Running opencv-python script hangs in sub-interpreter - python

I am hosting python interpreter(2.7.13) in a C application and running a python script that has some calls to opencv-python functions.
The problem is that when the script is run in the main interpreter, it works fine. But, when the script is run in a sub-interpreter, it hangs.
Is there any known incompatibility between opencv-python package and sub-interpreter ?
The C application code is as follows:-
const char *pythonSource = "abc_module";
const char *funcName = "abc_function";
Py_Initialize();
PyEval_InitThreads();
if(run_in_subinterpreter){
PyThreadState* threadState = Py_NewInterpreter();
PyThreadState *mainState = PyThreadState_Swap(threadState);
}
pName = PyString_FromString(pythonSource);
pModule = PyImport_Import(pName);
pDict = PyModule_GetDict(pModule);
pFunc = PyDict_GetItemString(pDict, funcName);
PyObject *pyList = PyList_New(gArray.size()); //std::vector<int> gArray;
for (size_t i = 0; i < gArray.size(); ++i)
{
PyObject *elem = PyInt_FromLong(gArray[i]);
PyList_SetItem(pyList, i, elem);
}
PyObject* pArgs = PyTuple_New(1);
PyTuple_SetItem(pArgs, 0, pyList);
pValue = PyObject_CallObject(pFunc, pArgs);
Py_Finalize();
return;
The python script code is as follows:-
import sys
import cv2
import numpy as np
def abc_function(list):
array = np.asarray(list)
array = np.reshape(array, (100, 200, 4)).astype(np.uint8)
array = abc_function_core(array)
return array
def abc_function_core(array):
# array is manipulated by calling the below functions
cv2.resize(....)
cv2.cvtColor(...)
cv2.equalizeHist(...)
cv2.CascadeClassifier.detectMultiScale(...)
cv2.rectangle(...)
return array

Related

Python Method Call in a C++ Code through Python C-API

I am working on my Project which implies the use of Empirical Mode Decomposition in C++ for EEG Signals. The input Data is Eigen::MatrixXd, where the rows are the Channels and the columns are the samples.
I did not found a good C++ library for EMD so I want to use a Python one (dsatools). I have downloaded the package through Pip installer from the setup.py file on Xubuntu... so it's a system package now.
the problem is that the program can't read the module.
this is the code:
std::vector <Eigen::MatrixXd> DataAquisition::EMD (Eigen::MatrixXd array, int order, int iterations, int locality) {
std::vector <Eigen::MatrixXd> IMFs;
for (int i = 0; i < array.rows(); i++) {
Eigen::MatrixXd Kanals = array.row(i);
Eigen::MatrixXd IMFs_Cpp;
Py_Initialize();
//PyRun_SimpleString("from dsatools._base._imf_decomposition import * ");
PyObject* sys_path = PySys_GetObject("path");
PyObject* ProgrammName = PyUnicode_FromString("/home/user/Schreibtisch/mne-cpp-main/applications/mne_bci/MNE-BCI-QT/dsatools-master/dsatools/_base/_imf_decomposition/_emd.py");
PyList_Append(sys_path, ProgrammName);
PyObject* pModuleString = PyUnicode_FromString ((char*)"_emd.py");
PyObject* pModule = PyImport_Import(pModuleString);
PyObject* pFunction = PyObject_GetAttrString(pModule,(char*)"emd");
//PyObject* pDict = PyModule_GetDict(pModule);
//PyObject* pFunc = PyDict_GetItemString(pDict, (char*)"emd");
if (PyCallable_Check(pFunction))
{
PyObject* Signal = Py_BuildValue("(d)",(double*)Kanals.data());
PyObject* Order = Py_BuildValue("(i)",order);
PyObject* method = Py_BuildValue("(z)",(char*)"cubic");
PyObject* max_itter = Py_BuildValue("(i)",iterations);
PyObject* args = PyTuple_Pack(4,Signal,Order,method,max_itter);
PyErr_Print();
PyObject* IMFs_Py = PyObject_CallObject(pFunction,args);
PyErr_Print();
if (PyArray_Check(IMFs_Py))
std::cout << "EMD Output is NOT Array \n";
PyArrayObject *np_ret = reinterpret_cast <PyArrayObject*> (IMFs_Py);
int Rows = PyArray_SHAPE(np_ret)[0];
int Cols = PyArray_SHAPE(np_ret)[1];
double* c_out = reinterpret_cast<double*>(PyArray_DATA(np_ret));
Eigen::MatrixXd IMFs_Cpp = Eigen::Map <Eigen::MatrixXd> (c_out,Rows,Cols);
IMFs.push_back(IMFs_Cpp);
}
else
std::cout << "Python did not call the function \n";
Py_Finalize();
}
return IMFs;}
this is how the code in Python should look like and I just want to call the emd function:

Passing OpenCv Mat from C++ to Python

I need to send an OpenCv image from C++ to Python to do some processing on it.
The Mat will be received through the code but for simplicity I am using imread here for the question.
What I did in the C++ part of the code was:
#include <Python.h>
#include <arrayobject.h>
#include <iostream>
#include <opencv2/opencv.hpp>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
using namespace cv;
using namespace std;
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
Mat image = imread("test.jpg");
Py_Initialize();
PyObject *pName, *pModule, *pDict, *pFunc, *pArgs, *pValue;
pName = PyUnicode_FromString("prog");
if (pName == NULL)
{
PyErr_Print();
return 0;
}
pModule = PyImport_Import(pName);
if (pModule == NULL)
{
PyErr_Print();
return 0;
}
pDict = PyModule_GetDict(pModule);
pFunc = PyDict_GetItemString(pDict, "add");
if (pFunc == NULL)
{
PyErr_Print();
return 0;
}
pArgs = PyTuple_New(1);
import_array ();
npy_intp dimensions[3] = {image.rows, image.cols, image.channels()};
pValue = PyArray_SimpleNewFromData(image.dims + 1, (npy_intp*)&dimensions, NPY_UINT8, image.data);
PyTuple_SetItem(pArgs, 0, pValue);
PyObject* pResult = PyObject_CallObject(pFunc, pArgs);
if(pResult == NULL)
cout<<"Calling the add method failed"<<endl;
long result = PyLong_AsLong(pResult);
cout<<"Result = "<<result<<endl;
Py_Finalize();
return 0;
}
This code compiles and runs.
For the Python part:
import cv2
import numpy as np
def add (a):
print ("Contents of a :")
print (a)
# mat_array = cv2.fromarray(a, numpy.float32)
vis0 = cv.fromarray(a)
return 0
The Python code receives the numpy array from C++ (I think) and when I print the contents of a, I have an output (so I think I am receiving the image from C++).
Now I need to convert the data in a to a cv2 Mat in Python so that I can work on it.
Once I reach the mat_array = cv2.fromarray(a, numpy.float32) line or vis0 = cv.fromarray(a) the code crashes with the following output:
Exception ignored in: <module 'threading' from '/usr/lib/python3.5/threading.py'>
Traceback (most recent call last):
File "/usr/lib/python3.5/threading.py", line 1283, in _shutdown
assert tlock.locked()
SystemError: <built-in method locked of _thread.lock object at 0x7ff0f34d20d0> returned a result with an error set
How do I correctly send / receive the Mat object?
Please find my answer here. You can also find other answer here. for converting numpy -> cv::Mat and cv::Mat -> numpy.

How to properly release Python C API GIL from main thread

I'm trying to embed Python in a C++ multithreaded program.
What I do is calling two statistical functions from the Python C API to perform the Two Sample Kolmogorov-Smirnov Test and the Two Sample Anderson-Darling Test on some data that I collect. So I'm just embedding Python in my code, I'm not extending it or using my own Python functions.
I recently found out that in order to run a multithreaded program that uses the Python C API you need to handle properly the Global Interpreter Lock (GIL) and when ever you use a Python C API function you need to acquire the GIL and then release it when you're done using the API functions.
The thing that I still don't understand is how to properly release the GIL from the main thread in order to let the others execute the Python code.
I tried this (option 1):
int main(int argc, const char * argv[]) {
int n = 4;
std::thread threads[n];
Py_Initialize();
PyEval_InitThreads();
PyEval_SaveThread();
for (int i = 0; i < n; i++) {
threads[i] = std::thread(exec, i);
}
for (int i = 0; i < n; i++) {
threads[i].join();
}
Py_Finalize();
return 0;
}
But it gives me a segmentation fault when calling Py_Finalize().
So I tried this (option 2):
int main(int argc, const char * argv[]) {
int n = 4;
std::thread threads[n];
Py_Initialize();
PyEval_InitThreads();
PyThreadState * Py_UNBLOCK_THREADS
for (int i = 0; i < n; i++) {
threads[i] = std::thread(exec, i);
}
for (int i = 0; i < n; i++) {
threads[i].join();
}
Py_BLOCK_THREADS
Py_Finalize();
return 0;
}
and this (option 3):
int main(int argc, const char * argv[]) {
int n = 4;
std::thread threads[n];
Py_Initialize();
PyEval_InitThreads();
Py_BEGIN_ALLOW_THREADS
for (int i = 0; i < n; i++) {
threads[i] = std::thread(exec, i);
}
for (int i = 0; i < n; i++) {
threads[i].join();
}
Py_END_ALLOW_THREADS
Py_Finalize();
return 0;
}
With both these last two options the code runs but ends with this error:
Exception ignored in: <module 'threading' from '/usr/local/opt/python3/Frameworks/Python.framework/Versions/3.6/lib/python3.6/threading.py'>
Traceback (most recent call last):
File "/usr/local/opt/python3/Frameworks/Python.framework/Versions/3.6/lib/python3.6/threading.py", line 1289, in _shutdown
assert tlock.locked()
AssertionError:
EDIT:
The code that is executed by the spawned threads is this:
double limited_rand(double lower_bound, double upper_bound) {
return lower_bound + (rand() / (RAND_MAX / (upper_bound-lower_bound) ) );
}
double exec_1(std::vector<int> &left_sample, std::vector<int> &right_sample) {
PyGILState_STATE gstate = PyGILState_Ensure(); // Acquiring GIL for thread-safe usage Python C API
PyObject* scipy_stats_module = PyImport_ImportModule("scipy.stats"); // importing "scipy.stats" module
import_array();
npy_intp left_nparray_shape[] = {(npy_intp)left_sample.size()}; // Size of left nparray's first dimension
PyObject* left_sample_nparray = PyArray_SimpleNewFromData(1, left_nparray_shape, NPY_INT, &left_sample[0]); // Creating numpy array with 1 dimension, taking "dim" as a dummy, elements are integers, and the data is taken from "sample1" as a int* pointer
npy_intp right_nparray_shape[] = {(npy_intp)right_sample.size()}; // Size of right nparray's first dimension
PyObject* right_sample_nparray = PyArray_SimpleNewFromData(1, right_nparray_shape, NPY_INT, &right_sample[0]);
PyObject* ks_2samp = PyObject_GetAttrString(scipy_stats_module, "ks_2samp");
Py_DecRef(scipy_stats_module);
PyObject* ks_2samp_return_val = PyObject_CallFunctionObjArgs(ks_2samp, left_sample_nparray, right_sample_nparray, NULL);
Py_DecRef(ks_2samp);
Py_DecRef(right_sample_nparray);
Py_DecRef(left_sample_nparray);
double p_value = PyFloat_AsDouble(PyTuple_GetItem(ks_2samp_return_val, 1));
Py_DecRef(ks_2samp_return_val);
PyGILState_Release(gstate); // Releasing GIL
return p_value;
}
void initialize_c_2d_int_array(int*& c_array, unsigned long row_length_c_array, std::vector<int> &row1, std::vector<int> &row2) {
for (unsigned int i = 0; i < row_length_c_array; i++) {
c_array[i] = row1[i];
c_array[row_length_c_array + i] = row2[i];
}
}
double exec_2(std::vector<int> &left_sample, std::vector<int> &right_sample){
PyGILState_STATE gstate = PyGILState_Ensure(); // Acquiring GIL for thread-safe usage Python C API
PyObject* scipy_stats_module = PyImport_ImportModule("scipy.stats"); // importing "scipy.stats" module
// import_array();
unsigned long n_cols = std::min(left_sample.size(), right_sample.size());
int* both_samples = (int*) (malloc(2 * n_cols * sizeof(int)));
initialize_c_2d_int_array(both_samples, n_cols, left_sample, right_sample);
npy_intp dim3[] = {2, (npy_intp) n_cols};
PyObject* both_samples_nparray = PyArray_SimpleNewFromData(2, dim3, NPY_INT, both_samples);
PyObject* anderson_ksamp = PyObject_GetAttrString(scipy_stats_module, "anderson_ksamp");
Py_DecRef(scipy_stats_module);
PyObject* anderson_2samp_return_val = PyObject_CallFunctionObjArgs(anderson_ksamp, both_samples_nparray, NULL);
Py_DecRef(anderson_ksamp);
Py_DecRef(both_samples_nparray);
free(both_samples);
double p_value = PyFloat_AsDouble(PyTuple_GetItem(anderson_2samp_return_val, 2));
Py_DecRef(anderson_2samp_return_val);
PyGILState_Release(gstate); // Releasing GIL
return p_value;
}
void exec(int thread_id) {
std::vector<int> left_sample;
std::vector<int> right_sample;
int n = 50;
for (int j = 0; j < n; j++) {
int size = 100;
for (int i = 0; i < size; i++) {
left_sample.push_back(limited_rand(0, 100));
right_sample.push_back(limited_rand(0, 100));
}
exec_1(left_sample, right_sample);
exec_2(left_sample, right_sample);
}
}
The functions where I use the Python C API are only exec_1 and exec_2, while exec has just the job to call the repeatedly on new random data. This is the simplest code I could think of that mimics the behavior of my real code. I've also left out every type of error checking when using the Python APIs for a better readability.
Without any other choice I'll run my code like option 2 or option 3 and forget about the error, but I would really like to understand what's going on. Can you help me?
P.S. I'm running Python 3.6.1 under a macOS 10.12.5 system using Xcode 8.3.3. If you need more details let me know.
option1:
I think is giving you a segmentation fault because you called PyEval_SaveThread() (which releases the gil, returns a saved thread state, and sets the current thread state to NULL).
Py_Finalize will try to free all memory associated with the interpreter, and I guess this included the main thread state. So you can either capture this state with:
PyEval_InitThreads(); //initialize and aquire the GIL
//release the GIL, store thread state, set the current thread state to NULL
PyThreadState *mainThreadState = PyEval_SaveThread();
*main code segment*
//re-aquire the GIL (re-initialize the current thread state)
PyEval_RestoreThread(mainThreadState);
Py_Finalize();
return 0;
Or you can immediately call PyEval_ReleaseLock() after calling PyEval_InitThreads() since it looks like the main code segment does not use any embedded python. I had a similar problem and that seemed to fix it.
NOTE: Other threads will still need to aquire/release the GIL wherever necessary

PyObject_CallMethod returns Null

I have an image processing application that I am using OpenCV within Python and then have it embedded in Embarcadero C++ XE6 IDE for Windows.
I followed all the great exampled and was able to get the embedded Python code working in the bare application. However when I try to use numpy (loadImage) I get the following error:
<type 'exception.AttributeError'>:'NoneType' object has no attribute 'dtype'
If I simply return out of the Python function with a True (commented out now) it returns a valid PyObject. If I try to average the intensity of the pixels with numpy it returns a NULL object.
I am thinking I don't have the imports setup correctly. The stand-alone Python application works as expected but not when it's embedded into my C++ application.
Python Code:
import numpy
import cv2
class Camera:
def __init__(self):
print 'OpenCV Version:', cv2.__version__
def loadImage(self):
'''
Load image from file
'''
global img
img = cv2.imread('cameraImageBlob.png',cv2.IMREAD_GRAYSCALE)
#return True
return numpy.average(img)
if __name__ == '__main__':
dc = Camera()
print dc.loadImage()
C++ Code:
#include "Python.h"
int main() {
PyObject *pName, *pModule, *pDict, *pFunc, *pValue, *pClass, *pInstance;
double dValue;
// Initilize the Python interpreter
Py_Initialize();
// Set runtime paths
PyRun_SimpleString("import sys");
PyRun_SimpleString("import numpy");
PyRun_SimpleString("import cv2");
// Build the name object - create a new reference
pName = PyString_FromString((char*)"OpenCVTest");
// Load the module object
pModule = PyImport_Import(pName);
if(pModule != NULL) {
//pDict is a borrowed reference so no DECREF
pDict = PyModule_GetDict(pModule);
// Get the Camera Class
pClass = PyDict_GetItemString(pDict, "Camera");
if(PyCallable_Check(pClass)) {
pInstance = PyObject_CallObject(pClass, NULL);
} else {
return;
}
// Load Image and get intensity
pValue = PyObject_CallMethod(pInstance, "loadImage", NULL);
if(pValue == NULL) {
GetError();
} else {
dValue = PyFloat_AsDouble(pValue);
}
}
Py_DecRef(pName);
Py_DecRef(pModule);
Py_DecRef(pValue);
Py_Finalize();
return 0;
}

Pass Variable from Python to C

I have Python Script embedded in C which I run in a thread. I need to pass the variable 'a' from the Python-Class 'Detect Motion' to my C program continuously. (Not as a return value)
I know I could do this with a fifo or something like that, but is there a way to pass it directly to C, maybe by calling a C function?
C:
#include <Python.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <pthread.h>
pthread_t mythread;
void *ThreadProc();
PyObject *pName, *pModule, *pDict, *pFunc, *pFunc2;
int main(int argc, char *argv[])
{
py_callback = PyCFunction_New(&callback_descr, NULL);
char *script = "motion";
char *functionUse = "get_values";
Py_Initialize();
pName = PyString_FromString(script);
pModule = PyImport_Import(pName);
// pDict and pFunc are borrowed references
pDict = PyModule_GetDict(pModule);
pFunc = PyDict_GetItemString(pDict, functionUse);
// POSIX code
pthread_create( &mythread, NULL, ThreadProc, NULL);
// Random testing code
for(int i = 0; i < 10; i++)
{
printf("Printed from the main thread.\n");
sleep(1);
}
printf("Main Thread waiting for My Thread to complete...\n");
// Join and wait for the created thread to complete...
// POSIX code
pthread_join(mythread, NULL);
printf("Main thread finished gracefully.\n");
return 0;
}
void *ThreadProc()
{
if (PyCallable_Check(pFunc))
{
PyObject_CallObject(pFunc, NULL);
}
else {
PyErr_Print();
}
// Clean up
Py_DECREF(pModule);
Py_DECREF(pName);
Py_Finalize();
printf("My thread is finishing...\n");
}
Python:
import numpy as np
import picamera
import picamera.array
class DetectMotion(picamera.array.PiMotionAnalysis):
def analyse(self, a):
a = np.sqrt(
np.square(a['x'].astype(np.float)) +
np.square(a['y'].astype(np.float))
).clip(0, 255).astype(np.uint8)
# If there're more than 10 vectors with a magnitude greater
# than 60, then say we've detected motion
print a
if (a > 60).sum() > 10:
print 'Motion detected!'
def get_values():
with picamera.PiCamera() as camera:
with DetectMotion(camera) as output:
camera.resolution = (640, 480)
camera.start_preview()
camera.start_recording(
'/dev/null', format='h264', motion_output=output)
camera.wait_recording(10)
camera.stop_recording()
camera.stop_preview()

Categories