How to create a TFRecord from a NumPy array - python

I'd like to 1. iterate through a directory of images and turn each image into a NumPy array. I think I have accomplished this with the following code:
import tensorflow as tf
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
from PIL import Image
import os
myimages = []
path_to_images = 'images_animation'
filenum = len([name for name in os.listdir(path_to_images) if os.path.isfile(os.path.join(path_to_images, name))])
#loops through available pngs
for p in range(1, filenum):
## Read in picture
fname = "images_animation/image%03d.png" % p
img = mpimg.imread(fname)
imgplot = plt.imshow(img)
# append AxesImage object to the list
myimages.append([imgplot])
for n, im in enumerate(myimages):
img = Image.open(fname).convert("L")
arr = np.array(img
print(arr)
If I can make this code better or more efficient, please feel free to tell me how.
Now, I'd like to 2. turn these NumPy arrays into TFRecords. What is the best way to do so? I'm near clueless as how to do this, so I have not done much to solve it myself, so I'm looking for a solution.

Related

Output Shape not correct

One week ago I run this code perfectly. But today I am getting runtime error: output shape not correct
from PIL import Image
import glob
import numpy as np
import scipy.ndimage.filters
import matplotlib.pyplot as plt
image_list_Brownspot = []
for filename in glob.glob('./dataset/BrownSpot/*.jpg'):
im=Image.open(filename)
image_list_Brownspot.append(im.copy())
im.close()
len(image_list_Brownspot)
lap = scipy.ndimage.filters.laplace(image_list_Brownspot[0])
`

From numpy array to DICOM

My code reads a DICOM file, takes the pixel information to a numpy array then it modifies the numpy array. It uses lists because im trying to operate with multiple DICOM files at the same time.
I havent found any information on how to take my modified numpy array and make it a DICOM file again so i can use it outside Python.
#IMPORT
import cv2
import numpy as np
from matplotlib import pyplot as plt
import matplotlib.pyplot as plt
import SimpleITK as sitk
from glob import glob
import pydicom as dicom
data_path = "C:\\Users\\oliva\\Desktop\\Py tesis\\dicom\\"
output_path = working_path = "C:\\Users\\oliva\\Desktop\\Py tesis\\dicom1\\"
path = glob(data_path + '/*.dcm')
#Checks if we are in the correct path
print ("Total of %d DICOM images.\nFirst 5 filenames:" % len(path))
print ('\n'.join(path[:14]))
data_set = []
for element in path:
imagen=sitk.ReadImage(element)
#imagen = cv2.imread(element)
array_imagen = sitk.GetArrayViewFromImage(imagen)
array2_imagen=array_imagen[0]
imagen_array_norm = np.uint8(cv2.normalize(array2_imagen, None, 0, 255, cv2.NORM_MINMAX))
data_set.append(imagen_array_norm)
#Check
print(len(data_set))
print(type(data_set[1]))
plt.imshow(data_set[4], cmap=plt.cm.gray)
#Equalization
data_set_eq = equal(data_set)
print(len(data_set_eq))
print(type(data_set_eq[6]))
plt.imshow(data_set_eq[7], cmap=plt.cm.gray)
#Filtering
data_set_m = median(data_set)
print(len(data_set_m))
print(type(data_set_m[6]))
plt.imshow(data_set_m[8], cmap=plt.cm.gray)
#Functions
def equal(data):
data_set_eq = []
for element in data_set:
imagen_array_eq = cv2.equalizeHist(element)
data_set_eq.append(imagen_array_eq)
return data_set_eq
def median(data):
data_set_m = []
for element in data_set:
imagen_array_m =cv2.medianBlur(element,5)
data_set_m.append(imagen_array_m)
return data_set_m
I would like some enlightenment on how to produce a DICOM file from my modified numpy array.
You can convert the numpy array back to a SimpleITK image, and then write it out as Dicom. The code would look something like this:
for x in data_set:
img = sitk.GetImageFromArray(x)
sitk.WriteImage(img, "your_image_name_here.dcm")
From the file name suffix, SimpleITK knows to write Dicom.
Note that the filtering you are doing can be accomplished within SimpleITK. You don't really need to use OpenCV. Check out the following filters in SimpleITK: IntensityWindowingImageFilter, AdaptiveHistogramEqualizationFilter, and MedianImageFilter.
https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1IntensityWindowingImageFilter.html
https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1AdaptiveHistogramEqualizationImageFilter.html
https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1MedianImageFilter.html

Pytorch——TypeError: Cannot handle this data type

I'm doing an image processing task and I want to use torch.cat to concat pictures belonging to two different folders. The size of the images in folder 1 is 224*224*3, and the size of the images in folder 2 is 224*224*1.After that, I want to save the generated image.I used the save function, but I got an error, the error code is "TypeError: Cannot handle this data type".Please help me find the solution.
Here is my code:
import glob
import os
import torch
import torchvision.transforms.functional as TF
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import scipy.misc
f1_folder = 'F:\\picture1'
f2_folder = 'F:\\picture2'
f1_images = glob.glob(os.path.join(f1_folder, '*.jpg'))
f2_images = glob.glob(os.path.join(f2_folder, '*.jpg'))
for f1_img, f2_img in zip(f1_images, f2_images):
img1 = Image.open(f1_img)
img2 = Image.open(f2_img)
cat_img = torch.cat((TF.to_tensor(img1), TF.to_tensor(img2)), dim=1)# for 'CHW'
cat_img = cat_img.numpy()
cat_img = np.transpose(cat_img, (1, 2, 0))
im = Image.fromarray(cat_img)
im.save("file.jpeg")

pandas.DataFrame returns Series not a Dataframe

I am working with a series of images. I read them first and store in the list then I convert them to dataframe and finally I would like to implement Isomap. When I read images (I have 84 of them) I get 84x2303 dataframe of objects. Now each object by itself also looks like a dataframe. I am wondering how to convert all of it to_numeric so I can use Isomap on it and then plot it.
Here is my code:
import pandas as pd
from scipy import misc
from mpl_toolkits.mplot3d import Axes3D
import matplotlib
import matplotlib.pyplot as plt
import glob
from sklearn import manifold
samples = []
path = 'Datasets/ALOI/32/*.png'
files = glob.glob(path)
for name in files:
img = misc.imread(name)
img = img[::2, ::2]
x = (img/255.0).reshape(-1,3)
samples.append(x)
df = pd.DataFrame.from_records(samples)
print df.dtypes
print df.shape
Thanks!

local histogram equalization

I am trying to use do some image analysis in python (I have to use python). I need to do both a global and local histogram equalization. The global version works well however the local version, using a 7x7 footprint, gives a very poor result.
This is the global version:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from scipy import ndimage,misc
import scipy.io as io
from scipy.misc import toimage
import numpy as n
import pylab as py
from numpy import *
mat = io.loadmat('image.mat')
image=mat['imageD']
def histeq(im,nbr_bins=256):
#get image histogram
imhist,bins = histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() #cumulative distribution function
cdf = 0.6 * cdf / cdf[-1] #normalize
#use linear interpolation of cdf to find new pixel values
im2 = interp(im.flatten(),bins[:-1],cdf)
#returns image and cumulative histogram used to map
return im2.reshape(im.shape), cdf
im=image
im2,cdf = histeq(im)
To do the local version, I am trying to use a generic filter like so (using the same image as loaded previously):
def func(x):
cdf=[]
xhist,bins=histogram(x,256,normed=True)
cdf = xhist.cumsum()
cdf = 0.6 * cdf / cdf[-1]
im_out = interp(x,bins[:-1],cdf)
midval=interp(x[24],bins[:-1],cdf)
return midval
print im.shape
im3=ndimage.filters.generic_filter(im, func,size=im.shape,footprint=n.ones((7,7)))
Does anyone have any suggestions/thoughts as to why the second version will not work? I'm really stuck and any comments would be greatly appreciated! Thanks in advance!
You could use the scikit-image library to perform Global and Local Histogram Equalization. Stealing with pride from the link, below is the snippet. The equalization is done with a disk shaped kernel (or footprint), but you could change this to a square, by setting kernel = np.ones((N,M)).
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from skimage import data
from skimage.util import img_as_ubyte
from skimage import exposure
import skimage.morphology as morp
from skimage.filters import rank
# Original image
img = img_as_ubyte(data.moon())
# Global equalize
img_global = exposure.equalize_hist(img)
# Local Equalization, disk shape kernel
# Better contrast with disk kernel but could be different
kernel = morp.disk(30)
img_local = rank.equalize(img, selem=kernel)
fig, (ax_img, ax_global, ax_local) = plt.subplots(1, 3)
ax_img.imshow(img, cmap=plt.cm.gray)
ax_img.set_title('Low contrast image')
ax_img.set_axis_off()
ax_global.imshow(img_global, cmap=plt.cm.gray)
ax_global.set_title('Global equalization')
ax_global.set_axis_off()
ax_local.imshow(img_local, cmap=plt.cm.gray)
ax_local.set_title('Local equalization')
ax_local.set_axis_off()
plt.show()

Categories