Merge and split columns in pandas dataframe - python

I want to know how to merge multiple columns, and split them again.
Input data
A B C
1 3 5
2 4 6
Merge A, B, C to one column X
X
1
2
3
4
5
6
Process something with X, then split X into A, B, C again. The number of rows for A, B, C is same(2).
A B C
1 3 5
2 4 6
Is there any simple way for this work?

Start with df:
A B C
0 1 3 5
1 2 4 6
Next, get all values in one column:
df2 = df.unstack().reset_index(drop=True).rename('X').to_frame()
print(df2)
X
0 1
1 2
2 3
3 4
4 5
5 6
And, convert back to original shape:
df3 = pd.DataFrame(df2.values.reshape(2,-1, order='F'), columns=list('ABC'))
print(df3)
A B C
0 1 3 5
1 2 4 6

Setup
df=pd.DataFrame({'A': {0: 1, 1: 2}, 'B': {0: 3, 1: 4}, 'C': {0: 5, 1: 6}})
df
Out[684]:
A B C
0 1 3 5
1 2 4 6
Solution
Merge df to 1 column:
df2 = pd.DataFrame(df.values.flatten('F'),columns=['X'])
Out[686]:
X
0 1
1 2
2 3
3 4
4 5
5 6
Split it back to 3 columns:
pd.DataFrame(df2.values.reshape(-1,3,order='F'),columns=['A','B','C'])
Out[701]:
A B C
0 1 3 5
1 2 4 6

un unwind in the way you'd like, you need to either unstack or ravel with order='F'
Option 1
def proc1(df):
v = df.values
s = v.ravel('F')
s = s * 2
return pd.DataFrame(s.reshape(v.shape, order='F'), df.index, df.columns)
proc1(df)
A B C
0 2 6 10
1 4 8 12
Option 2
def proc2(df):
return df.unstack().mul(2).unstack(0)
proc2(df)
A B C
0 2 6 10
1 4 8 12

Related

How to add occurrence of each entry to pandas data frame?

Let df1 be a pandas data frame with a column of letters and a column of integers:
>>> k = pd.DataFrame({
"a": numpy.random.choice([i for i in "abcde"], 10),
"b": numpy.random.choice(range(5), 10)
})
>>> k
a b
0 a 1
1 c 2
2 e 1
3 b 3
4 c 2
5 d 2
6 e 2
7 c 3
8 b 0
9 a 3
Using value_counts(), the counts of the letters are found:
>>> counts = k["a"].value_counts()
>>> counts
c 3
e 2
b 2
a 2
d 1
Name: a, dtype: int64
How to add each occurrance to the respective row? It should result in
>>> k
a b count
0 a 1 2
1 c 2 3
2 e 1 2
[...]
9 a 3 2
Here's an alternate to using transform:
First, you can extract the value_counts() into a dataframe:
mycounts = k['a'].value_counts().rename_axis('a').reset_index(name = 'counts')
The step above is useful in many different scenarios (and good to know in general).
Then, a left-join will put the value counts into the original dataframe:
k = k.merge(mycounts, left_on = 'a', right_on = 'a', how = 'left')
You can try with transform
k['count']=k.groupby('a').a.transform('count')
k
Out[330]:
a b count
0 d 1 2
1 e 3 3
2 e 3 3
3 d 3 2
4 b 4 4
5 b 1 4
6 b 0 4
7 a 2 1
8 b 0 4
9 e 4 3

Pandas - combine two Series by all unique combinations

Let's say I have the following series:
0 A
1 B
2 C
dtype: object
0 1
1 2
2 3
3 4
dtype: int64
How can I merge them to create an empty dataframe with every possible combination of values, like this:
letter number
0 A 1
1 A 2
2 A 3
3 A 4
4 B 1
5 B 2
6 B 3
7 B 4
8 C 1
9 C 2
10 C 3
11 C 4
Assuming the 2 series are s and s1, use itertools.product() which gives a cartesian product of input iterables :
import itertools
df = pd.DataFrame(list(itertools.product(s,s1)),columns=['letter','number'])
print(df)
letter number
0 A 1
1 A 2
2 A 3
3 A 4
4 B 1
5 B 2
6 B 3
7 B 4
8 C 1
9 C 2
10 C 3
11 C 4
As of Pandas 1.2.0, there is a how='cross' option in pandas.merge() that produces the Cartesian product of the columns.
import pandas as pd
letters = pd.DataFrame({'letter': ['A','B','C']})
numbers = pd.DataFrame({'number': [1,2,3,4]})
together = pd.merge(letters, numbers, how = 'cross')
letter number
0 A 1
1 A 2
2 A 3
3 A 4
4 B 1
5 B 2
6 B 3
7 B 4
8 C 1
9 C 2
10 C 3
11 C 4
As an additional bonus, this function makes it easy to do so with more than one column.
letters = pd.DataFrame({'letterA': ['A','B','C'],
'letterB': ['D','D','E']})
numbers = pd.DataFrame({'number': [1,2,3,4]})
together = pd.merge(letters, numbers, how = 'cross')
letterA letterB number
0 A D 1
1 A D 2
2 A D 3
3 A D 4
4 B D 1
5 B D 2
6 B D 3
7 B D 4
8 C E 1
9 C E 2
10 C E 3
11 C E 4
If you have 2 Series s1 and s2.
you can do this:
pd.DataFrame(index=s1,columns=s2).unstack().reset_index()[["s1","s2"]]
It will give you the follow
s1 s2
0 A 1
1 B 1
2 C 1
3 A 2
4 B 2
5 C 2
6 A 3
7 B 3
8 C 3
9 A 4
10 B 4
11 C 4
You can use pandas.MultiIndex.from_product():
import pandas as pd
pd.DataFrame(
index = pd.MultiIndex
.from_product(
[
['A', 'B', 'C'],
[1, 2, 3, 4]
],
names = ['letters', 'numbers']
)
)
which results in a hierarchical structure:
letters numbers
A 1
2
3
4
B 1
2
3
4
C 1
2
3
4
and you can further call .reset_index() to get ungrouped results:
letters numbers
0 A 1
1 A 2
2 A 3
3 A 4
4 B 1
5 B 2
6 B 3
7 B 4
8 C 1
9 C 2
10 C 3
11 C 4
(However I find #NickCHK's answer to be the best)

Pandas Dataframe groupby: apply several lambda functions at once

I group the following pandas dataframe by 'name' and then apply several lambda functions on 'value' to generate additional columns.
Is it possible to apply these lambda functions at once, to increase efficiency?
import pandas as pd
df = pd.DataFrame({'name': ['A','A', 'B','B','B','B', 'C','C','C'],
'value': [1, 3, 1, 2, 3, 1, 2, 3, 3], })
df['Diff'] = df.groupby('name')['value'].transform(lambda x: x - x.iloc[0])
df['Count'] = df.groupby('name')['value'].transform(lambda x: x.count())
df['Index'] = df.groupby('name')['value'].transform(lambda x: x.index - x.index[0] + 1)
print(df)
Output:
name value Diff Count Index
0 A 1 0 2 1
1 A 3 2 2 2
2 B 1 0 4 1
3 B 2 1 4 2
4 B 3 2 4 3
5 B 1 0 4 4
6 C 2 0 3 1
7 C 3 1 3 2
8 C 3 1 3 3
Here is possible use GroupBy.apply with one function, but not sure if better performance:
def f(x):
a = x - x.iloc[0]
b = x.count()
c = x.index - x.index[0] + 1
return pd.DataFrame({'Diff':a, 'Count':b, 'Index':c})
df = df.join(df.groupby('name')['value'].apply(f))
print(df)
name value Diff Count Index
0 A 1 0 2 1
1 A 3 2 2 2
2 B 1 0 4 1
3 B 2 1 4 2
4 B 3 2 4 3
5 B 1 0 4 4
6 C 2 0 3 1
7 C 3 1 3 2
8 C 3 1 3 3

Repeating rows of a dataframe based on a column value

I have a data frame like this:
df1 = pd.DataFrame({'a': [1,2],
'b': [3,4],
'c': [6,5]})
df1
Out[150]:
a b c
0 1 3 6
1 2 4 5
Now I want to create a df that repeats each row based on difference between col b and c plus 1. So diff between b and c for first row is 6-3 = 3. I want to repeat that row 3+1=4 times. Similarly for second row the difference is 5-4 = 1, so I want to repeat it 1+1=2 times. The column d is added to have value from min(b) to diff between b and c (i.e.6-3 = 3. So it goes from 3->6). So I want to get this df:
a b c d
0 1 3 6 3
0 1 3 6 4
0 1 3 6 5
0 1 3 6 6
1 2 4 5 4
1 2 4 5 5
Do it with reindex + repeat, then using groupby cumcount assign the new value d
df1.reindex(df1.index.repeat(df1.eval('c-b').add(1))).\
assign(d=lambda x : x.c-x.groupby('a').cumcount(ascending=False))
Out[572]:
a b c d
0 1 3 6 3
0 1 3 6 4
0 1 3 6 5
0 1 3 6 6
1 2 4 5 4
1 2 4 5 5

Rearrange dataframe structure

I get a dataframe
df
A B
0 1 4
1 2 5
2 3 6
For further processing, it would be more convenient to have the df restructered
as follows:
letters numbers
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 B 6
How can I achieve that?
Use unstack with reset_index :
df = df.unstack().reset_index(level=1, drop=True).reset_index()
df.columns = ['letters','numbers']
print (df)
letters numbers
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 B 6
Or numpy.concatenate + numpy.repeat + DataFrame:
a = np.concatenate(df.values)
b = np.repeat(df.columns,len(df.index))
df = pd.DataFrame({'letters':b, 'numbers':a})
print (df)
letters numbers
0 A 1
1 A 4
2 A 2
3 B 5
4 B 3
5 B 6
Probably simplest to melt:
In [36]: pd.melt(df, var_name="letters", value_name="numbers")
Out[36]:
letters numbers
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 B 6

Categories