Tuples and Ternary and positional parameters - python

Given:
>>> a,b=2,3
>>> c,d=3,2
>>> def f(x,y): print(x,y)
I have an existing (as in cannot be changed) 2 positional parameter function where I want the positional parameters to always be in ascending order; i.e., f(2,3) no matter what two arguments I use (f(a,b) is the same as f(c,d) in the example)
I know that I could do:
>>> f(*sorted([c,d]))
2 3
Or I could do:
>>> f(*((a,b) if a<b else (b,a)))
2 3
(Note the need for tuple parenthesis in this form because , is lower precedence than the ternary...)
Or,
def my_f(a,b):
return f(a,b) if a<b else f(b,a)
All these seem kinda kludgy. Is there another syntax that I am missing?
Edit
I missed an 'old school' Python two member tuple method. Index a two member tuple based on the True == 1, False == 0 method:
>>> f(*((a,b),(b,a))[a>b])
2 3
Also:
>>> f(*{True:(a,b), False:(b,a)}[a<b])
2 3
Edit 2
The reason for this silly exercise: numpy.isclose has the following usage note:
For finite values, isclose uses the following equation to test whether
two floating point values are equivalent.
absolute(a - b) <= (atol + rtol * absolute(b))
The above equation is not symmetric in a and b, so that isclose(a, b)
might be different from isclose(b, a) in some rare cases.
I would prefer that not happen.
I am looking for the fastest way to make sure that arguments to numpy.isclose are in a consistent order. That is why I am shying away from f(*sorted([c,d]))

Implemented my solution in case anyone else is looking.
def sort(f):
def wrapper(*args):
return f(*sorted(args))
return wrapper
#sort
def f(x, y):
print(x, y)
f(3, 2)
>>> (2, 3)
Also since #Tadhg McDonald-Jensen mention that you may not be able to change the function yourself that you could wrap the function as such
my_func = sort(f)

You mention that your use-case is np.isclose. However your approach isn't a good way to solve the real issue. But it's understandable given the poor argument naming of that function - it sort of implies that both arguments are interchangable. If it were: numpy.isclose(measured, expected, ...) (or something like it) it would be much clearer.
For example if you expect the value 10 and measure 10.51 and you allow for 5% deviation, then in order to get a useful result you must use np.isclose(10.51, 10, ...), otherwise you would get wrong results:
>>> import numpy as np
>>> measured = 10.51
>>> expected = 10
>>> err_rel = 0.05
>>> err_abs = 0.0
>>> np.isclose(measured, expected, err_rel, err_abs)
False
>>> np.isclose(expected, measured, err_rel, err_abs)
True
It's clear to see that the first one gives the correct result because the actually measured value is not within the tolerance of the expected value. That's because the relative uncertainty is an "attribute" of the expected value, not of the value you compare it with!
So solving this issue by "sorting" the parameters is just wrong. That's a bit like changing the numerator and denominator for division because the denominator contains zeros and dividing by zero could give NaN, Inf, a Warning or an Exception... it definetly avoids the problem but just by giving an incorrect result (the comparison isn't perfect because with division it will almost always give a wrong result; with isclose it's rare).
This was a somewhat artificial example designed to trigger that behaviour and most of the time it's not important if you use measured, expected or expected, measured but in the few cases where it does matter you can't solve it by swapping the arguments (except when you have no "expected" result, but that rarely happens - at least it shouldn't).
There was some discussion about this topic when math.isclose was added to the python library:
Symmetry (PEP 485)
[...]
Which approach is most appropriate depends on what question is being asked. If the question is: "are these two numbers close to each other?", there is no obvious ordering, and a symmetric test is most appropriate.
However, if the question is: "Is the computed value within x% of this known value?", then it is appropriate to scale the tolerance to the known value, and an asymmetric test is most appropriate.
[...]
This proposal [for math.isclose] uses a symmetric test.
So if your test falls into the first category and you like a symmetric test - then math.isclose could be a viable alternative (at least if you're dealing with scalars):
math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
[...]
rel_tol is the relative tolerance – it is the maximum allowed difference between a and b, relative to the larger absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance is 1e-09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater than zero.
[...]
Just in case this answer couldn't convince you and you still want to use a sorted approach - then you should order by the absolute of you values (i.e. *sorted([a, b], key=abs)). Otherwise you might get surprising results when comparing negative numbers:
>>> np.isclose(-10.51, -10, err_rel, err_abs) # -10.51 is smaller than -10!
False
>>> np.isclose(-10, -10.51, err_rel, err_abs)
True

For only two elements in the tuple, the second one is the preferred idiom -- in my experience. It's fast, readable, etc.
No, there isn't really another syntax. There's also
(min(a,b), max(a,b))
... but this isn't particularly superior to the other methods; merely another way of expressing it.
Note after comment by dawg:
A class with custom comparison operators could return the same object for both min and max.

Related

How to enforce relative constraints on hypothesis strategies?

Say I have 2 variables a and b where it is given that b > a, how then can I enforce this relative constraint on the hypothesis strategies?
from hypothesis import given, strategies as st
#given(st.integers(), st.integers())
def test_subtraction(a, b):
# only evaluates to true if b > a
# hence I'd like to enforce this constraint on the strategy
assert abs(b - a) == -(a - b)
(I've no idea how to do this in Python, but it's a common enough problem, so I hope you can use these F# FsCheck examples instead. The ideas are universal.)
Filtering
Most property-based frameworks come with an ability to filter values based on a predicate. In FsCheck it's the ==> operator. In QuickCheck the equivalent is called suchThat.
Using the ==> operator in FsCheck, you can write the property like this:
[<Property>]
let property_using_filtering (a : int) (b : int) =
b > a ==> lazy
Assert.Equal (abs (b - a), -(a - b))
(It's possible to write the test in a more terse and idiomatic style, but since I'm assuming that you may not be familiar with F#, I chose to be more explicit than usual.)
Notice that the predicate b > a precedes the filtering operator ==>. This means that the rest of the code to the right of, and below, the operator only runs when the predicate is true.
The framework is still going to generate entirely random values, so (assuming a uniform random distribution) it'll be throwing half of the generated values away.
Thus, to generate 100 (the default) valid test cases, it'll have to generate on average 200 test cases (i.e. 400 integers). Generating 400 integers instead of 200 integers probably isn't a big deal, but in general, this kind of filtering can be prohibitively wasteful.
Therefore, it's always useful to be aware of alternatives.
Seed and diff
When faced with this sort of problem, it usually helps to take an alternative look at how to generate values. How do you generate two values where one is strictly greater than the other?
You can generate a random value (the seed), which in this case will also serve as the first value itself. Then a second value will indicate the difference between the two.
Some property-based frameworks come with features where you can tell it to generate strictly positive numbers. FsCheck comes with those features, but assuming for the moment that not all frameworks can do this, you can still use an unconstrained random value.
In that case, the difference, being any random number, may be both negative, zero, or positive. In this case, we can take the absolute value of the number and then add one to ensure that it's strictly greater than zero. Now you have a number that's guaranteed to be greater than zero. If you add that to the first number, you're guaranteed to have a number greater than the first one:
[<Property>]
let property_using_seed_and_diff (seed : int) (diff : int) =
let a = seed
let b = a + 1 + abs diff
Assert.Equal (abs (b - a), -(a - b))
Here, (somewhat redundantly) we set a = seed and then b = a + 1 + abs diff according to the above description.
(I only included the redundant seed function parameter to illustrate the general idea. Sometimes, you need one or more values calculated from a seed, but not the seed itself. In the present case, however, the value and seed coincide.)
In addition to the filtering and seed-plus-diff approaches shown above, the "fix-it-up" approach can be useful: try to generate something valid, and just patch the object if it's not satisfied. In this case, that might look like:
#given(st.integers(), st.integers())
def test_subtraction(a, b):
a, b = sorted([a, b])
....
The advantage here is that the minimal failing example tends to look a bit more natural, and might have a nicer distribution than a seed-and-diff (or "constructive") approach. It also combines well with the other approaches, especially if you're defining your own strategy with #st.composite.
You can add these constrains using assume in hypothesis:
from hypothesis import assume, given, strategies as st
#given(st.integers(), st.integers())
def test_subtraction(a, b):
assume(b > a)
assert abs(b - a) == -(a - b)
See: https://hypothesis.readthedocs.io/en/latest/details.html#making-assumptions for more details

Matching multiple floats in an IF statement [duplicate]

It's well known that comparing floats for equality is a little fiddly due to rounding and precision issues.
For example: Comparing Floating Point Numbers, 2012 Edition
What is the recommended way to deal with this in Python?
Is a standard library function for this somewhere?
Python 3.5 adds the math.isclose and cmath.isclose functions as described in PEP 485.
If you're using an earlier version of Python, the equivalent function is given in the documentation.
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
rel_tol is a relative tolerance, it is multiplied by the greater of the magnitudes of the two arguments; as the values get larger, so does the allowed difference between them while still considering them equal.
abs_tol is an absolute tolerance that is applied as-is in all cases. If the difference is less than either of those tolerances, the values are considered equal.
Something as simple as the following may be good enough:
return abs(f1 - f2) <= allowed_error
I would agree that Gareth's answer is probably most appropriate as a lightweight function/solution.
But I thought it would be helpful to note that if you are using NumPy or are considering it, there is a packaged function for this.
numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
A little disclaimer though: installing NumPy can be a non-trivial experience depending on your platform.
Use Python's decimal module, which provides the Decimal class.
From the comments:
It is worth noting that if you're
doing math-heavy work and you don't
absolutely need the precision from
decimal, this can really bog things
down. Floats are way, way faster to
deal with, but imprecise. Decimals are
extremely precise but slow.
The common wisdom that floating-point numbers cannot be compared for equality is inaccurate. Floating-point numbers are no different from integers: If you evaluate "a == b", you will get true if they are identical numbers and false otherwise (with the understanding that two NaNs are of course not identical numbers).
The actual problem is this: If I have done some calculations and am not sure the two numbers I have to compare are exactly correct, then what? This problem is the same for floating-point as it is for integers. If you evaluate the integer expression "7/3*3", it will not compare equal to "7*3/3".
So suppose we asked "How do I compare integers for equality?" in such a situation. There is no single answer; what you should do depends on the specific situation, notably what sort of errors you have and what you want to achieve.
Here are some possible choices.
If you want to get a "true" result if the mathematically exact numbers would be equal, then you might try to use the properties of the calculations you perform to prove that you get the same errors in the two numbers. If that is feasible, and you compare two numbers that result from expressions that would give equal numbers if computed exactly, then you will get "true" from the comparison. Another approach is that you might analyze the properties of the calculations and prove that the error never exceeds a certain amount, perhaps an absolute amount or an amount relative to one of the inputs or one of the outputs. In that case, you can ask whether the two calculated numbers differ by at most that amount, and return "true" if they are within the interval. If you cannot prove an error bound, you might guess and hope for the best. One way of guessing is to evaluate many random samples and see what sort of distribution you get in the results.
Of course, since we only set the requirement that you get "true" if the mathematically exact results are equal, we left open the possibility that you get "true" even if they are unequal. (In fact, we can satisfy the requirement by always returning "true". This makes the calculation simple but is generally undesirable, so I will discuss improving the situation below.)
If you want to get a "false" result if the mathematically exact numbers would be unequal, you need to prove that your evaluation of the numbers yields different numbers if the mathematically exact numbers would be unequal. This may be impossible for practical purposes in many common situations. So let us consider an alternative.
A useful requirement might be that we get a "false" result if the mathematically exact numbers differ by more than a certain amount. For example, perhaps we are going to calculate where a ball thrown in a computer game traveled, and we want to know whether it struck a bat. In this case, we certainly want to get "true" if the ball strikes the bat, and we want to get "false" if the ball is far from the bat, and we can accept an incorrect "true" answer if the ball in a mathematically exact simulation missed the bat but is within a millimeter of hitting the bat. In that case, we need to prove (or guess/estimate) that our calculation of the ball's position and the bat's position have a combined error of at most one millimeter (for all positions of interest). This would allow us to always return "false" if the ball and bat are more than a millimeter apart, to return "true" if they touch, and to return "true" if they are close enough to be acceptable.
So, how you decide what to return when comparing floating-point numbers depends very much on your specific situation.
As to how you go about proving error bounds for calculations, that can be a complicated subject. Any floating-point implementation using the IEEE 754 standard in round-to-nearest mode returns the floating-point number nearest to the exact result for any basic operation (notably multiplication, division, addition, subtraction, square root). (In case of tie, round so the low bit is even.) (Be particularly careful about square root and division; your language implementation might use methods that do not conform to IEEE 754 for those.) Because of this requirement, we know the error in a single result is at most 1/2 of the value of the least significant bit. (If it were more, the rounding would have gone to a different number that is within 1/2 the value.)
Going on from there gets substantially more complicated; the next step is performing an operation where one of the inputs already has some error. For simple expressions, these errors can be followed through the calculations to reach a bound on the final error. In practice, this is only done in a few situations, such as working on a high-quality mathematics library. And, of course, you need precise control over exactly which operations are performed. High-level languages often give the compiler a lot of slack, so you might not know in which order operations are performed.
There is much more that could be (and is) written about this topic, but I have to stop there. In summary, the answer is: There is no library routine for this comparison because there is no single solution that fits most needs that is worth putting into a library routine. (If comparing with a relative or absolute error interval suffices for you, you can do it simply without a library routine.)
math.isclose() has been added to Python 3.5 for that (source code). Here is a port of it to Python 2. It's difference from one-liner of Mark Ransom is that it can handle "inf" and "-inf" properly.
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
'''
Python 2 implementation of Python 3.5 math.isclose()
https://github.com/python/cpython/blob/v3.5.10/Modules/mathmodule.c#L1993
'''
# sanity check on the inputs
if rel_tol < 0 or abs_tol < 0:
raise ValueError("tolerances must be non-negative")
# short circuit exact equality -- needed to catch two infinities of
# the same sign. And perhaps speeds things up a bit sometimes.
if a == b:
return True
# This catches the case of two infinities of opposite sign, or
# one infinity and one finite number. Two infinities of opposite
# sign would otherwise have an infinite relative tolerance.
# Two infinities of the same sign are caught by the equality check
# above.
if math.isinf(a) or math.isinf(b):
return False
# now do the regular computation
# this is essentially the "weak" test from the Boost library
diff = math.fabs(b - a)
result = (((diff <= math.fabs(rel_tol * b)) or
(diff <= math.fabs(rel_tol * a))) or
(diff <= abs_tol))
return result
I'm not aware of anything in the Python standard library (or elsewhere) that implements Dawson's AlmostEqual2sComplement function. If that's the sort of behaviour you want, you'll have to implement it yourself. (In which case, rather than using Dawson's clever bitwise hacks you'd probably do better to use more conventional tests of the form if abs(a-b) <= eps1*(abs(a)+abs(b)) + eps2 or similar. To get Dawson-like behaviour you might say something like if abs(a-b) <= eps*max(EPS,abs(a),abs(b)) for some small fixed EPS; this isn't exactly the same as Dawson, but it's similar in spirit.
If you want to use it in testing/TDD context, I'd say this is a standard way:
from nose.tools import assert_almost_equals
assert_almost_equals(x, y, places=7) # The default is 7
In terms of absolute error, you can just check
if abs(a - b) <= error:
print("Almost equal")
Some information of why float act weird in Python:
Python 3 Tutorial 03 - if-else, logical operators and top beginner mistakes
You can also use math.isclose for relative errors.
This is useful for the case where you want to make sure two numbers are the same 'up to precision', and there isn't any need to specify the tolerance:
Find minimum precision of the two numbers
Round both of them to minimum precision and compare
def isclose(a, b):
astr = str(a)
aprec = len(astr.split('.')[1]) if '.' in astr else 0
bstr = str(b)
bprec = len(bstr.split('.')[1]) if '.' in bstr else 0
prec = min(aprec, bprec)
return round(a, prec) == round(b, prec)
As written, it only works for numbers without the 'e' in their string representation (meaning 0.9999999999995e-4 < number <= 0.9999999999995e11)
Example:
>>> isclose(10.0, 10.049)
True
>>> isclose(10.0, 10.05)
False
For some of the cases where you can affect the source number representation, you can represent them as fractions instead of floats, using integer numerator and denominator. That way you can have exact comparisons.
See Fraction from fractions module for details.
I liked Sesquipedal's suggestion, but with modification (a special use case when both values are 0 returns False). In my case, I was on Python 2.7 and just used a simple function:
if f1 ==0 and f2 == 0:
return True
else:
return abs(f1-f2) < tol*max(abs(f1),abs(f2))
If you want to do it in a testing or TDD context using the pytest package, here's how:
import pytest
PRECISION = 1e-3
def assert_almost_equal():
obtained_value = 99.99
expected_value = 100.00
assert obtained_value == pytest.approx(expected_value, PRECISION)
I found the following comparison helpful:
str(f1) == str(f2)
To compare up to a given decimal without atol/rtol:
def almost_equal(a, b, decimal=6):
return '{0:.{1}f}'.format(a, decimal) == '{0:.{1}f}'.format(b, decimal)
print(almost_equal(0.0, 0.0001, decimal=5)) # False
print(almost_equal(0.0, 0.0001, decimal=4)) # True
This maybe is a bit ugly hack, but it works pretty well when you don't need more than the default float precision (about 11 decimals).
The round_to function uses the format method from the built-in str class to round up the float to a string that represents the float with the number of decimals needed, and then applies the eval built-in function to the rounded float string to get back to the float numeric type.
The is_close function just applies a simple conditional to the rounded up float.
def round_to(float_num, prec):
return eval("'{:." + str(int(prec)) + "f}'.format(" + str(float_num) + ")")
def is_close(float_a, float_b, prec):
if round_to(float_a, prec) == round_to(float_b, prec):
return True
return False
>>>a = 10.0
10.0
>>>b = 10.0001
10.0001
>>>print is_close(a, b, prec=3)
True
>>>print is_close(a, b, prec=4)
False
Update:
As suggested by #stepehjfox, a cleaner way to build a rount_to function avoiding "eval" is using nested formatting:
def round_to(float_num, prec):
return '{:.{precision}f}'.format(float_num, precision=prec)
Following the same idea, the code can be even simpler using the great new f-strings (Python 3.6+):
def round_to(float_num, prec):
return f'{float_num:.{prec}f}'
So, we could even wrap it up all in one simple and clean 'is_close' function:
def is_close(a, b, prec):
return f'{a:.{prec}f}' == f'{b:.{prec}f}'
If you want to compare floats, the options above are great, but in my case, I ended up using Enum's, since I only had few valid floats my use case was accepting.
from enum import Enum
class HolidayMultipliers(Enum):
EMPLOYED_LESS_THAN_YEAR = 2.0
EMPLOYED_MORE_THAN_YEAR = 2.5
Then running:
testable_value = 2.0
HolidayMultipliers(testable_value)
If the float is valid, it's fine, but otherwise it will just throw an ValueError.
Use == is a simple good way, if you don't care about tolerance precisely.
# Python 3.8.5
>>> 1.0000000000001 == 1
False
>>> 1.00000000000001 == 1
True
But watch out for 0:
>>> 0 == 0.00000000000000000000000000000000000000000001
False
The 0 is always the zero.
Use math.isclose if you want to control the tolerance.
The default a == b is equivalent to math.isclose(a, b, rel_tol=1e-16, abs_tol=0).
If you still want to use == with a self-defined tolerance:
>>> class MyFloat(float):
def __eq__(self, another):
return math.isclose(self, another, rel_tol=0, abs_tol=0.001)
>>> a == MyFloat(0)
>>> a
0.0
>>> a == 0.001
True
So far, I didn't find anywhere to config it globally for float. Besides, mock is also not working for float.__eq__.

Comparing two floats in python [duplicate]

It's well known that comparing floats for equality is a little fiddly due to rounding and precision issues.
For example: Comparing Floating Point Numbers, 2012 Edition
What is the recommended way to deal with this in Python?
Is a standard library function for this somewhere?
Python 3.5 adds the math.isclose and cmath.isclose functions as described in PEP 485.
If you're using an earlier version of Python, the equivalent function is given in the documentation.
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
rel_tol is a relative tolerance, it is multiplied by the greater of the magnitudes of the two arguments; as the values get larger, so does the allowed difference between them while still considering them equal.
abs_tol is an absolute tolerance that is applied as-is in all cases. If the difference is less than either of those tolerances, the values are considered equal.
Something as simple as the following may be good enough:
return abs(f1 - f2) <= allowed_error
I would agree that Gareth's answer is probably most appropriate as a lightweight function/solution.
But I thought it would be helpful to note that if you are using NumPy or are considering it, there is a packaged function for this.
numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
A little disclaimer though: installing NumPy can be a non-trivial experience depending on your platform.
Use Python's decimal module, which provides the Decimal class.
From the comments:
It is worth noting that if you're
doing math-heavy work and you don't
absolutely need the precision from
decimal, this can really bog things
down. Floats are way, way faster to
deal with, but imprecise. Decimals are
extremely precise but slow.
The common wisdom that floating-point numbers cannot be compared for equality is inaccurate. Floating-point numbers are no different from integers: If you evaluate "a == b", you will get true if they are identical numbers and false otherwise (with the understanding that two NaNs are of course not identical numbers).
The actual problem is this: If I have done some calculations and am not sure the two numbers I have to compare are exactly correct, then what? This problem is the same for floating-point as it is for integers. If you evaluate the integer expression "7/3*3", it will not compare equal to "7*3/3".
So suppose we asked "How do I compare integers for equality?" in such a situation. There is no single answer; what you should do depends on the specific situation, notably what sort of errors you have and what you want to achieve.
Here are some possible choices.
If you want to get a "true" result if the mathematically exact numbers would be equal, then you might try to use the properties of the calculations you perform to prove that you get the same errors in the two numbers. If that is feasible, and you compare two numbers that result from expressions that would give equal numbers if computed exactly, then you will get "true" from the comparison. Another approach is that you might analyze the properties of the calculations and prove that the error never exceeds a certain amount, perhaps an absolute amount or an amount relative to one of the inputs or one of the outputs. In that case, you can ask whether the two calculated numbers differ by at most that amount, and return "true" if they are within the interval. If you cannot prove an error bound, you might guess and hope for the best. One way of guessing is to evaluate many random samples and see what sort of distribution you get in the results.
Of course, since we only set the requirement that you get "true" if the mathematically exact results are equal, we left open the possibility that you get "true" even if they are unequal. (In fact, we can satisfy the requirement by always returning "true". This makes the calculation simple but is generally undesirable, so I will discuss improving the situation below.)
If you want to get a "false" result if the mathematically exact numbers would be unequal, you need to prove that your evaluation of the numbers yields different numbers if the mathematically exact numbers would be unequal. This may be impossible for practical purposes in many common situations. So let us consider an alternative.
A useful requirement might be that we get a "false" result if the mathematically exact numbers differ by more than a certain amount. For example, perhaps we are going to calculate where a ball thrown in a computer game traveled, and we want to know whether it struck a bat. In this case, we certainly want to get "true" if the ball strikes the bat, and we want to get "false" if the ball is far from the bat, and we can accept an incorrect "true" answer if the ball in a mathematically exact simulation missed the bat but is within a millimeter of hitting the bat. In that case, we need to prove (or guess/estimate) that our calculation of the ball's position and the bat's position have a combined error of at most one millimeter (for all positions of interest). This would allow us to always return "false" if the ball and bat are more than a millimeter apart, to return "true" if they touch, and to return "true" if they are close enough to be acceptable.
So, how you decide what to return when comparing floating-point numbers depends very much on your specific situation.
As to how you go about proving error bounds for calculations, that can be a complicated subject. Any floating-point implementation using the IEEE 754 standard in round-to-nearest mode returns the floating-point number nearest to the exact result for any basic operation (notably multiplication, division, addition, subtraction, square root). (In case of tie, round so the low bit is even.) (Be particularly careful about square root and division; your language implementation might use methods that do not conform to IEEE 754 for those.) Because of this requirement, we know the error in a single result is at most 1/2 of the value of the least significant bit. (If it were more, the rounding would have gone to a different number that is within 1/2 the value.)
Going on from there gets substantially more complicated; the next step is performing an operation where one of the inputs already has some error. For simple expressions, these errors can be followed through the calculations to reach a bound on the final error. In practice, this is only done in a few situations, such as working on a high-quality mathematics library. And, of course, you need precise control over exactly which operations are performed. High-level languages often give the compiler a lot of slack, so you might not know in which order operations are performed.
There is much more that could be (and is) written about this topic, but I have to stop there. In summary, the answer is: There is no library routine for this comparison because there is no single solution that fits most needs that is worth putting into a library routine. (If comparing with a relative or absolute error interval suffices for you, you can do it simply without a library routine.)
math.isclose() has been added to Python 3.5 for that (source code). Here is a port of it to Python 2. It's difference from one-liner of Mark Ransom is that it can handle "inf" and "-inf" properly.
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
'''
Python 2 implementation of Python 3.5 math.isclose()
https://github.com/python/cpython/blob/v3.5.10/Modules/mathmodule.c#L1993
'''
# sanity check on the inputs
if rel_tol < 0 or abs_tol < 0:
raise ValueError("tolerances must be non-negative")
# short circuit exact equality -- needed to catch two infinities of
# the same sign. And perhaps speeds things up a bit sometimes.
if a == b:
return True
# This catches the case of two infinities of opposite sign, or
# one infinity and one finite number. Two infinities of opposite
# sign would otherwise have an infinite relative tolerance.
# Two infinities of the same sign are caught by the equality check
# above.
if math.isinf(a) or math.isinf(b):
return False
# now do the regular computation
# this is essentially the "weak" test from the Boost library
diff = math.fabs(b - a)
result = (((diff <= math.fabs(rel_tol * b)) or
(diff <= math.fabs(rel_tol * a))) or
(diff <= abs_tol))
return result
I'm not aware of anything in the Python standard library (or elsewhere) that implements Dawson's AlmostEqual2sComplement function. If that's the sort of behaviour you want, you'll have to implement it yourself. (In which case, rather than using Dawson's clever bitwise hacks you'd probably do better to use more conventional tests of the form if abs(a-b) <= eps1*(abs(a)+abs(b)) + eps2 or similar. To get Dawson-like behaviour you might say something like if abs(a-b) <= eps*max(EPS,abs(a),abs(b)) for some small fixed EPS; this isn't exactly the same as Dawson, but it's similar in spirit.
If you want to use it in testing/TDD context, I'd say this is a standard way:
from nose.tools import assert_almost_equals
assert_almost_equals(x, y, places=7) # The default is 7
In terms of absolute error, you can just check
if abs(a - b) <= error:
print("Almost equal")
Some information of why float act weird in Python:
Python 3 Tutorial 03 - if-else, logical operators and top beginner mistakes
You can also use math.isclose for relative errors.
This is useful for the case where you want to make sure two numbers are the same 'up to precision', and there isn't any need to specify the tolerance:
Find minimum precision of the two numbers
Round both of them to minimum precision and compare
def isclose(a, b):
astr = str(a)
aprec = len(astr.split('.')[1]) if '.' in astr else 0
bstr = str(b)
bprec = len(bstr.split('.')[1]) if '.' in bstr else 0
prec = min(aprec, bprec)
return round(a, prec) == round(b, prec)
As written, it only works for numbers without the 'e' in their string representation (meaning 0.9999999999995e-4 < number <= 0.9999999999995e11)
Example:
>>> isclose(10.0, 10.049)
True
>>> isclose(10.0, 10.05)
False
For some of the cases where you can affect the source number representation, you can represent them as fractions instead of floats, using integer numerator and denominator. That way you can have exact comparisons.
See Fraction from fractions module for details.
I liked Sesquipedal's suggestion, but with modification (a special use case when both values are 0 returns False). In my case, I was on Python 2.7 and just used a simple function:
if f1 ==0 and f2 == 0:
return True
else:
return abs(f1-f2) < tol*max(abs(f1),abs(f2))
If you want to do it in a testing or TDD context using the pytest package, here's how:
import pytest
PRECISION = 1e-3
def assert_almost_equal():
obtained_value = 99.99
expected_value = 100.00
assert obtained_value == pytest.approx(expected_value, PRECISION)
I found the following comparison helpful:
str(f1) == str(f2)
To compare up to a given decimal without atol/rtol:
def almost_equal(a, b, decimal=6):
return '{0:.{1}f}'.format(a, decimal) == '{0:.{1}f}'.format(b, decimal)
print(almost_equal(0.0, 0.0001, decimal=5)) # False
print(almost_equal(0.0, 0.0001, decimal=4)) # True
This maybe is a bit ugly hack, but it works pretty well when you don't need more than the default float precision (about 11 decimals).
The round_to function uses the format method from the built-in str class to round up the float to a string that represents the float with the number of decimals needed, and then applies the eval built-in function to the rounded float string to get back to the float numeric type.
The is_close function just applies a simple conditional to the rounded up float.
def round_to(float_num, prec):
return eval("'{:." + str(int(prec)) + "f}'.format(" + str(float_num) + ")")
def is_close(float_a, float_b, prec):
if round_to(float_a, prec) == round_to(float_b, prec):
return True
return False
>>>a = 10.0
10.0
>>>b = 10.0001
10.0001
>>>print is_close(a, b, prec=3)
True
>>>print is_close(a, b, prec=4)
False
Update:
As suggested by #stepehjfox, a cleaner way to build a rount_to function avoiding "eval" is using nested formatting:
def round_to(float_num, prec):
return '{:.{precision}f}'.format(float_num, precision=prec)
Following the same idea, the code can be even simpler using the great new f-strings (Python 3.6+):
def round_to(float_num, prec):
return f'{float_num:.{prec}f}'
So, we could even wrap it up all in one simple and clean 'is_close' function:
def is_close(a, b, prec):
return f'{a:.{prec}f}' == f'{b:.{prec}f}'
If you want to compare floats, the options above are great, but in my case, I ended up using Enum's, since I only had few valid floats my use case was accepting.
from enum import Enum
class HolidayMultipliers(Enum):
EMPLOYED_LESS_THAN_YEAR = 2.0
EMPLOYED_MORE_THAN_YEAR = 2.5
Then running:
testable_value = 2.0
HolidayMultipliers(testable_value)
If the float is valid, it's fine, but otherwise it will just throw an ValueError.
Use == is a simple good way, if you don't care about tolerance precisely.
# Python 3.8.5
>>> 1.0000000000001 == 1
False
>>> 1.00000000000001 == 1
True
But watch out for 0:
>>> 0 == 0.00000000000000000000000000000000000000000001
False
The 0 is always the zero.
Use math.isclose if you want to control the tolerance.
The default a == b is equivalent to math.isclose(a, b, rel_tol=1e-16, abs_tol=0).
If you still want to use == with a self-defined tolerance:
>>> class MyFloat(float):
def __eq__(self, another):
return math.isclose(self, another, rel_tol=0, abs_tol=0.001)
>>> a == MyFloat(0)
>>> a
0.0
>>> a == 0.001
True
So far, I didn't find anywhere to config it globally for float. Besides, mock is also not working for float.__eq__.

Python equal operator for finite precision [duplicate]

I have been asked to test a library provided by a 3rd party. The library is known to be accurate to n significant figures. Any less-significant errors can safely be ignored. I want to write a function to help me compare the results:
def nearlyequal( a, b, sigfig=5 ):
The purpose of this function is to determine if two floating-point numbers (a and b) are approximately equal. The function will return True if a==b (exact match) or if a and b have the same value when rounded to sigfig significant-figures when written in decimal.
Can anybody suggest a good implementation? I've written a mini unit-test. Unless you can see a bug in my tests then a good implementation should pass the following:
assert nearlyequal(1, 1, 5)
assert nearlyequal(1.0, 1.0, 5)
assert nearlyequal(1.0, 1.0, 5)
assert nearlyequal(-1e-9, 1e-9, 5)
assert nearlyequal(1e9, 1e9 + 1 , 5)
assert not nearlyequal( 1e4, 1e4 + 1, 5)
assert nearlyequal( 0.0, 1e-15, 5 )
assert not nearlyequal( 0.0, 1e-4, 6 )
Additional notes:
Values a and b might be of type int, float or numpy.float64. Values a and b will always be of the same type. It's vital that conversion does not introduce additional error into the function.
Lets keep this numerical, so functions that convert to strings or use non-mathematical tricks are not ideal. This program will be audited by somebody who is a mathematician who will want to be able to prove that the function does what it is supposed to do.
Speed... I've got to compare a lot of numbers so the faster the better.
I've got numpy, scipy and the standard-library. Anything else will be hard for me to get, especially for such a small part of the project.
As of Python 3.5, the standard way to do this (using the standard library) is with the math.isclose function.
It has the following signature:
isclose(a, b, rel_tol=1e-9, abs_tol=0.0)
An example of usage with absolute error tolerance:
from math import isclose
a = 1.0
b = 1.00000001
assert isclose(a, b, abs_tol=1e-8)
If you want it with precision of n significant digits, simply replace the last line with:
assert isclose(a, b, abs_tol=10**-n)
There is a function assert_approx_equal in numpy.testing (source here) which may be a good starting point.
def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True):
"""
Raise an assertion if two items are not equal up to significant digits.
.. note:: It is recommended to use one of `assert_allclose`,
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
instead of this function for more consistent floating point
comparisons.
Given two numbers, check that they are approximately equal.
Approximately equal is defined as the number of significant digits
that agree.
Here's a take.
def nearly_equal(a,b,sig_fig=5):
return ( a==b or
int(a*10**sig_fig) == int(b*10**sig_fig)
)
I believe your question is not defined well enough, and the unit-tests you present prove it:
If by 'round to N sig-fig decimal places' you mean 'N decimal places to the right of the decimal point', then the test assert nearlyequal(1e9, 1e9 + 1 , 5) should fail, because even when you round 1000000000 and 1000000001 to 0.00001 accuracy, they are still different.
And if by 'round to N sig-fig decimal places' you mean 'The N most significant digits, regardless of the decimal point', then the test assert nearlyequal(-1e-9, 1e-9, 5) should fail, because 0.000000001 and -0.000000001 are totally different when viewed this way.
If you meant the first definition, then the first answer on this page (by Triptych) is good.
If you meant the second definition, please say it, I promise to think about it :-)
There are already plenty of great answers, but here's a think:
def closeness(a, b):
"""Returns measure of equality (for two floats), in unit
of decimal significant figures."""
if a == b:
return float("infinity")
difference = abs(a - b)
avg = (a + b)/2
return math.log10( avg / difference )
if closeness(1000, 1000.1) > 3:
print "Joy!"
This is a fairly common issue with floating point numbers. I solve it based on the discussion in Section 1.5 of Demmel[1]. (1) Calculate the roundoff error. (2) Check that the roundoff error is less than some epsilon. I haven't used python in some time and only have version 2.4.3, but I'll try to get this correct.
Step 1. Roundoff error
def roundoff_error(exact, approximate):
return abs(approximate/exact - 1.0)
Step 2. Floating point equality
def float_equal(float1, float2, epsilon=2.0e-9):
return (roundoff_error(float1, float2) < epsilon)
There are a couple obvious deficiencies with this code.
Division by zero error if the exact value is Zero.
Does not verify that the arguments are floating point values.
Revision 1.
def roundoff_error(exact, approximate):
if (exact == 0.0 or approximate == 0.0):
return abs(exact + approximate)
else:
return abs(approximate/exact - 1.0)
def float_equal(float1, float2, epsilon=2.0e-9):
if not isinstance(float1,float):
raise TypeError,"First argument is not a float."
elif not isinstance(float2,float):
raise TypeError,"Second argument is not a float."
else:
return (roundoff_error(float1, float2) < epsilon)
That's a little better. If either the exact or the approximate value is zero, than the error is equal to the value of the other. If something besides a floating point value is provided, a TypeError is raised.
At this point, the only difficult thing is setting the correct value for epsilon. I noticed in the documentation for version 2.6.1 that there is an epsilon attribute in sys.float_info, so I would use twice that value as the default epsilon. But the correct value depends on both your application and your algorithm.
[1] James W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
"Significant figures" in decimal is a matter of adjusting the decimal point and truncating to an integer.
>>> int(3.1415926 * 10**3)
3141
>>> int(1234567 * 10**-3)
1234
>>>
Oren Shemesh got part of the problem with the problem as stated but there's more:
assert nearlyequal( 0.0, 1e-15, 5 )
also fails the second definition (and that's the definition I learned in school.)
No matter how many digits you are looking at, 0 will not equal a not-zero. This could prove to be a headache for such tests if you have a case whose correct answer is zero.
There is a interesting solution to this by B. Dawson (with C++ code)
at "Comparing Floating Point Numbers". His approach relies on strict IEEE representation of two numbers and the enforced lexicographical ordering when said numbers are represented as unsigned integers.
I have been asked to test a library provided by a 3rd party
If you are using the default Python unittest framework, you can use assertAlmostEqual
self.assertAlmostEqual(a, b, places=5)
There are lots of ways of comparing two numbers to see if they agree to N significant digits. Roughly speaking you just want to make sure that their difference is less than 10^-N times the largest of the two numbers being compared. That's easy enough.
But, what if one of the numbers is zero? The whole concept of relative-differences or significant-digits falls down when comparing against zero. To handle that case you need to have an absolute-difference as well, which should be specified differently from the relative-difference.
I discuss the problems of comparing floating-point numbers -- including a specific case of handling zero -- in this blog post:
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

What's the purpose of the + (pos) unary operator in Python?

Generally speaking, what should the unary + do in Python?
I'm asking because, so far, I have never seen a situation like this:
+obj != obj
Where obj is a generic object implementing __pos__().
So I'm wondering: why do + and __pos__() exist? Can you provide a real-world example where the expression above evaluates to True?
Here's a "real-world" example from the decimal package:
>>> from decimal import Decimal
>>> obj = Decimal('3.1415926535897932384626433832795028841971')
>>> +obj != obj # The __pos__ function rounds back to normal precision
True
>>> obj
Decimal('3.1415926535897932384626433832795028841971')
>>> +obj
Decimal('3.141592653589793238462643383')
In Python 3.3 and above, collections.Counter uses the + operator to remove non-positive counts.
>>> from collections import Counter
>>> fruits = Counter({'apples': 0, 'pears': 4, 'oranges': -89})
>>> fruits
Counter({'pears': 4, 'apples': 0, 'oranges': -89})
>>> +fruits
Counter({'pears': 4})
So if you have negative or zero counts in a Counter, you have a situation where +obj != obj.
>>> obj = Counter({'a': 0})
>>> +obj != obj
True
I believe that Python operators where inspired by C, where the + operator was introduced for symmetry (and also some useful hacks, see comments).
In weakly typed languages such as PHP or Javascript, + tells the runtime to coerce the value of the variable into a number. For example, in Javascript:
+"2" + 1
=> 3
"2" + 1
=> '21'
Python is strongly typed, so strings don't work as numbers, and, as such, don't implement an unary plus operator.
It is certainly possible to implement an object for which +obj != obj :
>>> class Foo(object):
... def __pos__(self):
... return "bar"
...
>>> +Foo()
'bar'
>>> obj = Foo()
>>> +"a"
As for an example for which it actually makes sense, check out the
surreal numbers. They are a superset of the reals which includes
infinitesimal values (+ epsilon, - epsilon), where epsilon is
a positive value which is smaller than any other positive number, but
greater than 0; and infinite ones (+ infinity, - infinity).
You could define epsilon = +0, and -epsilon = -0.
While 1/0 is still undefined, 1/epsilon = 1/+0 is +infinity, and 1/-epsilon = -infinity. It is
nothing more than taking limits of 1/x as x aproaches 0 from the right (+) or from the left (-).
As 0 and +0 behave differently, it makes sense that 0 != +0.
A lot of examples here look more like bugs. This one is actually a feature, though:
The + operator implies a copy.
This is extremely useful when writing generic code for scalars and arrays.
For example:
def f(x, y):
z = +x
z += y
return z
This function works on both scalars and NumPy arrays without making extra copies and without changing the type of the object and without requiring any external dependencies!
If you used numpy.positive or something like that, you would introduce a NumPy dependency, and you would force numbers to NumPy types, which can be undesired by the caller.
If you did z = x + y, your result would no longer necessarily be the same type as x. In many cases that's fine, but when it's not, it's not an option.
If you did z = --x, you would create an unnecessary copy, which is slow.
If you did z = 1 * x, you'd perform an unnecessary multiplication, which is also slow.
If you did copy.copy... I guess that'd work, but it's pretty cumbersome.
Unary + is a really great option for this.
For symmetry, because unary minus is an operator, unary plus must be too. In most arithmetic situations, it doesn't do anything, but keep in mind that users can define arbitrary classes and use these operators for anything they want, even if it isn't strictly algebraic.
I know it's an old thread, but I wanted to extend the existing answers to provide a broader set of examples:
+ could assert for positivity and throw exception if it's not - very useful to detect corner cases.
The object may be multivalued (think ±sqrt(z) as a single object -- for solving quadratic equations, for multibranched analytical functions, anything where you can "collapse" a twovalued function into one branch with a sign. This includes the ±0 case mentioned by vlopez.
If you do lazy evaluation, this may create a function object that adds something to whatever it is applied to something else. For instance, if you are parsing arithmetics incrementally.
As an identity function to pass as an argument to some functional.
For algebraic structures where sign accumulates -- ladder operators and such. Sure, it could be done with other functions, but one could conceivably see something like y=+++---+++x. Even more, they don't have to commute. This constructs a free group of plus and minuses which could be useful. Even in formal grammar implementations.
Wild usage: it could "mark" a step in the calculation as "active" in some sense. reap/sow system -- every plus remembers the value and at the end, you can gather the collected intermediates... because why not?
That, plus all the typecasting reasons mentioned by others.
And after all... it's nice to have one more operator in case you need it.
__pos__() exists in Python to give programmers similar possibilities as in C++ language — to overload operators, in this case the unary operator +.
(Overloading operators means give them a different meaning for different objects, e. g. binary + behaves differently for numbers and for strings — numbers are added while strings are concatenated.)
Objects may implement (beside others) these emulating numeric types functions (methods):
__pos__(self) # called for unary +
__neg__(self) # called for unary -
__invert__(self) # called for unary ~
So +object means the same as object.__pos__() — they are interchangeable.
However, +object is more easy on the eye.
Creator of a particular object has free hands to implement these functions as he wants — as other people showed in their real world's examples.
And my contribution — as a joke: ++i != +i in C/C++.
Unary + is actually the fastest way to see if a value is numeric or not (and raise an exception if it isn't)! It's a single instruction in bytecode, where something like isinstance(i, int) actually looks up and calls the isinstance function!

Categories