I was looking at some link about Python.
https://medium.com/the-renaissance-developer/python-101-object-oriented-programming-part-1-7d5d06833f26
And there are decorators used in there to create(?) properties and a setter method for it. Below is the code:
class Vehicle:
def __init__(self, number_of_wheels, type_of_tank, seating_capacity, maximum_velocity):
self.number_of_wheels = number_of_wheels
self.type_of_tank = type_of_tank
self.seating_capacity = seating_capacity
self.maximum_velocity = maximum_velocity
#property
def number_of_wheels(self):
return self.number_of_wheels
#number_of_wheels.setter
def number_of_wheels(self, number):
self.number_of_wheels = number
And this is the usage from the link as well.
tesla_model_s = Vehicle(4, 'electric', 5, 250)
print(tesla_model_s.number_of_wheels) # 4
tesla_model_s.number_of_wheels = 2 # setting number of wheels to 2
print(tesla_model_s.number_of_wheels) # 2
So, I was trying to understand why should I use it, instead of, you know, directly accessing class variable itself. I tried to run the code but I got RecursionError.
File "C:/Users/Brandon/Desktop/Python/tryit.py", line 16, in number_of_wheels
self.number_of_wheels = number
[Previous line repeated 491 more times]
RecursionError: maximum recursion depth exceeded while calling a Python object
Finally my question is, how can this code work(what is wrong with it maybe?) and more importantly why should I use setter instead of accessing class variable directly?
ps. Any pointers like links to read or keywords for search are welcomed.
The property and attribute should not have the same name, otherwise, the setters and getters will keep calling themselves over and over. Conventionally, you would prepend a leading underscore to privatize (though it's not private) the attribute you're creating a property for.
class Vehicle(object):
def __init__(self, number_of_wheels, type_of_tank, seating_capacity, maximum_velocity):
self._number_of_wheels = number_of_wheels
...
#property
def number_of_wheels(self):
return self._number_of_wheels
#number_of_wheels.setter
def number_of_wheels(self, number):
self._number_of_wheels = number
Also remember to subclass object in Python 2, to make your class work with property.
Related
What is going on. I have looked at other solutions on stack overflow but non seem to work from what I have seen. I have a base object with a method that changes the value of the base attribute. When I call the base function in a child class (Inheritance) I get that the child class does not have the attribute "baseAttribute"
class GameObject(object):
#This is the base class for gameObjects
def __init__(self):
self.components = {}
def addComponent(self, comp):
self.components[0] = comp #ignore the index. Placed 0 just for illustration
class Circle(GameObject):
#circle game object
def __init__(self):
super(GameObject,self).__init__()
#PROBLEM STATEMENT
self.addComponent(AComponentObject())
#or super(GameObject,self).addComponent(self,AComponentObject())
#or GameObject.addComponent(self, AComponentObject())
EDIT:
Apologies, I never originally passed in a self.
Simple - leave out the second self:
self.addComponent(AComponentObject())
You see, the above actually translates to
addComponent(self, AComponentObject())
In other words: in essence "OO" works on functions that have an implicit this/self pointer (however you name that) as argument.
You are using incorrect arguments for .addComponent() method.
# ...
class Circle(GameObject):
def __init__(self):
super(GameObject,self).__init__()
# NOT A PROBLEM STATEMENT ANYMORE
self.addComponent(AComponentObject())
# ...
I have the following problem and I need advice on how to solve it the best technically in Python. As I am new to programming I would like to have some advice.
So I will have the following object and they should store something. Here is an example:
object 1: cash dividends (they will have the following properties)
exdate (will store a list of dates)
recorddate (will store a list of dates)
paydate (will store a list of dates)
ISIN (will store a list of text)
object 2: stocksplits (they will have the following prpoerties)
stockplitratio (will be some ration)
exdate(list of dates)
...
I have tried to solve it like this:
class cashDividends(object):
def __init__(self, _gross,_net,_ISIN, _paydate, _exdate, _recorddate, _frequency, _type, _announceddate, _currency):
self.gross = _gross
self.net = _net
self.ISIN = _ISIN
self.paydate = _paydate
self.exdate = _exdate
self.recorddate = _recorddate
self.frequency = _frequency
self.type = _type
self.announceddate = _announceddate
self.currency = _currency
So if I have this I would have to create another class named stockplits and then define an __init__ function again.
However is there a way where I can have one class like "Corporate Actions" and then have stock splits and cashdividends in there ?
Sure you can! In python you can pass classes to other classes.
Here a simple example:
class A():
def __init__(self):
self.x = 0
class B():
def __init__(self):
self.x = 1
class Container():
def __init__(self, objects):
self.x = [obj.x for obj in objects]
a = A()
b = B()
c = Container([a,b])
c.x
[0,1]
If I understood correctly what you want is an object that has other objects from a class you created as property?
class CorporateActions(object):
def __init__(self, aCashDividend, aStockSplit):
self.cashDividend = aCashDividend
self.stockSplit = aStockSplit
myCashDividends = CashDividends(...) #corresponding parameters here
myStockSplit = StockSplit(...)
myCorporateActions = CorporateActions(myCashDividends, myStockSplit)
Strictly speaking this answer isn't an answer for the final question. However, it is a way to make your life slightly easier.
Consider creating a sort-of template class (I'm using this term loosely; there's no such thing in Python) that does the __init__ work for you. Like this:
class KwargAttrs():
def __init__(self, **kwargs):
for k,v in kwargs.items():
setattr(self, k, v)
def _update(self, **kwargs):
args_dict = {k:(kwargs[k] if k in kwargs else self.__dict__[k]) for k in self.__dict__}
self.__dict__.update(args_dict)
This class uses every supplied keyword argument as an object attribute. Use it this way:
class CashDividends(KwargAttrs):
def __init__(self, gross, net, ISIN, paydate, exdate, recorddate, frequency, type, announceddate, currency):
# save the namespace before it gets polluted
super().__init__(**locals())
# work that might pollute local namespace goes here
# OPTIONAL: update the argument values in case they were modified:
super()._update(**locals())
Using a method like this, you don't have to go through the argument list and assign every single object attribute; it happens automatically.
We bookend everything you need to accomplish in the __init__ method with method calls to the parent-class via super(). We do this because locals() returns a dict every variable in the function's current namespace, so you need to 1.) capture that namespace before any other work pollutes it and 2.) update the namespace in case any work changes the argument values.
The call to update is optional, but the values of the supplied arguments will not be updated if something is done to them after the call to super().__init__() (that is, unless you change the values using setattr(self, 'argname, value)`, which is not a bad idea).
You can continue using this class like so:
class StockSplits(KwargAttrs):
def __init__(self, stocksplitratio, gross, net, ISIN, paydate, exdate, recorddate, frequency, type, announceddate, currency):
super().__init__(**locals())
As mentioned in the other answers you can create a container for our other classes, but you can even do that using this same template class:
class CorporateActions(KwargAttrs):
def __init__(self, stock_splits , cash_dividends):
super().__init__(**locals())
ca = CorporateActions(stock_splits = StockSplits(<arguments>), cash_dividends = CashDividends(<arguments>) )
I'm trying to use a function of a class object to create a new class object and running into problems. Here's the code I have so far:
class Room(object):
def __init__(self, name):
self.name = name
self.N = None
self.E = None
self.S = None
self.W = None
'''relevant code'''
def north(self,room):
self.N = Room(room)
self.N.S = self
def south(self,room):
self.S = Room(room)
self.S.N = self
So I want at least one of these print statements
room1 = Room('room1')
room1.north('room2')
print(room2.S)
print(Room(room2).S)
print(Room('room2').S)
to spit out 'room1', but the first two don't work because room2 as a variable is yet to be defined, and the last one doesn't work because it seems to be creating a new object instead of referencing the existing one, so it just prints the default 'None'.
Does there actually exist a way to reference an existing object with no variable set to it? Or is my only option to do something like this?
def north(self,room):
roomDict[room] = Room(room)
self.N = roomDict[room]
self.N.S = self
Edit: I realize I should probably be calling the new Room's south() function instead of directly changing the S variable, but that seems intuitively like it would cause a loop so I haven't touched it yet.
* Edited based on OP's clarification *
If you have a large number of objects you want to refer to without binding them to variables, dict is the way to go.
You can use #Berci's solution. But note that with that solution, if you already have a room named foo, you can't overwrite it by simply calling Room('foo') again -- doing that will just return the original foo room. To overwrite an existing room you must first do del Room.roomDict['foo'], and then call Room('foo'). This may be something you want, but maybe not.
The implementation below is less fanciful and doesn't require __new__ (in fact, Berci's solution doesn't need __new__ either and can be all done in __init__):
class Room:
registry = {}
def __init__(self, name):
self.registry[name] = self
# the rest of your __init__ code
If you want rooms to be non-overwritable, as they are in Berci's solution, just add two lines:
class Room:
registry = {}
def __init__(self, name):
if name in self.registry:
raise ValueError('room named "{}" already exists'.format(name))
self.registry[name] = self
It's not necessary to nest registry inside Room. You can make it an external dict if you want. The advantage of having the registry as a class attribute is that your Room object can access it as self.registry without knowing its global name. The (slight) disadvantage is that you need to type Room.registry or someroom.registry instead of just, say, registry, every time you access it.
Your dict solution can be brought to work. Use a class level roomDict and a new constructor not to create an already existing object referred by its name:
class Room(object):
roomDict = {}
def __new__(cls, name):
if name in cls.roomDict:
return cls.roomDict[name]
self = object.__new__(cls, name) # here the object is created
cls.roomDict[name] = self
return self
def __init__(self, name):
...
So that you can refer to room2 as Room('room2') afterwards.
Question
How can you extend a python property?
A subclass can extend a super class's function by calling it in the overloaded version, and then operating on the result. Here's an example of what I mean when I say "extending a function":
# Extending a function (a tongue-in-cheek example)
class NormalMath(object):
def __init__(self, number):
self.number = number
def add_pi(self):
n = self.number
return n + 3.1415
class NewMath(object):
def add_pi(self):
# NewMath doesn't know how NormalMath added pi (and shouldn't need to).
# It just uses the result.
n = NormalMath.add_pi(self)
# In NewMath, fractions are considered too hard for our users.
# We therefore silently convert them to integers.
return int(n)
Is there an analogous operation to extending functions, but for functions that use the property decorator?
I want to do some additional calculations immediately after getting an expensive-to-compute attribute. I need to keep the attribute's access lazy. I don't want the user to have to invoke a special routine to make the calculations. basically, I don't want the user to ever know the calculations were made in the first place. However, the attribute must remain a property, since i've got legacy code I need to support.
Maybe this is a job for decorators? If I'm not mistaken, decorator is a function that wraps another function, and I'm looking to wrap a property with some more calculations, and then present it as a property again, which seems like a similar idea... but I can't quite figure it out.
My Specific Problem
I've got a base class LogFile with an expensive-to-construct attribute .dataframe. I've implemented it as a property (with the property decorator), so it won't actually parse the log file until I ask for the dataframe. So far, it works great. I can construct a bunch (100+) LogFile objects, and use cheaper methods to filter and select only the important ones to parse. And whenever I'm using the same LogFile over and over, i only have to parse it the first time I access the dataframe.
Now I need to write a LogFile subclass, SensorLog, that adds some extra columns to the base class's dataframe attribute, but I can't quite figure out the syntax to call the super class's dataframe construction routines (without knowing anything about their internal workings), then operate on the resulting dataframe, and then cache/return it.
# Base Class - rules for parsing/interacting with data.
class LogFile(object):
def __init__(self, file_name):
# file name to find the log file
self.file_name = file_name
# non-public variable to cache results of parse()
self._dataframe = None
def parse(self):
with open(self.file_name) as infile:
...
...
# Complex rules to interpret the file
...
...
self._dataframe = pandas.DataFrame(stuff)
#property
def dataframe(self):
"""
Returns the dataframe; parses file if necessary. This works great!
"""
if self._dataframe is None:
self.parse()
return self._dataframe
#dataframe.setter
def dataframe(self,value):
self._dataframe = value
# Sub class - adds more information to data, but does't parse
# must preserve established .dataframe interface
class SensorLog(LogFile):
def __init__(self, file_name):
# Call the super's constructor
LogFile.__init__(self, file_name)
# SensorLog doesn't actually know about (and doesn't rely on) the ._dataframe cache, so it overrides it just in case.
self._dataframe = None
# THIS IS THE PART I CAN'T FIGURE OUT
# Here's my best guess, but it doesn't quite work:
#property
def dataframe(self):
# use parent class's getter, invoking the hidden parse function and any other operations LogFile might do.
self._dataframe = LogFile.dataframe.getter()
# Add additional calculated columns
self._dataframe['extra_stuff'] = 'hello world!'
return self._dataframe
#dataframe.setter
def dataframe(self, value):
self._dataframe = value
Now, when these classes are used in an interactive session, the user should be able to interact with either in the same way.
>>> log = LogFile('data.csv')
>>> print log.dataframe
#### DataFrame with 10 columns goes here ####
>>> sensor = SensorLog('data.csv')
>>> print sensor.dataframe
#### DataFrame with 11 columns goes here ####
I have lots of existing code that takes a LogFile instance which provides a .dataframe attribute and dos something interesting (mostly plotting). I would LOVE to have SensorLog instances present the same interface so they can use the same code. Is it possible to extend the super-class's dataframe getter to take advantage of existing routines? How? Or am I better off doing this a different way?
Thanks for reading that huge wall of text. You are an internet super hero, dear reader. Got any ideas?
You should be calling the superclass properties, not bypassing them via self._dataframe. Here's a generic example:
class A(object):
def __init__(self):
self.__prop = None
#property
def prop(self):
return self.__prop
#prop.setter
def prop(self, value):
self.__prop = value
class B(A):
def __init__(self):
super(B, self).__init__()
#property
def prop(self):
value = A.prop.fget(self)
value['extra'] = 'stuff'
return value
#prop.setter
def prop(self, value):
A.prop.fset(self, value)
And using it:
b = B()
b.prop = dict((('a', 1), ('b', 2)))
print(b.prop)
Outputs:
{'a': 1, 'b': 2, 'extra': 'stuff'}
I would generally recommend placing side-effects in setters instead of getters, like this:
class A(object):
def __init__(self):
self.__prop = None
#property
def prop(self):
return self.__prop
#prop.setter
def prop(self, value):
self.__prop = value
class B(A):
def __init__(self):
super(B, self).__init__()
#property
def prop(self):
return A.prop.fget(self)
#prop.setter
def prop(self, value):
value['extra'] = 'stuff'
A.prop.fset(self, value)
Having costly operations within a getter is also generally to be avoided (such as your parse method).
If I understand correctly what you want to do is call the parent's method from the child instance. The usual way to do that is by using the super built-in.
I've taken your tongue-in-cheek example and modified it to use super in order to show you:
class NormalMath(object):
def __init__(self, number):
self.number = number
def add_pi(self):
n = self.number
return n + 3.1415
class NewMath(NormalMath):
def add_pi(self):
# this will call NormalMath's add_pi with
normal_maths_pi_plus_num = super(NewMath, self).add_pi()
return int(normal_maths_pi_plus_num)
In your Log example, instead of calling:
self._dataframe = LogFile.dataframe.getter()
you should call:
self._dataframe = super(SensorLog, self).dataframe
You can read more about super here
Edit: Even thought the example I gave you deals with methods, to do the same with #properties shouldn't be a problem.
You have some possibilities to consider:
1/ Inherit from logfile and override parse in your derived sensor class. It should be possible to modify your methods that work on dataframe to work regardless of the number of members that dataframe has - as you are using pandas a lot of it is done for you.
2/ Make sensor an instance of logfile then provide its own parse method.
3/ Generalise parse, and possibly some of your other methods, to use a list of data descriptors and possibly a dictionary of methods/rules either set in your class initialiser or set by a methods.
4/ Look at either making more use of the methods already in pandas, or possibly, extending pandas to provide the missing methods if you and others think that they would be accepted into pandas as useful extensions.
Personally I think that you would find the benefits of options 3 or 4 to be the most powerful.
The problem is that you're missing a self going into the parent class. If your parent is a singleton then a #staticmethod should work.
class X():
x=1
#staticmethod
def getx():
return X.x
class Y(X):
y=2
def getyx(self):
return X.getx()+self.y
wx = Y()
wx.getyx()
3
I'm new to both Django and Python.. I just started using them a few days ago and I can't quite figure out how to call a method other than the __init__ method for a class.
Here is the code for user.py
class User:
def __init__(self, number):
self.num = number
class Create:
def __init__(self, something):
self.test = something[1]
def other(self, one):
self.two = one
I can get __init__ to work by calling..
list = [3, 4, 5]
y = Create(list)
arrayelem = y.test
But I can't quite figure out how to call a method inside of the class Create. I've tried various methods and always end up with errors. Can somehow show me some syntactically correct methods of calling the method "other".
Note: I know the spacing is weird.. I can't get the spacing to work properly on stackoverflow for whatever reason..
Good news - it's a simple one! To call other() on create, you'd do this:
list = [3, 4, 5]
y = Create(list)
y.other('one')
You just need to pass the parameters inside the parentheses, after the name of the method.
EDIT: I've just noticed you want to call other from inside the Create class. That'd look like this:
class Create:
def __init__(self, something):
self.test = something[1]
self.other(123)
def other(self, one):
self.two = one
It's also worth bearing in mind that self.two won't exist when you get to the other() method.