matplotlib: remove 3D plot's white spaces in mixed 2D/3D subplots - python

I am having trouble removing the excessive white spaces when mixing 2D and 3D subplots. For pure 3D subplots, I can adjust the region being plotted with fig.subplots_adjust() to remove the white spaces, see here.
However, the same trick doesn't work if this 3D image is inside a 2D subplots.
I created the mixed subplots like the following:
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import axes3d
fig,axes = plt.subplots(2,2)
ax = axes.flat
for a in range(3):
ax[a].plot(range(10),range(10))
ax[3].remove()
ax[3] = fig.add_subplot(224,projection='3d')
X, Y, Z = axes3d.get_test_data(0.03)
ax[3].plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.8,cmap=cm.coolwarm)
ax[3].set_xticklabels('')
ax[3].set_yticklabels('')
ax[3].set_zticklabels('')
fig.subplots_adjust(hspace=0,wspace=0)
Now the trick eg. fig.subplots_adjust(left=-0.01) will act on the 2D subplot's left edge, and the 3D subplots is not modified. Is there a way to completely remove the white spaces surrounding the 3D subplot? I also tried smaller ax.dist and it is not good if the 3D plot is longer in say z-direction.

There is no whitespace around the axes, it even overlaps the other subplots (their spines are hidden by the 3D axes).
What you want is to adjust the size of gray cube inside the axes. This can be done by changing the viewing distance to that cube.
E.g. ax[3].dist = 7
ax[3].dist = 9
The optimal distance depends of course on the viewing angle.

Related

Combining properties of pcolormesh and imshow

An advantage of plt.pcolormesh over plt.imshow is the possibility to have unequal axis spacing.
On the other hand, plt.imshow's advantage over plt.pcolormesh is that it can display RGB-triplets.
Now, the predicament I am in is that I need to plot RGB-triplets with uneven axis spacing....
Below is a MWE:
import numpy as np
import matplotlib.pyplot as plt
from colorsys import hsv_to_rgb
square_x_axis = np.linspace(0,1,100)**2
cube_y_axis = np.linspace(0,1,200)**3
X,Y = np.meshgrid(cube_y_axis,square_x_axis); print(f'meshgrid has shape: {X.shape}')
rgb_array = np.zeros((square_x_axis.size, cube_y_axis.size,3)); print(f'rgb_array has shape: {rgb_array.shape}')
""" Now we populate the rgb array (initially in hsv color space for clarity)"""
for i,row in enumerate(rgb_array):
for j,col in enumerate(row):
rgb_array[i,j,:] = np.array(hsv_to_rgb(0,square_x_axis[i],cube_y_axis[j]))
fig = plt.figure(figsize=(15,10))
imshow_ax = plt.subplot(1,2,1)
imshow_ax.imshow(rgb_array, aspect='auto', extent=[0,1,0,1])
pcolor_R_ax = plt.subplot(3,2,2)
pcolor_R_ax.pcolormesh(X,Y,rgb_array[:,:,0], cmap='Reds')
pcolor_G_ax = plt.subplot(3,2,4)
pcolor_G_ax.pcolormesh(X,Y,rgb_array[:,:,1], cmap='Greens')
pcolor_B_ax = plt.subplot(3,2,6)
pcolor_B_ax.pcolormesh(X,Y,rgb_array[:,:,2], cmap='Blues')
Which produces the following figure:
The problem becomes immediately obvious: imshow (on the left) is capable of representing the 3D array, but its axis are scaled wrong, leading to a distorted representation. pcolormesh (on the right), on the other hand, can not represent the 3D array (hence why I plot all three channels separately), but is capable of applying the axis correctly, leading to no distortion.
How can I combine these properties?
I found another answer here that seems to work on your example, with a small tweak for some new pcolorbesh behaviour (the shading='auto' bit). Try this plot on your data:
fig = plt.figure(figsize=(15,10))
placeholder = rgb_array[..., 0]
colors = rgb_array.reshape(-1, 3)
mesh = plt.pcolormesh(X, Y, placeholder, facecolors=colors, shading='auto')
mesh.set_array(None)
It produces:
#kwinkunks answer is the method that solved my problem:
The original data, using imshow, looked like this, where both the x- and y-axis of the data plot and the colorbar are wrong. Of all 4 axes, only the data y-axis is linear, the 3 other axes are non-linear, and so using imshows's extent option is no good:
Now... taking #kwinkunks answer directly produced the following plot:
...where the axes tickmarks are now as they should be! Amazing!

Python matplotlib contourf plot

I have one questions about matplotlib and contourf.
I am using the last version of matplotlib with python3.7. Basically I have to matrix I want to plot on the same contour plot but using different colormap. One important aspect is that, for instance, if we have zero matrixA and matrixB with shape=(10,10) then the positions in which matrixA is different of zero are the positions in which matrixB are non-zero, and viceversa.
In other words I want to plot in different colors two different mask.
Thanks for your time.
Edited:
I add an example here
import numpy
import matplotlib.pyplot as plt
matrixA=numpy.random.randn(10,10).reshape(100,)
matrixB=numpy.random.randn(10,10).reshape(100,)
mask=numpy.random.uniform(10,10)
mask=mask.reshape(100,)
indexA=numpy.where(mask[mask>0.5])[0]
indexB=numpy.where(mask[mask<=0.5])[0]
matrixA_masked=numpy.zeros(100,)
matrixB_masked=numpy.zeros(100,)
matrixA_masked[indexA]=matrixA[indexA]
matrixB_masked[indexB]=matrixB[indexB]
matrixA_masked=matrixA_masked.reshape(100,100)
matrixB_masked=matrixB_masked.reshape(100,100)
x=numpy.linspace(0,10,1)
X,Y = numpy.meshgrid(x,x)
plt.contourf(X,Y,matrixA_masked,colormap='gray')
plt.contourf(X,Y,matrixB_masked,colormap='winter')
plt.show()
What I want is to be able to use different colormaps that appear in the same plot. So for instance in the plot there will be a part assigned to matrixA with a contour color (and 0 where matrixB take place), and the same to matrixB with a different colormap.
In other works each part of the contourf plot correspond to one matrix. I am plotting decision surfaces of Machine Learning Models.
I stumbled into some errors in your code so I have created my own dataset.
To have two colormaps on one plot you need to open a figure and define the axes:
import numpy
import matplotlib.pyplot as plt
matrixA=numpy.linspace(1,20,100)
matrixA[matrixA >= 10] = numpy.nan
matrixA_2 = numpy.reshape(matrixA,[50,2])
matrixB=numpy.linspace(1,20,100)
matrixB[matrixB <= 10] = numpy.nan
matrixB_2 = numpy.reshape(matrixB,[50,2])
fig,ax = plt.subplots()
a = ax.contourf(matrixA_2,cmap='copper',alpha=0.5,zorder=0)
fig.colorbar(a,ax=ax,orientation='vertical')
b=ax.contourf(matrixB_2,cmap='cool',alpha=0.5,zorder=1)
fig.colorbar(b,ax=ax,orientation='horizontal')
plt.show()
You'll also see I've changed the alpha and zorder
I hope this helps.

Matplotlib: Labels on projection plot grid lines similar to clabel()

I'm doing a bunch of work with various spherical projection plots using the Astropy WCS package, and have run into some frustrations concerning grid lines. As grid lines do not always intersect with the image bounding box or multiple intersect at the same place, they can go unlabeled or have their labels rendered illegible. I would like to be able to insert grid line labels in each line, much akin to the matplotlib.pyplot.clabel() function applied to contour plots, as in this matplotlib example. I can't embed the image as I am a new user; my apologies.
I know I can place labels using text(), figtext(), or annotate(), but since clabel() works I figure the functionality already exists, even if it hasn't been applied to grid lines. Projection plotting aside, does anyone know a way that in-line grid line labels akin to clabel() can be applied to grid lines on a plain rectangular plot?
To annotate the gridlines, you may use the positions of the major ticks (as those are the positions at which the gridlines are created).
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10)
y = np.sin(x)*10
fig, ax = plt.subplots()
ax.plot(x,y)
ax.grid()
for xi in ax.xaxis.get_majorticklocs():
ax.text(xi,0.8, "{:.2f}".format(xi), clip_on=True, ha="center",
transform=ax.get_xaxis_transform(), rotation=90,
bbox={'facecolor':'w', 'pad':1, "edgecolor":"None"})
for yi in ax.yaxis.get_majorticklocs():
ax.text(0.86,yi, "{:.2f}".format(yi), clip_on=True, va="center",
transform=ax.get_yaxis_transform(),
bbox={'facecolor':'w', 'pad':1, "edgecolor":"None"})
plt.show()

Change axis range into latitude and longitude using matplotlib in python

How can I use yaxis and xaxis, which I want and that are not correlated with data in the plot?
For example, I want to plot the world map as an image using the code below:
import matplotlib.pyplot as plt
fig = plt.figure()
plt.imshow(world_map)
As a result, I got xaxis: 0...image_size_x from the left to the rigth and yaxis: 0...image_size_y from top to bottom.
What do I need to to do to change its axis range into latitude and longitude formats? Thus the figure axis should contain degrees (from 90 to -90) on the both fields (x and y) regardless of what its real data plotted in the figure.
Setting
pylab.ylim([90,-90])
will shift the image to the bottom by 90 pixels and reduced the y-dimension of the image into the scale of image_size_y/90. So it'll not work because xlim/ylim works with data, plotted in the figure.
In short: Use the extent keyword with imshow.
In code:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subaxis(111)
ax.imshow(world_map, extent=[-180,180,-90,90], aspect='auto')
If your map is then upside down, add the keyword argument origin='lower' to the imshow. That aspect='auto' is needed to make the map scalable in both dimensions independently. (The rest of the extra rows with add_subaxis are just to make the code more object-oriented, the real beef is in the keyword arguments.)
If imshow is not given the extents of the image, it thinks that you'll want to have each pixel centered at positions (0,0), (0,1), ..., (Nx-1, Ny-1), and then the image extents will start from (-.5, -.5).
Assuming (based on your post) the image is fine but the axis labels are off, try playing around with this, which will manually implement the axis labels:
plt.figure(1)
ax = plt.subplot(111)
#... do your stuff
#need to figure out your image size divided by the number of labels you want
#FOR EXample, if image size was 180, and you wanted every second coordinate labeled:
ax.set_xticks([i for i in range(0,180,2)]) #python3 code to create 90 tick marks
ax.set_xticklabels([-i for i in range(-90,90,2)]) #python3 code to create 90 labels
#DO SAME FOR Y
The trick im using is to figure out how many labels you want (here, its 90: 180/2), add the tickmarks evenly in the range (0,imagesize), then manually do the labels. Here is a general formula:
ax.set_xticks([i for i in range(0,IMAGE_SIZE,_EVERY_XTH_COORD_LABELED)]) #python3 code to create 90 tick marks
ax.set_xticklabels([-i for i in range(-90,90,EVERY_XTH_COORD_LABELED)]) #python3 code to create 90 labels

Subplots: tight_layout changes figure size

Changing the vertical distance between two subplot using tight_layout(h_pad=-1) changes the total figuresize. How can I define the figuresize using tight_layout?
Here is the code:
#define figure
pl.figure(figsize=(10, 6.25))
ax1=subplot(211)
img=pl.imshow(np.random.random((10,50)), interpolation='none')
ax1.set_xticklabels(()) #hides the tickslabels of the first plot
subplot(212)
x=linspace(0,50)
pl.plot(x,x,'k-')
xlim( ax1.get_xlim() ) #same x-axis for both plots
And here is the results:
If I write
pl.tight_layout(h_pad=-2)
in the last line, then I get this:
As you can see, the figure is bigger...
You can use a GridSpec object to control precisely width and height ratios, as answered on this thread and documented here.
Experimenting with your code, I could produce something like what you want, by using a height_ratio that assigns twice the space to the upper subplot, and increasing the h_pad parameter to the tight_layout call. This does not sound completely right, but maybe you can adjust this further ...
import numpy as np
from matplotlib.pyplot import *
import matplotlib.pyplot as pl
import matplotlib.gridspec as gridspec
#define figure
fig = pl.figure(figsize=(10, 6.25))
gs = gridspec.GridSpec(2, 1, height_ratios=[2,1])
ax1=subplot(gs[0])
img=pl.imshow(np.random.random((10,50)), interpolation='none')
ax1.set_xticklabels(()) #hides the tickslabels of the first plot
ax2=subplot(gs[1])
x=np.linspace(0,50)
ax2.plot(x,x,'k-')
xlim( ax1.get_xlim() ) #same x-axis for both plots
fig.tight_layout(h_pad=-5)
show()
There were other issues, like correcting the imports, adding numpy, and plotting to ax2 instead of directly with pl. The output I see is this:
This case is peculiar because of the fact that the default aspect ratios of images and plots are not the same. So it is worth noting for people looking to remove the spaces in a grid of subplots consisting of images only or of plots only that you may find an appropriate solution among the answers to this question (and those linked to it): How to remove the space between subplots in matplotlib.pyplot?.
The aspect ratios of the subplots in this particular example are as follows:
# Default aspect ratio of images:
ax1.get_aspect()
# 1.0
# Which is as it is expected based on the default settings in rcParams file:
matplotlib.rcParams['image.aspect']
# 'equal'
# Default aspect ratio of plots:
ax2.get_aspect()
# 'auto'
The size of ax1 and the space beneath it are adjusted automatically based on the number of pixels along the x-axis (i.e. width) so as to preserve the 'equal' aspect ratio while fitting both subplots within the figure. As you mentioned, using fig.tight_layout(h_pad=xxx) or the similar fig.set_constrained_layout_pads(hspace=xxx) is not a good option as this makes the figure larger.
To remove the gap while preserving the original figure size, you can use fig.subplots_adjust(hspace=xxx) or the equivalent plt.subplots(gridspec_kw=dict(hspace=xxx)), as shown in the following example:
import numpy as np # v 1.19.2
import matplotlib.pyplot as plt # v 3.3.2
np.random.seed(1)
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 6.25),
gridspec_kw=dict(hspace=-0.206))
# For those not using plt.subplots, you can use this instead:
# fig.subplots_adjust(hspace=-0.206)
size = 50
ax1.imshow(np.random.random((10, size)))
ax1.xaxis.set_visible(False)
# Create plot of a line that is aligned with the image above
x = np.arange(0, size)
ax2.plot(x, x, 'k-')
ax2.set_xlim(ax1.get_xlim())
plt.show()
I am not aware of any way to define the appropriate hspace automatically so that the gap can be removed for any image width. As stated in the docstring for fig.subplots_adjust(), it corresponds to the height of the padding between subplots, as a fraction of the average axes height. So I attempted to compute hspace by dividing the gap between the subplots by the average height of both subplots like this:
# Extract axes positions in figure coordinates
ax1_x0, ax1_y0, ax1_x1, ax1_y1 = np.ravel(ax1.get_position())
ax2_x0, ax2_y0, ax2_x1, ax2_y1 = np.ravel(ax2.get_position())
# Compute negative hspace to close the vertical gap between subplots
ax1_h = ax1_y1-ax1_y0
ax2_h = ax2_y1-ax2_y0
avg_h = (ax1_h+ax2_h)/2
gap = ax1_y0-ax2_y1
hspace=-(gap/avg_h) # this divided by 2 also does not work
fig.subplots_adjust(hspace=hspace)
Unfortunately, this does not work. Maybe someone else has a solution for this.
It is also worth mentioning that I tried removing the gap between subplots by editing the y positions like in this example:
# Extract axes positions in figure coordinates
ax1_x0, ax1_y0, ax1_x1, ax1_y1 = np.ravel(ax1.get_position())
ax2_x0, ax2_y0, ax2_x1, ax2_y1 = np.ravel(ax2.get_position())
# Set new y positions: shift ax1 down over gap
gap = ax1_y0-ax2_y1
ax1.set_position([ax1_x0, ax1_y0-gap, ax1_x1, ax1_y1-gap])
ax2.set_position([ax2_x0, ax2_y0, ax2_x1, ax2_y1])
Unfortunately, this (and variations of this) produces seemingly unpredictable results, including a figure resizing similar to when using fig.tight_layout(). Maybe someone else has an explanation for what is happening here behind the scenes.

Categories