists='append',
# passing con = cnx here would equally work
con=con,
############################################################
# or pass it as a schema vvvv - HERE - vvvv
#schema=db_name,
############################################################
index=False
)```
Tested with python version 3.8.13, sqlalchemy 1.4.32 and pandas 1.4.2.
Same problem might have appeared here and here.

Categories