Tensorflow CNN - Dense layer as Softmax layer input - python

I'm trying to replicate the CNN described in
https://pdfs.semanticscholar.org/3b57/85ca3c29c963ae396c2f94ba1a805c787cc8.pdf
and I'm stuck at the last layer. I've modeled the cnn like this
# Model function for CNN
def cnn_model_fn(features, labels, mode):
# Input Layer
# Reshape X to 4-D tensor: [batch_size, width, height, channels]
# Taxes images are 150x150 pixels, and have one color channel
input_layer = tf.reshape(features, [-1, 150, 150, 1])
# Convolutional Layer #1
# Input Tensor Shape: [batch_size, 150, 150, 1]
# Output Tensor Shape: [batch_size, 144, 144, 20]
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=20,
kernel_size=[7, 7],
padding="valid",
activation=tf.nn.relu)
# Pooling Layer #1
# Input Tensor Shape: [batch_size, 144, 144, 20]
# Output Tensor Shape: [batch_size, 36, 36, 20]
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[4, 4], strides=4)
# Convolutional Layer #2
# Input Tensor Shape: [batch_size, 36, 36, 20]
# Output Tensor Shape: [batch_size, 32, 32, 50]
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=50,
kernel_size=[5, 5],
padding="valid",
activation=tf.nn.relu)
# Pooling Layer #2
# Input Tensor Shape: [batch_size, 32, 32, 50]
# Output Tensor Shape: [batch_size, 8, 8, 50]
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[4, 4], strides=4)
# Flatten tensor into a batch of vectors
# Input Tensor Shape: [batch_size, 8, 8, 50]
# Output Tensor Shape: [batch_size, 8 * 8 * 50]
pool2_flat = tf.reshape(pool2, [-1, 8 * 8 * 50])
# Dense Layer #1
# Densely connected layer with 1000 neurons
# Input Tensor Shape: [batch_size, 8 * 8 * 50]
# Output Tensor Shape: [batch_size, 1000]
dense1 = tf.layers.dense(inputs=pool2_flat, units=1000, activation=tf.nn.relu)
# Dense Layer #2
# Densely connected layer with 1000 neurons
# Input Tensor Shape: [batch_size, 1000]
# Output Tensor Shape: [batch_size, 1000]
dense2 = tf.layers.dense(inputs=dense1, units=1000, activation=tf.nn.relu)
# Add dropout operation; 0.5 probability that element will be kept
dropout = tf.layers.dropout(
inputs=dense2, rate=0.5, training=mode == learn.ModeKeys.TRAIN)
# Logits layer
# Input Tensor Shape: [batch_size, 1000]
# Output Tensor Shape: [batch_size, 4]
logits = tf.layers.dense(inputs=dropout, units=nClass)
loss = None
train_op = None
# Calculate Loss (for both TRAIN and EVAL modes)
if mode != learn.ModeKeys.INFER:
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=nClass)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == learn.ModeKeys.TRAIN:
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
learning_rate=0.001,
optimizer="SGD")
# Generate Predictions
predictions = {
"classes": tf.argmax(
input=logits, axis=1)
}
# Return a ModelFnOps object
return model_fn_lib.ModelFnOps(
mode=mode, predictions=predictions, loss=loss, train_op=train_op)
but the final accuracy is really poor (0.25). So I realized that actually the paper states that the last layer is a softmax layer. So i tried changed my logits layer to
logits = tf.layers.softmax(dropout)
but when I run it, it says
ValueError: Shapes (?, 1000) and (?, 4) are incompatible
So, what I'm missing here?

The original one was correct. The softmax activation is applied while calculating the loss with tf.losses.softmax_cross_entropy. If you want to calculate it separately you should add it after the logits calculation, but without replacing it as you did.
logits = tf.layers.dense(inputs=dropout, units=nClass)
softmax = tf.layers.softmax(logits)
Or you can combine both in one, but I wouldn't recommend it. It is better to calculate the softmax with the loss.
logits = tf.layers.dense(inputs=dropout, units=nClass, activation=tf.layers.softmax)
Your classifier is not doing better than random, so I would say that the problem lays somewhere else, maybe in the data loading and preprocessing.

Related

How to produce 4-dimensional input for 4-dimensional weight?

I am very new to Deep learning. I am working on the CIFAR10 dataset and created a CNN model which is as below.
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 5, 1)
self.fc1 = nn.Linear(32 * 5 * 5, 512)
self.fc2 = nn.Linear(512,10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = F.max_pool2d(F.relu(self.conv1(x)),(2,2))
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
net2 = Net2().to(device)
My assignment requirements are to create a model with:
Convolutional layer with 32 filters, kernel size of 5x5 and stride of 1.
Max Pooling layer with kernel size of 2x2 and default stride.
ReLU Activation Layers.
Linear layer with output of 512.
ReLU Activation Layers.
A linear layer with output of 10.
Which I guess I wrote. But I am assuming that I am going to the wrong path. Please help me to write the correct model and also the reason behind those arguments in Conv2d and Linear layers.
The error which I am getting from my code is as below:
RuntimeError: Expected 4-dimensional input for 4-dimensional weight [32, 3, 5, 5], but got 2-dimensional input of size [1024, 3072] instead
Please help me!
There are two problems with the code:
Flattening of input
x = x.view(x.size(0), -1)
The convolutional layer expects a four dimensional input of dimensions (N, C, H, W), where N is the batch size, C = 3 is the number of channels, and (H, W) is the dimension of the image. By using the above statement, you are flattening your (1024, 3, 32, 32) input to (1024, 3072).
Number of input features in the first linear layer
self.fc1 = nn.Linear(32 * 5 * 5, 512)
The output dimensions of the convolutional layer for a (1024, 3, 32, 32) input will be (1024, 32, 28, 28), and after applying the 2 x 2 maxpooling, it is (1024, 32, 14, 14). So the number of input features for the linear layer should be 32 x 14 x 14 = 6272.

How do I explain this TensorFlow tf.nn.conv2d() layer shape?

My Tensorflow convolutional layer has a shape I did not expect it to have and I do not see the mistake.
I am new to TensorFlow and want to use this function to create a convolutional layer:
def new_conv_layer(input, # The previous layer.
num_input_channels, # Num. channels in prev. layer.
filter_size, # Width and height of each filter.
num_filters, # Number of filters.
use_pooling=True): # Use 2x2 max-pooling.
shape = [filter_size, filter_size, num_input_channels, num_filters]
weights = new_weights(shape=shape)
biases = new_biases(length=num_filters)
layer = tf.nn.conv2d(input=input_,
filters=weights,
strides=[1, 1, 1, 1],
padding='SAME')
layer += biases
if use_pooling:
layer = tf.nn.max_pool(input=layer,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
layer = tf.nn.relu(layer)
return layer, weights
But when I use it with
num_channels = 1
img_size = 28
x_image = tf.reshape(x, [-1, img_size, img_size, num_channels])
# Convolutional Layer 1.
filter_size1 = 5 # Convolution filters are 5 x 5 pixels.
num_filters1 = 16 # There are 16 of these filters.
layer_conv1, weights_conv1 = new_conv_layer(input=x_image,
num_input_channels=num_channels,
filter_size=filter_size1,
num_filters=num_filters1,
use_pooling=True)
layer_conv1
I get this output:
<tf.Tensor 'Relu:0' shape=(None, 392, 392, 16) dtype=float32>
Because my images are of a square 28x28 shape and I apply 2x2 pooling, I would have expected this shape to be (None, 14, 14, 16).
Why is that not the case and how do I fix it?
in my case this line x = tf.compat.v1.placeholder(tf.float32, shape=[None, img_size_flat], name='x') was incorrect!
In particular img_size_flat was not the length of each "stretched" image, as it should have been.
img_size_flat = df.drop('label', axis=1).shape[1]

Shape mismacth: shape of labels is incompatible with shape of logits

I am trying to train a model in TensorFlow. I've got a problem with the labels. Here is my input function:
def my_input_fn():
filenames = tf.constant(glob.glob("C:/test_proje/*.jpg"))
labels = tf.constant([0, 0, 1, 1, 1, 1, 1, 0, 0, 0])
labels = tf.one_hot(labels, 2)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(_parse_function)
return dataset
And here is the CNN model
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
print(labels.shape)
print(labels[0])
# Input Layer
input_layer = tf.reshape(features["image"], [-1, 168, 84, 3])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2],
strides=2)
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2],
strides=2)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 42 * 21 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=4,
activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode ==
tf.estimator.ModeKeys.TRAIN)
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=2)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by
the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,
logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss,
train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
I am getting this error: ValueError: Shape mismatch: The shape of labels (received (2,)) should equal the shape of logits except for the last dimension (received (1, 2)).
When I print the shape of labels before cnn_model_fn, it is (10,2). But when I print it in cnn_model_fn, it suddenly becomes (2,)
Thanks.
I think it's your use of sparse_softmax_cross_entropy. You feed it one hot encoded labels which it doesn't want.
Switch to just normal softmax_cross_entropy and see if that works.
https://stackoverflow.com/a/37317322/7431458

CNN model not able to make prediction

I trained a CNN model successfully, however I am getting errors when I feed images to the model for it to predict the labels.
This is my model (I am restoring it with saver.restore)...
# load dataset
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# interactive session
sess = tf.InteractiveSession()
# data and labels placeholder
x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None, 10])
# 32 filters of size 5x5 and 32 biases,
# the filters are used to create 32 feature maps
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_img = tf.reshape(x, [-1, 28, 28, 1])
# first layer activated using a Relu activation function
conv1 = tf.nn.relu(conv2d(x_img, W_conv1) + b_conv1)
pool1 = max_pool_2x2(conv1)
# 64 filters of size 5x5
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
# second layer
conv2 = tf.nn.relu(conv2d(pool1, W_conv2) + b_conv2)
pool2 = max_pool_2x2(conv2)
# fully connected layer with 1024 neurons
W_fully = weight_variable([7 * 7 * 64, 1024])
b_fully = bias_variable([1024])
pool2flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
fully = tf.nn.relu(tf.matmul(pool2flat, W_fully) + b_fully)
# dropout layer removes dead neurons
prob_drop = tf.placeholder(tf.float32)
dropout = tf.nn.dropout(fully, prob_drop)
# readout layer that will return the raw values
# of our predictions
W_readout = weight_variable([1024, 10])
b_readout = bias_variable([10])
y_conv = tf.matmul(dropout, W_readout) + b_readout
# loss function
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y))
# restore the trained CNN model
saver = tf.train.Saver()
saver.restore(sess, "/tmp/model2.ckpt")
y_conv is the predictor.
The model is trained on the mnist dataset, now I have an image of a number and I want the model to tell me what it thinks it is in terms of accuracy. I tried the following...
prediction = tf.argmax(y_conv, 1)
print(sess.run(prediction, feed_dict={x:two_images[0]}))
After feeding the image two_images[0] to the model, I got the following error...
ValueError: Cannot feed value of shape (784,) for Tensor 'Placeholder:0', which has shape '(?, 784)'
So I fixed it by doing the following...
prediction = tf.argmax(y_conv, 1)
print(sess.run(prediction, feed_dict={x:two_images[0].reshape((1, 784))}))
But now I am getting a whole bunch of errors that I cannot decipher...
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_2' with dtype float
[[Node: Placeholder_2 = Placeholderdtype=DT_FLOAT, shape=, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
I am not sure what I am doing wrong.
EDIT
This is how I populate the variable two_images...
# extract the indices of the number 2
two_idxs_list = np.where(mnist.test.labels[:, 2].astype(int) == 1)
two_idxs = two_idxs_list[0][:10]
# use the indices to extract the images of 2 and their corresponding label
two_images = mnist.test.images[two_idxs]
two_labels = mnist.test.labels[two_idxs]
Okay with the code added I was able to test in on my machine. The issue is that your network expects two inputs, one image, and a label. Even if you only do inference, you have to supply an input, maybe just some zeroes? Obviously the loss calculation will be wrong, but you're not interested in that, only in the prediction. So your sess.run line should be:
print( sess.run( prediction, feed_dict= {
x: two_images[0].reshape((1, 784)),
y: np.zeros( shape = ( 1, 10 ), dtype = np.float32 ) } ) )

Changing Tensorflow number of convolutional and pooling layers using MNIST dataset

I am using Windows 10 pro, python 3.6.2rc1, Visual Studio 2017, and Tensorflow. I am working with Tensorflow example in its tutorial in the following link:
https://www.tensorflow.org/tutorials/layers
I have added another layer of convolution and pooling before flattening the last layer (3rd layer) to see if the accuracy changes.
The code I have added is as follows:
## Input Tensor Shape: [batch_size, 7, 7, 64]
## Output Tensor Shape: [batch_size, 7, 7, 64]
conv3 = tf.layers.conv2d(
inputs=pool2,
filters=64,
kernel_size=[3, 3],
padding=1,
activation=tf.nn.relu)
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=1)
pool3_flat = tf.reshape(pool3, [-1, 7* 7 * 64])
The reason I have changed padding to 1 and stride to 1 is to make sure the size of output is the same as input. But after adding this new layer I get the following warnings and without showing any result the program ends:
Estimator is decoupled from Scikit Learn interface by moving into
separate class SKCompat. Arguments x, y and batch_size are only
available in the SKCompat class, Estimator will only accept input_fn.
Example conversion:
est = Estimator(...) -> est = SKCompat(Estimator(...))
WARNING:tensorflow:From E:\Apps\DA2CNNTest\TFHWDetection WIth More Layers\TFClassification\TFClassification\TFClassification.py:179: calling BaseEstimator.fit (from tensorflow.contrib.learn.python.learn.estimators.estimator) with batch_size is deprecated and will be removed after 2016-12-01.
Instructions for updating:
Estimator is decoupled from Scikit Learn interface by moving into
separate class SKCompat. Arguments x, y and batch_size are only
available in the SKCompat class, Estimator will only accept input_fn.
Example conversion:
est = Estimator(...) -> est = SKCompat(Estimator(...))
The thread 'MainThread' (0x5c8) has exited with code 0 (0x0).
The program '[13468] python.exe' has exited with code 1 (0x1).
Without adding this layer it works properly. In order to solve this problem I changed the conv3 and pool3 as follows:
conv3 = tf.layers.conv2d(
inputs=pool2,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Input Tensor Shape: [batch_size, 7, 7, 64]
# Output Tensor Shape: [batch_size, 3, 3, 64]
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)
pool3_flat = tf.reshape(pool3, [-1, 3* 3 * 64])
but then I got a different error at
nist_classifier.fit(
x=train_data,
y=train_labels,
batch_size=100,
steps=20000,
monitors=[logging_hook])
which is as follows:
tensorflow.python.framework.errors_impl.NotFoundError: Key conv2d_2/bias not found in checkpoint
[[Node: save/RestoreV2_5 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_save/Const_0_0, save/RestoreV2_5/tensor_names, save/RestoreV2_5/shape_and_slices)]]
The error is exactly refering to monitors=[logging_hook].
My whole code is as follow and as you see I have commented the previous one with padding=1.
I really appreciate if you can guide me what my mistake is and why is it so. Moreover, I am correct with the dimension of my inputs and outputs in the 3rd layer?
Complete code:
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.contrib import learn
from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
input_layer = tf.reshape(features, [-1, 28, 28, 1])
# Input Tensor Shape: [batch_size, 28, 28, 1]
# Output Tensor Shape: [batch_size, 28, 28, 32]
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Input Tensor Shape: [batch_size, 28, 28, 32]
# Output Tensor Shape: [batch_size, 14, 14, 32]
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# Convolutional Layer #2
# Input Tensor Shape: [batch_size, 14, 14, 32]
# Output Tensor Shape: [batch_size, 14, 14, 64]
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #2
# Input Tensor Shape: [batch_size, 14, 14, 64]
# Output Tensor Shape: [batch_size, 7, 7, 64]
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
'''Adding a new layer of conv and pool'''
## Input Tensor Shape: [batch_size, 7, 7, 32]
## Output Tensor Shape: [batch_size, 7, 7, 64]
#conv3 = tf.layers.conv2d(
# inputs=pool2,
# filters=64,
# kernel_size=[3, 3],
# padding=1,
# activation=tf.nn.relu)
## Input Tensor Shape: [batch_size, 7, 7, 64]
## Output Tensor Shape: [batch_size, 7, 7, 64]
#pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=1)
#pool3_flat = tf.reshape(pool3, [-1, 7* 7 * 64])
# Input Tensor Shape: [batch_size, 7, 7, 64]
# Output Tensor Shape: [batch_size, 7, 7, 64]
conv3 = tf.layers.conv2d(
inputs=pool2,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Input Tensor Shape: [batch_size, 7, 7, 64]
# Output Tensor Shape: [batch_size, 3, 3, 64]
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)
'''End of manipulation'''
# Input Tensor Shape: [batch_size, 3, 3, 64]
# Output Tensor Shape: [batch_size, 3 * 3 * 64]
pool3_flat = tf.reshape(pool3, [-1, 3* 3 * 64])
# Input Tensor Shape: [batch_size, 3 * 3 * 64]
# Output Tensor Shape: [batch_size, 1024]
# dense(). Constructs a dense layer. Takes number of neurons and activation function as arguments.
dense = tf.layers.dense(inputs=pool3_flat, units=1024, activation=tf.nn.relu)
# Add dropout operation; 0.6 probability that element will be kept
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == learn.ModeKeys.TRAIN)
logits = tf.layers.dense(inputs=dropout, units=10)
loss = None
train_op = None
# Calculate Loss (for both TRAIN and EVAL modes)
if mode != learn.ModeKeys.INFER:
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=10)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == learn.ModeKeys.TRAIN:
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
learning_rate=0.001,
optimizer="SGD")
# Generate Predictions
# The logits layer of our model returns our predictions as raw values in a [batch_size, 10]-dimensional tensor.
predictions = {
"classes": tf.argmax(
input=logits, axis=1),
"probabilities": tf.nn.softmax(
logits, name="softmax_tensor")
}
# Return a ModelFnOps object
return model_fn_lib.ModelFnOps(
mode=mode, predictions=predictions, loss=loss, train_op=train_op)
def main(unused_argv):
# Load training and eval data
mnist = learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# Create the Estimator
mnist_classifier = learn.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
mnist_classifier.fit(
x=train_data,
y=train_labels,
batch_size=100,
steps=20000,
monitors=[logging_hook])
# Configure the accuracy metric for evaluation
#change metrics variable name
metricss = {
"accuracy":
learn.MetricSpec(
metric_fn=tf.metrics.accuracy, prediction_key="classes"),
}
#Evaluate the model and print results
#for i in range(100)
eval_results = mnist_classifier.evaluate(
x=eval_data[0:100], y=eval_labels[0:100], metrics=metricss)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
The error looks like the trained model which is available in the model_dir conflicts with the current graph changes. The Estimator loads checkpoints from the saved model directory and continue training from the previous saved model. So whenever your making changes in the model, you need to delete the old model and start training again.
A simple fix for this would be to define a custom checkpoint directory for the model as follows.
tf.train.generate_checkpoint_state_proto("/tmp/","/tmp/mnist_convnet_model")
This fixes the problem with the MNIST example and also gives you access to a location where you can control checkpoints.

Categories