multithreaded mandelbrot set generates no speedup - python

I'm using the following code to generate the Mandelbrot set fractal but no matter the number of threads I use the time for computation doesn't really change (around 5s). I'm using the Intel i5-4200M Processor so I should get different result to at least 4 threads but that is not the case. What am I missing? I want to calculate the speedup by using 1 thread and comparing it to using more but I'm getting no more than a few milliseconds of difference. The Escape time algorithm is used for generation.
# Multi-threaded Mandelbrot Fractal (Do not run using IDLE!)
# FB - 201104306
import threading
import math
import time
import sys
from PIL import Image
START_TIME = 0
w = 1080 # image width
h = 1080 # image height
image = Image.new("RGB", (w, h))
wh = w * h
maxIt = 256 # max number of iterations allowed
# drawing region (xa < xb & ya < yb)
xa = -2.0
xb = 1.0
ya = -1.5
yb = 1.5
xd = xb - xa
yd = yb - ya
numThr = 1 # number of threads to run
# lock = threading.Lock()
class ManFrThread(threading.Thread):
def __init__ (self, k):
self.k = k
threading.Thread.__init__(self)
def run(self):
# each thread only calculates its own share of pixels
for i in range(k, wh, numThr):
kx = i % w
ky = int(i / w)
a = xa + xd * kx / (w - 1.0)
b = ya + yd * ky / (h - 1.0)
x = a
y = b
for kc in range(maxIt):
x0 = x * x - y * y + a #x0 = x * x - y * y + math.exp(-x) * (a * math.cos(y) + b * math.sin(y))
y = 2.0 * x * y + b #y = 2.0 * x * y + math.exp(-x) * (b * math.cos(y) - a * math.sin(y))
x = x0
if x * x + y * y > 4:
# various color palettes can be created here
red = (kc % 8) * 32
green = (16 - kc % 16) * 16
blue = (kc % 16) * 16
# lock.acquire()
global image
image.putpixel((kx, ky), (red, green, blue))
# lock.release()
break
if __name__ == "__main__":
START_TIME = time.time()
numThr = sys.argv[1]
try:
numThr = int(numThr)
except:
print("value must be int")
tArr = []
for k in range(numThr): # create all threads
tArr.append(ManFrThread(k))
for k in range(numThr): # start all threads
tArr[k].start()
for k in range(numThr): # wait until all threads finished
tArr[k].join()
image.save("MandelbrotFractal.png", "PNG")
print("-*-*- %s seconds -*-*-" % (time.time() - START_TIME))

Related

converting code to be able to use Multiprocessing

I have a rather long question I hope I can get help with.
I have a code that runs a simulation by a "while true" loop and after that a "for" loop that saves data from the simulation and restart the sim after given time. This code works fine, but now Im trying to convert this into a multiprocess where I can get 4 simultaneous simulations and for loops. So I tried to put most of the code into a function and then called it but it does not seem to work. Sorry for the long code I appreciate any help!
The first working code without multiprocessing
for z in range(8):
for q in range(100):
time_re = time_re + 3000
tk.after(time_re,appender)
tk.after(time_re,restart)
ava(avaR1)
while True:
time_steps = range(0,iterations+1)
B = Beta.get()
G = Gamma.get()
D = Diff.get()
M = Mor.get()
steps_x_or_y = np.random.rand(n)
steps_x = steps_x_or_y < D/2
steps_y = (steps_x_or_y > D/2) & (steps_x_or_y < D)
nx = (x + np.sign(np.random.randn(n)) * steps_x) % l
ny = (y + np.sign(np.random.randn(n)) * steps_y) % l
for i in np.where( (S==1) & ( np.random.rand(n) < B ))[0]: # loop over infecting agents
S[(x==x[i]) & (y==y[i]) & (S==0)] = 1 # Susceptiples together with infecting agent becomes infected
S[ (S==1) & (np.random.rand(n) < G) ] = 2 # Recovery
S[ (S==1) & (np.random.rand(n) < M) ] = 3 # Death
nrInf1 = sum(S==1)
nrSus.append(sum(S==0))
nrInf.append(sum(S==1))
nrRec.append(sum(S==2))
nrRec1 = sum(S==2)
nrDea = sum(S == 3)
iterations += 1
tk.update()
tk.title('Infected:' + str(np.sum(S==1)))
x = nx # Update x
y = ny # Update y
The second code with me trying to change it to multiprocessing
def main1(i):
# Physical parameters of the system
x = np.floor(np.random.rand(n)*l) # x coordinates
y = np.floor(np.random.rand(n)*l) # y coordinates
S = np.zeros(n) # status array, 0: Susceptiple, 1: Infected, 2: recovered
I = np.argsort((x-l/2)**2 + (y-l/2)**2)
S[I[1:initial_infected]] = 1 # Infect agents that are close to center
nrRec1 = 0
nrDea = []
time_re = 0
particles = []
R = .5 # agent plot radius
nx = x # udpated x
ny = y # updated y
def restart():
global S
I = np.argsort((x-l/2)**2 + (y-l/2)**2)
S = np.zeros(n)
S[I[1:initial_infected]] = 1
rest = Button(tk, text='Restart',command= restart)
rest.place(relx=0.05, rely=.85, relheight= 0.12, relwidth= 0.15 )
def ava(k,o):
global b
k.append(sum(o)/3)
Beta.set(b) # Parameter slider for mortality rate
b += 0.03125
#bSaver.append(b)
def appender(o):
nrDea1.append(nrDea)
o.append(nrRec1)
for j in range(n): # Generate animated particles in Canvas
particles.append( canvas.create_oval( (x[j] )*res/l,
(y[j] )*res/l,
(x[j]+2*R )*res/l,
(y[j]+2*R )*res/l,
outline=ccolor[0], fill=ccolor[0]) )
if i == 1:
b=0
for z in range(3):
for q in range(3):
time_re = time_re + 1000
tk.after(time_re,appender(nrSRec1))
tk.after(time_re,restart)
tk.after(9000,ava(avaR1,nrSRec1))
elif i == 2:
b=0.25
for z in range(3):
for q in range(3):
time_re = time_re + 1000
tk.after(time_re,appender(nrSRec2))
tk.after(time_re,restart)
tk.after(9000,ava(avaR2,nrSRec2))
elif i == 3:
b=.50
for z in range(3):
for q in range(3):
time_re = time_re + 1000
tk.after(time_re,appender(nrSRec3))
tk.after(time_re,restart)
tk.after(9000,ava(avaR3,nrSRec3))
else:
b=.75
for z in range(3):
for q in range(3):
time_re = time_re + 1000
tk.after(time_re,appender(nrSRec4))
tk.after(time_re,restart)
tk.after(9000,ava(avaR4,nrSRec4))
while True:
B = Beta.get()
G = Gamma.get()
D = Diff.get()
steps_x_or_y = np.random.rand(n)
steps_x = steps_x_or_y < D/2
steps_y = (steps_x_or_y > D/2) & (steps_x_or_y < D)
nx = (x + np.sign(np.random.randn(n)) * steps_x) % l
ny = (y + np.sign(np.random.randn(n)) * steps_y) % l
for i in np.where( (S==1) & ( np.random.rand(n) < B ))[0]: # loop over infecting agents
S[(x==x[i]) & (y==y[i]) & (S==0)] = 1 # Susceptiples together with infecting agent becomes infected
S[ (S==1) & (np.random.rand(n) < G) ] = 2 # Recovery
nrDea= sum(S == 3)
nrRec1 = sum(S==2)
tk.update()
tk.title('Infected:' + str(np.sum(S==1)))
x = nx # Update x
y = ny # Update y
if __name__ == '__main__':
p1=mp.Process(target=main1, args=(1,))
p1.start()
p2=mp.Process(target=main1, args=(2,))
p2.start()
p3=mp.Process(target=main1, args=(3,))
p3.start()
p4=mp.Process(target=main1, args=(4,))
p4.start()
joinedList = avaR1+avaR2+avaR3+avaR4
print(joinedList)
Tk.mainloop(canvas)

How to eliminate the click's in my tone generator? PYTHON TONE GENERATOR

When the frequency changes, clicks are sometimes heard.
I tried to eliminate the clicks in a couple of ways, e.g. changing the frequency only when the volume reaches 0 more than once. I tried to calculate when 1 period will end exactly but that didn't work either.
import sys
import sdl2
import sdl2.ext
import math
import struct
import ctypes
basefreq = 110
nframes = 0
tab = [1]
left=0
m= [0]
x=[0]
x2=[0]
x3=[11025]
x4=[0]
i2=[1]
x5=[0]
#ctypes.CFUNCTYPE(None, ctypes.c_void_p, ctypes.POINTER(sdl2.Uint8), ctypes.c_int)
def playNext(notused, stream, len):
global nframes
for i in range(0, len, 4):
t = (nframes + i) / 44100
i2[0] = i2[0] + 1
t4 = (nframes + i2[0]) / 44100
left2 = math.sin(2 * math.pi * t * (basefreq + int(tab[0])))
left = int(math.sin(2 * math.pi * t * (basefreq + int(tab[0]) )) * 32000)
right = int(math.sin(2 * math.pi * t * (basefreq + 1)) * 32000)
#print(t*100000)
x3[0]=x3[0]+1
t2 = 1 / (basefreq + tab[0])
d2 = i / (44100 * t2)
t3 = x3[0] / (basefreq + tab[0])
d3 = i / (44100 * t3)
width = 344/(basefreq + tab[0])
if (int(t * 100000) % 100000 == 0):
#print(t, " : ", i, " : ", x3[0], " : ", t3," : ", t2," : ",basefreq + tab[0])
x4[0]=0
x3[0] = 0
if (int(d2 * 10) % 2 == 0):
g = x2[0]
x2[0] = 0
dd = g / (44100 * t2)
# print(left, " : ", left)
x2[0] = x2[0] + 1
e = dd * 44100
x4[0]=x4[0]+1
#print(x4[0])
#if(int(left)*1000==0):
#if ((left * 100 <= 0 or left * 100 <= 0) and (left * 100 < 500 or left * 100 > -500)):
print(int(left2*100))
if (int(left2*100) ==0):
if (x5[0] == 10):
#if(int(t*10000)%int(t2*10000)==0):
#if (int(d2 * 10) % 2 == 0 and (i / 100) % int(e / 100) == 0 ):
#if(i*1000%int(t3*220*1000)==0):
tab[0] =math.sin(x[0] / 100)*100+100
x[0]=x[0]+1
i2[0] = i2[0] - 1
x5[0]=0
else:
x5[0]=x5[0]+1
if((nframes + i)%4==0):
stream[i] = left & 0xff
stream[i+1] = (left >> 8) & 0xff
stream[i+2] = right & 0xff
stream[i+3] = (right >> 8) & 0xff
nframes += len
def initAudio():
spec = sdl2.SDL_AudioSpec(0, 0, 0, 0)
spec.callback = playNext
spec.freq = 44100
spec.format = sdl2.AUDIO_S16SYS
spec.channels = 2
spec.samples = 1024
devid = sdl2.SDL_OpenAudioDevice(None, 0, spec, None, 0)
sdl2.SDL_PauseAudioDevice(devid, 0)
def run():
global basefreq
sdl2.SDL_Init(sdl2.SDL_INIT_AUDIO | sdl2.SDL_INIT_TIMER | sdl2.SDL_INIT_VIDEO)
window = sdl2.ext.Window("Tone Generator", size=(800, 600))
window.show()
running = True
initAudio()
while running:
events = sdl2.ext.get_events()
for event in events:
if event.type == sdl2.SDL_QUIT:
running = False
break
elif event.type == sdl2.SDL_KEYDOWN:
if event.key.keysym.sym == sdl2.SDLK_UP:
basefreq *= 2
elif event.key.keysym.sym == sdl2.SDLK_DOWN:
basefreq /= 2
break
sdl2.SDL_Delay(1)
return 0
if __name__ == "__main__":
sys.exit(run())
I think this problem is hard to solve.
Can someone help me with this problem?

real gas, 1D pipe flow in Pyomo + SCIP failing through energy equation?

Hi there smart people!
I am trying to implement a 1D, steady-state, real gas (compressibility factor) pipe flow model in Python using Pyomo + SCIP. It basically amounts to solving a DAE system. The formulation is an adopted version from chapter 10 in Koch, T.; Hiller, B.; Pfetsch, M.E.; Schewe, L. Evaluating Gas Network Capacities; Series on Optimization, MOS-SIAM, 2015.
However, I am encountering several problems:
The problem seems to be numerically sensitive to a combination of the discretization step length and input parameters (mass flow, pipe length).
Does not solve for any other model but ideal gas.
With a suitable discretization, and an ideal gas law, I get a result that seems reasonable (see example). In all other cases it turns out to be infeasible.
I may be overlooking something here, but I do not see it. Therefore, if anyone is inclined to try and help me out here, I would be thankful.
The example below should produce a valid output.
Edit: I realized I had one false constraint in there belonging to another model. The energy equation works now. However, the problems mentioned above remain.
from pyomo.dae import *
from pyomo.environ import *
import matplotlib.pyplot as plt
from math import pi
from dataclasses import dataclass
#dataclass
class ShomateParameters:
A: float
B: float
C: float
D: float
E: float
def specific_isobaric_heat_capacity(self, temperature):
# in J/(mol*K)
return self.A + self.B * (temperature/1000) + self.C * (temperature/1000)**2 + self.D * (temperature/1000)**3 + self.E/(temperature/1000)**2
def plot(self, temperature_start, temperature_end, points_to_mark=None):
assert temperature_start <= temperature_end, "temperature_start <= temperature_end must hold."
temperatures = [i for i in range(temperature_start, temperature_end+1)]
values = [self.specific_isobaric_heat_capacity(temp) for temp in temperatures]
fig, ax = plt.subplots()
ax.plot(temperatures, values)
if points_to_mark is not None:
ax.scatter(points_to_mark, [self.specific_isobaric_heat_capacity(temp) for temp in points_to_mark])
ax.set(xlabel='temperature [K]', ylabel='specific isobaric heat capacity [J/(mol*K)]',
title='Shomate equation:\n A + B*T + C*T^2 + D*T^3 + E/T^2')
ax.grid()
plt.show()
#dataclass
class Species:
MOLAR_MASS: float # kg/mol
CRITICAL_TEMPERATURE: float # Kelvin
CRITICAL_PRESSURE: float # Pa
DYNAMIC_VISCOSITY: float # Pa*s
SHOMATE_PARAMETERS: ShomateParameters
METHANE = Species(MOLAR_MASS=0.016043,
CRITICAL_TEMPERATURE=190.56,
CRITICAL_PRESSURE=4599000,
DYNAMIC_VISCOSITY=1.0245e-5,
SHOMATE_PARAMETERS=ShomateParameters(
A=-0.703029,
B=108.4773,
C=-42.52157,
D=5.862788,
E=0.678565))
# select gas species
gas = METHANE
# select equation of state ('ideal', 'AGA' or 'Papay')
formula = 'ideal'
PIPE_LENGTH = 24000 # meter
start = 0 # meter
end = start + PIPE_LENGTH
MASS_FLOW = 350 # kg/s
PIPE_SLOPE = 0.0
PIPE_DIAMETER = 1.0 # meter
PIPE_INNER_ROUGHNESS = 6e-5 # 15e-6 # meter 6e-6 # meter
# gravitational acceleration
G = 9.81 # meter**2/s**2
# gas temperature at entry
TEMPERATURE = 283.15
# temperature ambient soil
TEMPERATURE_SOIL = 283.15 # Kelvin
# gas pressure at entry
PRESSURE = 4.2e6 # Pa
GAS_CONSTANT = 8.314 # J/(mol*K)
print(gas.SHOMATE_PARAMETERS)
print(gas.SHOMATE_PARAMETERS.specific_isobaric_heat_capacity(TEMPERATURE))
gas.SHOMATE_PARAMETERS.plot(273, 400, points_to_mark=[TEMPERATURE])
##################################################################################
# Variable bounds
##################################################################################
pressure_bounds = (0, 1e7) # Pa
temperature_bounds = (0, 650) # Kelvin
density_bounds = (0, 100)
idealMolarIsobaricHeatCapacityBounds = (0, 200)
correctionIdealMolarIsobaricHeatCapacityBounds = (-250, 250)
velocity_bounds = (0, 300)
##################################################################################
# Create model
##################################################################################
m = ConcreteModel()
##################################################################################
# Parameters
##################################################################################
m.criticalPressure = Param(initialize=gas.CRITICAL_PRESSURE)
m.criticalTemperature = Param(initialize=gas.CRITICAL_TEMPERATURE)
m.molarMass = Param(initialize=gas.MOLAR_MASS)
m.dynamicViscosity = Param(initialize=gas.DYNAMIC_VISCOSITY)
m.gravitationalAcceleration = Param(initialize=G)
m.pipeSlope = Param(initialize=PIPE_SLOPE)
m.innerPipeRoughness = Param(initialize=PIPE_INNER_ROUGHNESS)
m.c_HT = Param(initialize=2)
m.pi = Param(initialize=pi)
m.temperatureSoil = Param(initialize=TEMPERATURE_SOIL)
m.gasConstantR = Param(initialize=GAS_CONSTANT)
m.massFlow = Param(initialize=MASS_FLOW)
m.pipeDiameter = Param(initialize=PIPE_DIAMETER)
m.crossSectionalArea = Param(initialize=m.pi * m.pipeDiameter**2 / 4)
m.alpha = Param(initialize=3.52)
m.beta = Param(initialize=-2.26)
m.gamma = Param(initialize=0.274)
m.delta = Param(initialize=-1.878)
m.e = Param(initialize=2.2)
m.d = Param(initialize=2.2)
##################################################################################
# Variables
##################################################################################
m.x = ContinuousSet(bounds=(start, end))
m.pressure = Var(m.x, bounds=pressure_bounds) #
m.dpressuredx = DerivativeVar(m.pressure, wrt=m.x, initialize=0, bounds=(-100, 100))
m.temperature = Var(m.x, bounds=temperature_bounds) #
m.dtemperaturedx = DerivativeVar(m.temperature, wrt=m.x, initialize=0, bounds=(-100, 100))
m.density = Var(m.x, bounds=density_bounds)
m.ddensitydx = DerivativeVar(m.density, wrt=m.x, initialize=0, bounds=(-100, 100))
m.z = Var(m.x, bounds=(-10, 10))
m.specificIsobaricHeatCapacity = Var(m.x)
m.idealMolarIsobaricHeatCapacity = Var(m.x, bounds=idealMolarIsobaricHeatCapacityBounds)
m.correctionIdealMolarIsobaricHeatCapacity = Var(m.x, bounds=correctionIdealMolarIsobaricHeatCapacityBounds)
m.mue_jt = Var(bounds=(-100, 100))
m.velocity = Var(m.x, bounds=velocity_bounds)
m.phiVar = Var()
##################################################################################
# Constraint rules
##################################################################################
# compressibility factor z and its derivatives; (pV/(nRT)=z
def z(p,
T,
p_c,
T_c,
formula=None):
p_r = p/p_c
T_r = T/T_c
if formula is None:
raise ValueError("formula must be equal to 'AGA' or 'Papay' or 'ideal'")
elif formula == 'AGA':
return 1 + 0.257 * p_r - 0.533 * p_r/T_r
elif formula == 'Papay':
return 1-3.52 * p_r * exp(-2.26 * T_r) + 0.247 * p_r**2 * exp(-1.878 * T_r)
elif formula == 'ideal':
return 1
else:
raise ValueError("formula must be equal to 'AGA' or 'Papay' or 'ideal'")
def dzdT(p,
T,
p_c,
T_c,
formula=None):
p_r = p/p_c
T_r = T/T_c
if formula is None:
raise ValueError("formula must be equal to 'AGA' or 'Papay'")
elif formula == 'AGA':
return 0.533 * p/p_c * T_c * 1/T**2
elif formula == 'Papay':
return 3.52 * p_r * (2.26/T_c) * exp(-2.26 * T_r) + 0.247 * p_r**2 * (-1.878/T_c) * exp(-1.878 * T_r)
elif formula == 'ideal':
return 0
else:
raise ValueError("formula must be equal to 'AGA' or 'Papay' or 'ideal'")
def dzdp(p,
T,
p_c,
T_c,
formula=None):
p_r = p/p_c
T_r = T/T_c
if formula is None:
raise ValueError("formula must be equal to 'AGA' or 'Papay' or 'ideal'")
elif formula == 'AGA':
return 0.257 * 1/p_c - 0.533 * (1/p_c)/T_r
elif formula == 'Papay':
return -3.52 * 1/p_c * exp(-2.26 * T_r) + 0.274 * 1/(p_c**2) * 2 * p * exp(-1.878 * T_r)
elif formula == 'ideal':
return 0
else:
raise ValueError("formula must be equal to 'AGA' or 'Papay' or 'ideal'")
def make_c_compr(formula):
assert formula == 'AGA' or formula == 'Papay' or formula == 'ideal'
def _c_compr(z_var,
p,
T,
p_c,
T_c):
return z_var - z(p, T, p_c, T_c, formula=formula)
return _c_compr
_c_compr = make_c_compr(formula)
def _c_compr_rule(m, x):
return 0 == _c_compr(m.z[x],
m.pressure[x],
m.temperature[x],
m.criticalPressure,
m.criticalTemperature)
m.c_compr = Constraint(m.x, rule=_c_compr_rule)
# specific isobaric heat capacity: ideal + correction term
def _c_mhc_real(molarMass,
specificIsobaricHeatCapacity,
idealMolarIsobaricHeatCapacity,
correctionIdealMolarIsobaricHeatCapacity):
return molarMass * specificIsobaricHeatCapacity - (idealMolarIsobaricHeatCapacity +
correctionIdealMolarIsobaricHeatCapacity)
def _c_mhc_real_rule(m, x):
return 0 == _c_mhc_real(m.molarMass,
m.specificIsobaricHeatCapacity[x],
m.idealMolarIsobaricHeatCapacity[x],
m.correctionIdealMolarIsobaricHeatCapacity[x])
m.c_mhc_real = Constraint(m.x, rule=_c_mhc_real_rule)
# _c_mhc_ideal_Shomate
def _c_mhc_ideal_Shomate(idealMolarIsobaricHeatCapacity, A, B, C, D, E, T):
return idealMolarIsobaricHeatCapacity - (A + B * (T/1000) + C * (T/1000)**2 + D * (T/1000)**3 + E/(T/1000)**2)
def _c_mhc_ideal_Shomate_rule(m, x):
return 0 == _c_mhc_ideal_Shomate(m.idealMolarIsobaricHeatCapacity[x],
gas.SHOMATE_PARAMETERS.A,
gas.SHOMATE_PARAMETERS.B,
gas.SHOMATE_PARAMETERS.C,
gas.SHOMATE_PARAMETERS.D,
gas.SHOMATE_PARAMETERS.E,
m.temperature[x])
m.c_mhc_ideal_Shomate = Constraint(m.x, rule=_c_mhc_ideal_Shomate_rule)
# _c_mhc_corr
def make_c_mhc_corr(formula):
assert formula == 'AGA' or formula == 'Papay' or formula == 'ideal'
if formula == 'AGA':
def _c_mhc_corr(correctionIdealMolarIsobaricHeatCapacity, alpha, beta, gamma, delta, p, T, p_c, T_c, R):
return correctionIdealMolarIsobaricHeatCapacity
elif formula == 'Papay':
def _c_mhc_corr(correctionIdealMolarIsobaricHeatCapacity, alpha, beta, gamma, delta, p, T, p_c, T_c, R):
# m.alpha = 3.52
# m.beta = -2.26
# m.gamma = 0.274
# m.delta = -1.878
p_r = p/p_c
T_r = T/T_c
return correctionIdealMolarIsobaricHeatCapacity + R * (
(gamma * delta + 0.5 * gamma * delta**2 * T_r) * p_r**2 * T_r * exp(delta * T_r) -
(2 * alpha * beta + alpha * beta**2 * T_r) * p_r * T_r * exp(beta * T_r))
elif formula == 'ideal':
def _c_mhc_corr(correctionIdealMolarIsobaricHeatCapacity, alpha, beta, gamma, delta, p, T, p_c, T_c, R):
return correctionIdealMolarIsobaricHeatCapacity
return _c_mhc_corr
_c_mhc_corr = make_c_mhc_corr(formula)
def _c_mhc_corr_rule(m, x):
return 0 == _c_mhc_corr(m.correctionIdealMolarIsobaricHeatCapacity[x],
m.alpha,
m.beta,
m.gamma,
m.delta,
m.pressure[x],
m.temperature[x],
m.criticalPressure,
m.criticalTemperature,
m.gasConstantR)
m.c_mhc_corr = Constraint(m.x, rule=_c_mhc_corr_rule)
# equation of state
def _c_eos(p, T, rho, molarMass, R, z):
return rho * z * R * T - p * molarMass
def _c_eos_rule(m, x):
return 0 == _c_eos(m.pressure[x],
m.temperature[x],
m.density[x],
m.molarMass,
m.gasConstantR,
m.z[x])
m.c_eos = Constraint(m.x, rule=_c_eos_rule)
# flow velocity equation
def _c_vel_flow(q, v, rho, A):
return A * rho * v - q
def _c_vel_flow_rule(m, x):
return 0 == _c_vel_flow(m.massFlow,
m.velocity[x],
m.density[x],
m.crossSectionalArea)
m.c_vel_flow = Constraint(m.x, rule=_c_vel_flow_rule)
# a smooth reformulation of the flow term with friction: lambda(q)|q|q (=phi)
def _c_friction(phi, q, k, D, e, d, A, eta):
beta = k/(3.71 * D)
lambda_slant = 1/(2*log10(beta))**2
alpha = 2.51 * A * eta / D
delta = 2 * alpha/(beta*log(10))
b = 2 * delta
c = (log(beta) + 1) * delta**2 - (e**2 / 2)
root1 = sqrt(q**2 + e**2)
root2 = sqrt(q**2 + d**2)
return phi - lambda_slant * (root1 + b + c/root2) * q
def _c_friction_rule(m):
return 0 == _c_friction(m.phiVar,
m.massFlow,
m.innerPipeRoughness,
m.pipeDiameter,
m.e,
m.d,
m.crossSectionalArea,
m.dynamicViscosity)
m.c_friction = Constraint(rule=_c_friction_rule)
# energy balance
def _diffeq_energy(q, specificIsobaricHeatCapacity, dTdx, T, rho, z, dzdT, dpdx, g, s, pi, D, c_HT, T_soil):
return q * specificIsobaricHeatCapacity * dTdx - (q * T / (rho * z) * dzdT * dpdx) + (q * g * s) + (pi * D * c_HT * (T - T_soil))
def _diffeq_energy_rule(m, x):
# if x == start:
# return Constraint.Skip
return 0 == _diffeq_energy(m.massFlow,
m.specificIsobaricHeatCapacity[x],
m.dtemperaturedx[x],
m.temperature[x],
m.density[x],
m.z[x],
dzdT(m.pressure[x],
m.temperature[x],
m.criticalPressure,
m.criticalTemperature,
formula=formula),
m.dpressuredx[x],
m.gravitationalAcceleration,
m.pipeSlope,
m.pi,
m.pipeDiameter,
m.c_HT,
m.temperatureSoil)
m.diffeq_energy = Constraint(m.x, rule=_diffeq_energy_rule)
# momentum balance
def _diffeq_momentum(rho, dpdx, q, A, drhodx, g, s, phi, D):
return rho * dpdx - q**2 / (A**2) * drhodx / rho + g * rho**2 * s + phi / (2 * A**2 * D)
def _diffeq_momentum_rule(m, x):
# if x == start:
# return Constraint.Skip
return 0 == _diffeq_momentum(m.density[x],
m.dpressuredx[x],
m.massFlow,
m.crossSectionalArea,
m.ddensitydx[x],
m.gravitationalAcceleration,
m.pipeSlope,
m.phiVar,
m.pipeDiameter)
m.diffeq_momentum = Constraint(m.x, rule=_diffeq_momentum_rule)
##################################################################################
# Discretization
##################################################################################
discretizer = TransformationFactory('dae.finite_difference')
discretizer.apply_to(m, nfe=60, wrt=m.x, scheme='BACKWARD')
##################################################################################
# Initial conditions
##################################################################################
m.pressure[start].fix(PRESSURE)
m.temperature[start].fix(TEMPERATURE)
##################################################################################
# Objective
##################################################################################
# constant
m.obj = Objective(expr=1)
m.pprint()
##################################################################################
# Solve
##################################################################################
solver = SolverFactory('scip')
# solver = SolverFactory('scip', executable="C:/Users/t.triesch/Desktop/scipampl-7.0.0.win.x86_64.intel.opt.spx2.exe")
results = solver.solve(m, tee=True, logfile="pipe.log")
##################################################################################
# Plot
##################################################################################
distance = [i/1000 for i in list(m.x)]
p = [value(m.pressure[x])/1e6 for x in m.x]
t = [value(m.temperature[x]) for x in m.x]
rho = [value(m.density[x]) for x in m.x]
v = [value(m.velocity[x]) for x in m.x]
fig = plt.figure()
gs = fig.add_gridspec(4, hspace=0.5)
axs = gs.subplots(sharex=True)
fig.suptitle('p[start] = {0} [MPa], p[end] = {1} [MPa],\n T[start]= {2} [K],\n massFlow[:]= {3} [kg/s],\n total length: {4} m'.format(
p[0], p[-1], t[0], m.massFlow.value, PIPE_LENGTH))
axs[0].plot(distance, p, '-')
axs[0].set(ylabel='p [MPa]')
axs[0].set_ylim([0, 10])
axs[0].grid()
axs[0].set_yticks([i for i in range(0, 11)])
axs[1].plot(distance, t, '-')
axs[1].set(ylabel='T [K]')
axs[1].set_ylim([250, 350])
axs[1].grid()
axs[2].plot(distance, rho, '-')
axs[2].set(ylabel='rho [kg/m^3]')
axs[2].grid()
axs[3].plot(distance, v, '-')
axs[3].set(ylabel='v [m/s]')
axs[3].grid()
for ax in axs.flat:
ax.set(xlabel='distance [km]')
plt.show()

Adding and printing items, using lists using python

So my problem seems quite trivial, but I'm new to python and am writing a simple program that calculates the reactions of a beam. My program does that successfully, but now I want to expand the capabilities to being able to plot the shear and bending moment diagrams along each beam. My thought process is to use a list and add the shear values (for now) to that list, in increments that divides the beam into 100 segments. Afterwards I want to be able to retrieve them and use these values to plot them.
class beam:
def __init__(self, emod, i, length):
self.emod = emod
self.i = i
self.length = length
def A(self, a, p): # Calculate reaction at A
return p * (self.length - a) / self.length
def B(self, a, p): # Calculate reaction at B
return p * a / self.length
def Mc(self, a, p): # Calculate moment at C
return p * a * (self.length - a) / self.length
def delc(self, a, p):
return p * a * a * (self.length - a) ** 2 / 3 / self.emod / self.i / self.length
def delx(self, x, a, p):
beta = (self.length - a) / self.length
delta = x / self.length
return p * self.length * self.length * (self.length - a) * delta * (
1 - beta * beta - delta * delta) / 6 / self.emod / self.i
def delx1(self, x, a, p):
alpha = a / self.length
delta = x / self.length
return p * self.length * self.length * a * delta * (
1 - alpha * alpha - delta * delta) / 6 / self.emod / self.i
def maxDisplacementCoords(self, a):
return a * (1.0 / 3 + 2 * (self.length - a) / 3 / a) ** 0.5
class shearValues: # This is the class that adds the shear values to a list
def __init__(self):
self.values = []
def add_values(self, beam, a_val, p):
j = float(0)
v = beam.A(a_val, p)
while j < beam.length:
if j < a_val:
continue
elif j > a_val:
continue
elif j == a_val:
v -= p
self.values.append(v)
j += beam.length / float(100)
v += beam.B(a_val, p)
self.values.append(v)
if __name__ == '__main__':
def inertia_x(h, w, t):
iy1 = w * h * h * h / 12
iy2 = (w - t) * (h - 2 * t) ** 3 / 12
return iy1 - 2 * iy2
beam_list = []
beam1 = beam(200000000000, inertia_x(0.203, 0.133, 0.025), 5)
beam2 = beam(200000000000, inertia_x(0.254, 0.146, 0.031), 5)
beam3 = beam(200000000000, inertia_x(0.305, 0.102, 0.025), 5)
beam_list.append(beam1)
beam_list.append(beam2)
beam_list.append(beam3)
while True:
my_beam = beam_list[1]
beam_choice = input("Which beam would you like to evaluate? 1, 2 or 3 ")
if beam_choice == '1':
my_beam = beam_list[0]
elif beam_choice == '2':
my_beam = beam_list[1]
elif beam_choice == '3':
my_beam = beam_list[2]
p = float(input("Enter the required load "))
a_val = float(input("Enter displacement of point load (origin at LHS) "))
print("Ay = {}".format(my_beam.A(a_val, p)))
print("By = {}".format(my_beam.B(a_val, p)))
print("Mc = {}".format(my_beam.Mc(a_val, p)))
print("Displacement at C = {}".format(my_beam.delc(a_val, p)))
displacement = input("Do you want to calculate a specific displacement? [Y]es or [N]o ").upper()
if displacement not in 'YN' or len(displacement) != 1:
print("Not a valid option")
continue
if displacement == 'Y':
x = float(input("Enter location on beam to calculate displacement (origin on LHS) "))
if x < a_val:
print("Displacement at {} = {}".format(x, my_beam.delx(x, a_val, p)))
elif x > a_val:
print("Displacement at {} = {}".format(x, my_beam.delx1(my_beam.length - x, a_val, p)))
elif x == displacement:
print("Displacement at {} = {}".format(x, my_beam.delc(a_val, p)))
elif displacement == 'N':
continue
print("Max displacement is at {} and is = {}".format(my_beam.maxDisplacementCoords(a_val),
my_beam.delx(my_beam.maxDisplacementCoords(a_val), a_val,
p)))
# The code doesn't execute the way it is intended from here
sv = shearValues()
sv.add_values(my_beam,a_val,p)
Currently it seems as if I have created an infinite loop.
As you can see, the code is not optimized at all but any help would be appreciated. And the calculations are correct.

Too many values to unpack with python

I have a little problem with Python.
I'm try to write an application for DCM standard who some slice and draw the final model.
This is my code:
from lar import *
from scipy import *
import scipy
import numpy as np
from time import time
from pngstack2array3d import pngstack2array3d
colors = 2
theColors = []
DEBUG = False
MAX_CHAINS = colors
# It is VERY important that the below parameter values
# correspond exactly to each other !!
# ------------------------------------------------------------
MAX_CHUNKS = 75
imageHeight, imageWidth = 250,250 # Dx, Dy
# configuration parameters
# ------------------------------------------------------------
beginImageStack = 430
endImage = beginImageStack
nx = ny = 50
imageDx = imageDy = 50
count = 0
# ------------------------------------------------------------
# Utility toolbox
# ------------------------------------------------------------
def ind(x,y): return x + (nx+1) * (y + (ny+1) )
def invertIndex(nx,ny):
nx,ny = nx+1,ny+1
def invertIndex0(offset):
a0, b0 = offset / nx, offset % nx
a1, b1 = a0 / ny, a0 % ny
return b0,b1
return invertIndex0
def invertPiece(nx,ny):
def invertIndex0(offset):
a0, b0 = offset / nx, offset % nx
a1, b1 = a0 / ny, a0 % ny
return b0,b1
return invertIndex0
# ------------------------------------------------------------
# computation of d-chain generators (d-cells)
# ------------------------------------------------------------
# cubic cell complex
# ------------------------------------------------------------
def the3Dcell(coords):
x,y= coords
return [ind(x,y),ind(x+1,y),ind(x,y+1),ind(x+1,y+1)]
# construction of vertex coordinates (nx * ny )
# ------------------------------------------------------------
V = [[x,y] for y in range(ny+1) for x in range(nx+1) ]
if __name__=="__main__" and DEBUG == True:
print "\nV =", V
# construction of CV relation (nx * ny)
# ------------------------------------------------------------
CV = [the3Dcell([x,y]) for y in range(ny) for x in range(nx)]
if __name__=="__main__" and DEBUG == True:
print "\nCV =", CV
#hpc = EXPLODE(1.2,1.2,1.2)(MKPOLS((V,CV[:500]+CV[-500:])))
#box = SKELETON(1)(BOX([1,2,3])(hpc))
#VIEW(STRUCT([box,hpc]))
# construction of FV relation (nx * ny )
# ------------------------------------------------------------
FV = []
v2coords = invertIndex(nx,ny)
for h in range(len(V)):
x,y= v2coords(h)
if (x < nx) and (y < ny): FV.append([h,ind(x+1,y),ind(x,y+1),ind(x+1,y+1)])
if __name__=="__main__" and DEBUG == True:
print "\nFV =",FV
#hpc = EXPLODE(1.2,1.2,1.2)(MKPOLS((V,FV[:500]+FV[-500:])))
#box = SKELETON(1)(BOX([1,2,3])(hpc))
#VIEW(STRUCT([box,hpc]))
# construction of EV relation (nx * ny )
# ------------------------------------------------------------
EV = []
v2coords = invertIndex(nx,ny)
for h in range(len(V)):
x,y = v2coords(h)
if x < nx: EV.append([h,ind(x+1,y)])
if y < ny: EV.append([h,ind(x,y+1)])
if __name__=="__main__" and DEBUG == True:
print "\nEV =",EV
#hpc = EXPLODE(1.2,1.2,1.2)(MKPOLS((V,EV[:500]+EV[-500:])))
#box = SKELETON(1)(BOX([1,2,3])(hpc))
#VIEW(STRUCT([box,hpc]))
# ------------------------------------------------------------
# computation of boundary operators (∂3 and ∂2s)
# ------------------------------------------------------------
"""
# computation of the 2D boundary complex of the image space
# ------------------------------------------------------------
Fx0V, Ex0V = [],[] # x == 0
Fx1V, Ex1V = [],[] # x == nx-1
Fy0V, Ey0V = [],[] # y == 0
Fy1V, Ey1V = [],[] # y == ny-1
v2coords = invertIndex(nx,ny)
for h in range(len(V)):
x,y = v2coords(h)
if (y == 0):
if x < nx: Ey0V.append([h,ind(x+1,y)])
if (x < nx):
Fy0V.append([h,ind(x+1,y),ind(x,y)])
elif (y == ny):
if x < nx: Ey1V.append([h,ind(x+1,y)])
if (x < nx):
Fy1V.append([h,ind(x+1,y),ind(x,y)])
if (x == 0):
if y < ny: Ex0V.append([h,ind(x,y+1)])
if (y < ny):
Fx0V.append([h,ind(x,y+1),ind(x,y)])
elif (x == nx):
if y < ny: Ex1V.append([h,ind(x,y+1)])
if (y < ny):
Fx1V.append([h,ind(x,y+1),ind(x,y)])
FbV = Fy0V+Fy1V+Fx0V+Fx1V
EbV = Ey0V+Ey1V+Ex0V+Ex1V
"""
"""
if __name__=="__main__" and DEBUG == True:
hpc = EXPLODE(1.2,1.2,1.2)(MKPOLS((V,FbV)))
VIEW(hpc)
hpc = EXPLODE(1.2,1.2,1.2)(MKPOLS((V,EbV)))
VIEW(hpc)
"""
# computation of the ∂2 operator on the boundary space
# ------------------------------------------------------------
print "start partial_2_b computation"
#partial_2_b = larBoundary(EbV,FbV)
print "end partial_2_b computation"
# computation of ∂3 operator on the image space
# ------------------------------------------------------------
print "start partial_3 computation"
partial_3 = larBoundary(FV,CV)
print "end partial_3 computation"
# ------------------------------------------------------------
# input from volume image (test: 250 x 250 x 250)
# ------------------------------------------------------------
out = []
Nx,Ny = imageHeight/imageDx, imageWidth/imageDx
segFaces = set(["Fy0V","Fy1V","Fx0V","Fx1V"])
for inputIteration in range(imageWidth/imageDx):
startImage = endImage
endImage = startImage + imageDy
xEnd, yEnd = 0,0
theImage,colors,theColors = pngstack2array3d('SLICES2/', startImage, endImage, colors)
print "\ntheColors =",theColors
theColors = theColors.reshape(1,2)
background = max(theColors[0])
foreground = min(theColors[0])
print "\n(background,foreground) =",(background,foreground)
if __name__=="__main__" and DEBUG == True:
print "\nstartImage, endImage =", (startImage, endImage)
for i in range(imageHeight/imageDx):
for j in range(imageWidth/imageDy):
xStart, yStart = i * imageDx, j * imageDy
xEnd, yEnd = xStart+imageDx, yStart+imageDy
image = theImage[:, xStart:xEnd, yStart:yEnd]
nx,ny = image.shape
if __name__=="__main__" and DEBUG == True:
print "\n\tsubimage count =",count
print "\txStart, yStart =", (xStart, yStart)
print "\txEnd, yEnd =", (xEnd, yEnd)
print "\timage.shape",image.shape
# ------------------------------------------------------------
# image elaboration (chunck: 50 x 50)
# ------------------------------------------------------------
"""
# Computation of (local) boundary to be removed by pieces
# ------------------------------------------------------------
if pieceCoords[0] == 0: boundaryPlanes += ["Fx0V"]
elif pieceCoords[0] == Nx-1: boundaryPlanes += ["Fx1V"]
if pieceCoords[1] == 0: boundaryPlanes += ["Fy0V"]
elif pieceCoords[1] == Ny-1: boundaryPlanes += ["Fy1V"]
"""
#if __name__=="__main__" and DEBUG == True:
#planesToRemove = list(segFaces.difference(boundaryPlanes))
#FVtoRemove = CAT(map(eval,planesToRemove))
count += 1
# compute a quotient complex of chains with constant field
# ------------------------------------------------------------
chains2D = [[] for k in range(colors)]
def addr(x,y): return x + (nx) * (y + (ny))
for x in range(nx):
for y in range(ny):
if (image[x,y] == background):
chains2D[1].append(addr(x,y))
else:
chains2D[0].append(addr(x,y))
#if __name__=="__main__" and DEBUG == True:
#print "\nchains3D =\n", chains3D
# compute the boundary complex of the quotient cell
# ------------------------------------------------------------
objectBoundaryChain = larBoundaryChain(partial_3,chains2D[1])
b2cells = csrChainToCellList(objectBoundaryChain)
sup_cell_boundary = MKPOLS((V,[FV[f] for f in b2cells]))
# remove the (local) boundary (shared with the piece boundary) from the quotient cell
# ------------------------------------------------------------
"""
cellIntersection = matrixProduct(csrCreate([FV[f] for f in b2cells]),csrCreate(FVtoRemove).T)
#print "\ncellIntersection =", cellIntersection
cooCellInt = cellIntersection.tocoo()
b2cells = [cooCellInt.row[k] for k,val in enumerate(cooCellInt.data) if val >= 4]
"""
# ------------------------------------------------------------
# visualize the generated model
# ------------------------------------------------------------
print "xStart, yStart =", xStart, yStart
if __name__=="__main__":
sup_cell_boundary = MKPOLS((V,[FV[f] for f in b2cells]))
if sup_cell_boundary != []:
out += [T([1,2])([xStart,yStart]) (STRUCT(sup_cell_boundary))]
if count == MAX_CHUNKS:
VIEW(STRUCT(out))
# ------------------------------------------------------------
# interrupt the cycle of image elaboration
# ------------------------------------------------------------
if count == MAX_CHUNKS: break
if count == MAX_CHUNKS: break
if count == MAX_CHUNKS: break
And this is the error take from the terminal :
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-4-2e498c6090a0> in <module>()
213
214 image = theImage[:, xStart:xEnd, yStart:yEnd]
--> 215 nx,ny = image.shape
216
217 if __name__=="__main__" and DEBUG == True:
ValueError: too many values to unpack
Someone can help me to solve this issue????
Based on the line:
image = theImage[:, xStart:xEnd, yStart:yEnd]
image is a 3d array, not a 2d array (it appears to be multiple slices of an image), with the 2nd and 3rd dimensions representing x and y respectively. Thus, if you want to get its dimensions you'll need to unpack it into three dimensions, something like:
nslice, nx, ny = image.shape

Categories