How to configure lasso regression to not penalize certain variables? - python

I'm trying to use lasso regression in python.
I'm currently using lasso function in scikit-learn library.
I want my model not to penalize certain variables while training. (penalize only the rest of variables)
Below is my current code for training
rg_mdt = linear_model.LassoCV(alphas=np.array(10**np.linspace(0, -4, 100)), fit_intercept=True, normalize=True, cv=10)
rg_mdt.fit(df_mdt_rgmt.loc[df_mdt_rgmt.CLUSTER_ID == k].drop(['RESPONSE', 'CLUSTER_ID'], axis=1), df_mdt_rgmt.loc[df_mdt_rgmt.CLUSTER_ID == k, 'RESPONSE'])
df_mdt_rgmt is the data mart and I'm trying to keep the coefficient for certain columns non-zero.
glmnet in R provides 'penalty factor' parameter that let me do this, but how can I do that in python scikit-learn?
Below is the code I have in R
get.Lassomodel <- function(TB.EXP, TB.RSP){
VT.PEN <- rep(1, ncol(TB.EXP))
VT.PEN[which(colnames(TB.EXP) == "DC_RATE")] <- 0
VT.PEN[which(colnames(TB.EXP) == "FR_PRICE_PW_REP")] <- 0
VT.GRID <- 10^seq(0, -4, length=100)
REG.MOD <- cv.glmnet(as.matrix(TB.EXP), as.matrix(TB.RSP), alpha=1,
lambda=VT.GRID, penalty.factor=VT.PEN, nfolds=10, intercept=TRUE)
return(REG.MOD)
}

I'm afraid you can't. Of course it's not an theoretical issue, but just a design-decision.
My reasoning is based on the available API and while sometimes there are undocumented functions, this time i don't think there is what you need because the user-guide already posts this problem in the 1-factor-norm-of-all form alpha*||w||_1
Depending on your setting you might modify sklearn's code (a bit scared about CD-tunings) or even implement a customized-objective using scipy.optimize (although the latter might be a bit slower).
Here is some example showing the scipy.optimize approach. I simplified the problem by removing intercept's.
""" data """
import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
A = diabetes.data[:150]
y = diabetes.target[:150]
alpha=0.1
weights=np.ones(A.shape[1])
""" sklearn """
from sklearn import linear_model
clf = linear_model.Lasso(alpha=alpha, fit_intercept=False)
clf.fit(A, y)
""" scipy """
from scipy.optimize import minimize
def lasso(x): # following sklearn's definition from user-guide!
return (1. / (2*A.shape[0])) * np.square(np.linalg.norm(A.dot(x) - y, 2)) + alpha * np.linalg.norm(weights*x, 1)
""" Test with weights = 1 """
x0 = np.zeros(A.shape[1])
res = minimize(lasso, x0, method='L-BFGS-B', options={'disp': False})
print('Equal weights')
print(lasso(clf.coef_), clf.coef_[:5])
print(lasso(res.x), res.x[:5])
""" Test scipy-based with special weights """
weights[[0, 3, 5]] = 0.0
res = minimize(lasso, x0, method='L-BFGS-B', options={'disp': False})
print('Specific weights')
print(lasso(res.x), res.x[:5])
Output:
Equal weights
12467.4614224 [-524.03922009 -75.41111354 820.0330707 40.08184085 -307.86020107]
12467.6514697 [-526.7102518 -67.42487561 825.70158417 40.04699607 -271.02909258]
Specific weights
12362.6078842 [ -6.12843589e+02 -1.51628334e+01 8.47561732e+02 9.54387812e+01
-1.02957112e-05]

Related

Absurd solution using gurobi python in regression

So I am new to gurobi and I decided to start working with it on a well known problem as regression. I found this official notebook, where an L0 penalized regression model was solved and I took just the part of the regression model out of it. However, when I solve this problem in gurobi, I get a really strange solution, totally different from the actual correct regression solution.
The code I am running is:
import gurobipy as gp
from gurobipy import GRB
import numpy as np
from sklearn.datasets import load_boston
from itertools import product
boston = load_boston()
x = boston.data
x = x[:, [0, 2, 4, 5, 6, 7, 10, 11, 12]] # select non-categorical variables
response = boston.target
samples, dim = x.shape
regressor = gp.Model()
# Append a column of ones to the feature matrix to account for the y-intercept
x = np.concatenate([x, np.ones((samples, 1))], axis=1)
# Decision variables
beta = regressor.addVars(dim + 1, name="beta") # Beta
# Objective Function (OF): minimize 1/2 * RSS using the fact that
# if x* is a minimizer of f(x), it is also a minimizer of k*f(x) iff k > 0
Quad = np.dot(x.T, x)
lin = np.dot(response.T, x)
obj = sum(0.5 * Quad[i, j] * beta[i] * beta[j] for i, j in product(range(dim + 1), repeat=2))
obj -= sum(lin[i] * beta[i] for i in range(dim + 1))
obj += 0.5 * np.dot(response, response)
regressor.setObjective(obj, GRB.MINIMIZE)
regressor.optimize()
beta_sol_gurobi = np.array([beta[i].X for i in range(dim+1)])
The solution provided by this code is
array([1.22933632e-14, 2.40073891e-15, 1.10109084e-13, 2.93142174e+00,
6.14486489e-16, 3.93021623e-01, 5.52707727e-15, 8.61271603e-03,
1.55963041e-15, 3.19117429e-13])
While the true linear regression solution should be
from sklearn import linear_model
lr = linear_model.LinearRegression()
lr.fit(x, response)
lr.coef_
lr.intercept_
That yields,
array([-5.23730841e-02, -3.35655253e-02, -1.39501039e+01, 4.40955833e+00,
-7.33680982e-03, -1.24312668e+00, -9.59615262e-01, 8.60275557e-03,
-5.17452533e-01])
29.531492975441015
So gurobi solution is completely different. Any guess / suggestion on whats happening? Am I doing anything wrong here?
PD: I know that this problem can be solved using other packages, or even other optimization frameworks, but I am specially interested in solving it in gurobi python, since I want to start using gurobi in some more complex problems.
The wrong result is due to your decision variables. Since Gurobi assumes the lower bound 0 for all variables by default, you need to explicitly set the lower bound:
beta = regressor.addVars(dim + 1, lb = -GRB.INFINITY, name="beta") # Beta

Use Python lmfit with a variable number of parameters in function

I am trying to deconvolve complex gas chromatogram signals into individual gaussian signals. Here is an example, where the dotted line represents the signal I am trying to deconvolve.
I was able to write the code to do this using scipy.optimize.curve_fit; however, once applied to real data the results were unreliable. I believe being able to set bounds to my parameters will improve my results, so I am attempting to use lmfit, which allows this. I am having a problem getting lmfit to work with a variable number of parameters. The signals I am working with may have an arbitrary number of underlying gaussian components, so the number of parameters I need will vary. I found some hints here, but still can't figure it out...
Creating a python lmfit Model with arbitrary number of parameters
Here is the code I am currently working with. The code will run, but the parameter estimates do not change when the model is fit. Does anyone know how I can get my model to work?
import numpy as np
from collections import OrderedDict
from scipy.stats import norm
from lmfit import Parameters, Model
def add_peaks(x_range, *pars):
y = np.zeros(len(x_range))
for i in np.arange(0, len(pars), 3):
curve = norm.pdf(x_range, pars[i], pars[i+1]) * pars[i+2]
y = y + curve
return(y)
# generate some fake data
x_range = np.linspace(0, 100, 1000)
peaks = [50., 40., 60.]
a = norm.pdf(x_range, peaks[0], 5) * 2
b = norm.pdf(x_range, peaks[1], 1) * 0.1
c = norm.pdf(x_range, peaks[2], 1) * 0.1
fake = a + b + c
param_dict = OrderedDict()
for i in range(0, len(peaks)):
param_dict['pk' + str(i)] = peaks[i]
param_dict['wid' + str(i)] = 1.
param_dict['mult' + str(i)] = 1.
# In case, you'd like to see the plot of fake data
#y = add_peaks(x_range, *param_dict.values())
#plt.plot(x_range, y)
#plt.show()
# Initialize the model and fit
pmodel = Model(add_peaks)
params = pmodel.make_params()
for i in param_dict.keys():
params.add(i, value=param_dict[i])
result = pmodel.fit(fake, params=params, x_range=x_range)
print(result.fit_report())
I think you would be better off using lmfits ability to build composite model.
That is, with a single peak defined with
from scipy.stats import norm
def peak(x, amp, center, sigma):
return amp * norm.pdf(x, center, sigma)
(see also lmfit.models.GaussianModel), you can build a model with many peaks:
npeaks = 3
model = Model(peak, prefix='p1_')
for i in range(1, npeaks):
model = model + Model(peak, prefix='p%d_' % (i+1))
params = model.make_params()
Now model will be a sum of 3 Gaussian functions, and the params created for that model will have names like p1_amp, p1_center, p2_amp, ..., which you can add sensible initial values and/or bounds and/or constraints.
Given your example data, you could pass in initial values to make_params like
params = model.make_params(p1_amp=2.0, p1_center=50., p1_sigma=2,
p2_amp=0.2, p2_center=40., p2_sigma=2,
p3_amp=0.2, p3_center=60., p3_sigma=2)
result = model.fit(fake, params, x=x_range)
I was able to find a solution here:
https://lmfit.github.io/lmfit-py/builtin_models.html#example-3-fitting-multiple-peaks-and-using-prefixes
Building on the code above, the following accomplishes what I was trying to do...
from lmfit.models import GaussianModel
gauss1 = GaussianModel(prefix='g1_')
gauss2 = GaussianModel(prefix='g2_')
gauss3 = GaussianModel(prefix='g3_')
gauss4 = GaussianModel(prefix='g4_')
gauss5 = GaussianModel(prefix='g5_')
gauss = [gauss1, gauss2, gauss3, gauss4, gauss5]
prefixes = ['g1_', 'g2_', 'g3_', 'g4_', 'g5_']
mod = np.sum(gauss[0:len(peaks)])
pars = mod.make_params()
for i, prefix in zip(range(0, len(peaks)), prefixes[0:len(peaks)]):
pars[prefix + 'center'].set(peaks[i])
init = mod.eval(pars, x=x_range)
out = mod.fit(fake, pars, x=x_range)
print(out.fit_report(min_correl=0.5))
out.plot_fit()
plt.show()

Python Information gain implementation

I am currently using scikit-learn for text classification on the 20ng dataset. I want to calculate the information gain for a vectorized dataset. It has been suggested to me that this can be accomplished, using mutual_info_classif from sklearn. However, this method is really slow, so I was trying to implement information gain myself based on this post.
I came up with the following solution:
from scipy.stats import entropy
import numpy as np
def information_gain(X, y):
def _entropy(labels):
counts = np.bincount(labels)
return entropy(counts, base=None)
def _ig(x, y):
# indices where x is set/not set
x_set = np.nonzero(x)[1]
x_not_set = np.delete(np.arange(x.shape[1]), x_set)
h_x_set = _entropy(y[x_set])
h_x_not_set = _entropy(y[x_not_set])
return entropy_full - (((len(x_set) / f_size) * h_x_set)
+ ((len(x_not_set) / f_size) * h_x_not_set))
entropy_full = _entropy(y)
f_size = float(X.shape[0])
scores = np.array([_ig(x, y) for x in X.T])
return scores
Using a very small dataset, most scores from sklearn and my implementation are equal. However, sklearn seems to take frequencies into account, which my algorithm clearly doesn't. For example
categories = ['talk.religion.misc', 'comp.graphics', 'sci.space']
newsgroups_train = fetch_20newsgroups(subset='train',
categories=categories)
X, y = newsgroups_train.data, newsgroups_train.target
cv = CountVectorizer(max_df=0.95, min_df=2,
max_features=100,
stop_words='english')
X_vec = cv.fit_transform(X)
t0 = time()
res_sk = mutual_info_classif(X_vec, y, discrete_features=True)
print("Time passed for sklearn method: %3f" % (time()-t0))
t0 = time()
res_ig = information_gain(X_vec, y)
print("Time passed for ig: %3f" % (time()-t0))
for name, res_mi, res_ig in zip(cv.get_feature_names(), res_sk, res_ig):
print("%s: mi=%f, ig=%f" % (name, res_mi, res_ig))
sample output:
center: mi=0.011824, ig=0.003548
christian: mi=0.128629, ig=0.127122
color: mi=0.028413, ig=0.026397
com: mi=0.041184, ig=0.030458
computer: mi=0.020590, ig=0.012327
cs: mi=0.007291, ig=0.001574
data: mi=0.020734, ig=0.008986
did: mi=0.035613, ig=0.024604
different: mi=0.011432, ig=0.005492
distribution: mi=0.007175, ig=0.004675
does: mi=0.019564, ig=0.006162
don: mi=0.024000, ig=0.017605
earth: mi=0.039409, ig=0.032981
edu: mi=0.023659, ig=0.008442
file: mi=0.048056, ig=0.045746
files: mi=0.041367, ig=0.037860
ftp: mi=0.031302, ig=0.026949
gif: mi=0.028128, ig=0.023744
god: mi=0.122525, ig=0.113637
good: mi=0.016181, ig=0.008511
gov: mi=0.053547, ig=0.048207
So I was wondering if my implementation is wrong, or it is correct, but a different variation of the mutual information algorithm scikit-learn uses.
A little late with my answer but you should look at Orange's implementation. Within their app it is used as a behind-the-scenes processor to help inform the dynamic model parameter building process.
The implementation itself looks fairly straightforward and could most likely be ported out. The entropy calculation first
The sections starting at https://github.com/biolab/orange3/blob/master/Orange/preprocess/score.py#L233
def _entropy(dist):
"""Entropy of class-distribution matrix"""
p = dist / np.sum(dist, axis=0)
pc = np.clip(p, 1e-15, 1)
return np.sum(np.sum(- p * np.log2(pc), axis=0) * np.sum(dist, axis=0) / np.sum(dist))
Then the second portion.
https://github.com/biolab/orange3/blob/master/Orange/preprocess/score.py#L305
class GainRatio(ClassificationScorer):
"""
Information gain ratio is the ratio between information gain and
the entropy of the feature's
value distribution. The score was introduced in [Quinlan1986]_
to alleviate overestimation for multi-valued features. See `Wikipedia entry on gain ratio
<http://en.wikipedia.org/wiki/Information_gain_ratio>`_.
.. [Quinlan1986] J R Quinlan: Induction of Decision Trees, Machine Learning, 1986.
"""
def from_contingency(self, cont, nan_adjustment):
h_class = _entropy(np.sum(cont, axis=1))
h_residual = _entropy(np.compress(np.sum(cont, axis=0), cont, axis=1))
h_attribute = _entropy(np.sum(cont, axis=0))
if h_attribute == 0:
h_attribute = 1
return nan_adjustment * (h_class - h_residual) / h_attribute
The actual scoring process happens at https://github.com/biolab/orange3/blob/master/Orange/preprocess/score.py#L218

Softmax Regression (Multinomial Logistic) with PyMC3

I am trying to implement a logistic multinomial regression (AKA softmax regression). In this example I am trying to classify the iris dataset
I have a problem specifying the model, I get an optimization error with find_MAP(). If I avoid using find_MAP() I get a “sample” of all zero vectors if I use a Categorical for the likelihood, or a posterior exactly the same as the priors if I use Mutinomial(n=1, p=p).
import pymc3 as pm
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
iris = sns.load_dataset("iris")
y_2 = pd.Categorical(iris['species']).labels
x_n = iris.columns[:-1]
x_2 = iris[x_n].values
x_2 = (x_2 - x_2.mean(axis=0))/x_2.std(axis=0)
indice = list(set(y_2))
with pm.Model() as modelo_s:
alfa = pm.Normal('alfa', mu=0, sd=100, shape=3)
beta = pm.Normal('beta', mu=0, sd=100, shape=(4,3))
mu = (alfa[indice] + pm.dot(x_2, beta[:,indice])).T
p = pm.exp(mu)/pm.sum(pm.exp(mu), axis=0)
yl = pm.Categorical('yl', p=p, observed=y_2)
#yl = pm.Multinomial('yl', n=1, p=p, observed=y_2)
start = pm.find_MAP()
step = pm.Metropolis()
trace_s = pm.sample(1000, step, start)
The issue is probably the lack of gibbs updating of vector-valued variables. Thus, a jump is only accepted if all binary values produce a good logp. This PR might be helpful: #799
So you can try: pip install git+https://github.com/pymc-devs/pymc3#gibbs and then do Metropolis(gibbs='random').

[scikit learn]: Anomaly Detection - Alternative for OneClassSVM

I have implemented LinearSVC and SVC from the sklearn-framework for text classification.
I am using TfidfVectorizer to get sparse representation of the input data that consists of two different classes(benign data and malicious data). This part is working pretty fine but now i wanted to implement some kind of anomaly detection by using the OneClassSVM classificator and training a model with only one class (outliers detection...). Unfortunately it is not working with sparse-data. Some developers are working on a patch (https://github.com/scikit-learn/scikit-learn/pull/1586) but there a some bugs so there is no solution yet for using the OneClassSVM-implementation.
Are there any other methods in the sklearn-framework for doing something like that? I am looking over the examples but nothing seems to fit.
Thanks!
A bit late, but in case anyone else is looking for information on this... There's a third-party anomaly detection module for sklearn here: http://www.cit.mak.ac.ug/staff/jquinn/software/lsanomaly.html, based on least-squares methods. It should be a plug-in replacement for OneClassSVM.
Unfortunately, scikit-learn currently implements only one-class SVM and robust covariance estimator for outlier detection
You can try a comparision of these methods (as provided in the doc) by examining differences on the 2d data:
import numpy as np
import pylab as pl
import matplotlib.font_manager
from scipy import stats
from sklearn import svm
from sklearn.covariance import EllipticEnvelope
# Example settings
n_samples = 200
outliers_fraction = 0.25
clusters_separation = [0, 1, 2]
# define two outlier detection tools to be compared
classifiers = {
"One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,
kernel="rbf", gamma=0.1),
"robust covariance estimator": EllipticEnvelope(contamination=.1)}
# Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500))
n_inliers = int((1. - outliers_fraction) * n_samples)
n_outliers = int(outliers_fraction * n_samples)
ground_truth = np.ones(n_samples, dtype=int)
ground_truth[-n_outliers:] = 0
# Fit the problem with varying cluster separation
for i, offset in enumerate(clusters_separation):
np.random.seed(42)
# Data generation
X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset
X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset
X = np.r_[X1, X2]
# Add outliers
X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))]
# Fit the model with the One-Class SVM
pl.figure(figsize=(10, 5))
for i, (clf_name, clf) in enumerate(classifiers.iteritems()):
# fit the data and tag outliers
clf.fit(X)
y_pred = clf.decision_function(X).ravel()
threshold = stats.scoreatpercentile(y_pred,
100 * outliers_fraction)
y_pred = y_pred > threshold
n_errors = (y_pred != ground_truth).sum()
# plot the levels lines and the points
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
subplot = pl.subplot(1, 2, i + 1)
subplot.set_title("Outlier detection")
subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),
cmap=pl.cm.Blues_r)
a = subplot.contour(xx, yy, Z, levels=[threshold],
linewidths=2, colors='red')
subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()],
colors='orange')
b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white')
c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black')
subplot.axis('tight')
subplot.legend(
[a.collections[0], b, c],
['learned decision function', 'true inliers', 'true outliers'],
prop=matplotlib.font_manager.FontProperties(size=11))
subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors))
subplot.set_xlim((-7, 7))
subplot.set_ylim((-7, 7))
pl.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26)
pl.show()

Categories