Related
I want to convert arrays of integers to 0 or 1s, padding with 0s if the other array possesses the larger value.
Examples:
ex1 = np.array([[0],[3]])
=> array([[0,0,0],[1,1,1]])
ex2 = np.array([[2,1],[0,0]])
=> array([[1,1,1],[0,0,0]])
ex3 = np.array([ [2,1,2],[3,1,1] ])
=> array([[1,1,0,1,1,1]
[1,1,1,1,1,0]])
How shall I achieve this? Can it also expand the N-dimension array?
Came up with this approach:
def expand_multi_bin(a):
# Create result array
n = np.max(a, axis=0).sum()
d = a.shape[0]
newa = np.zeros(d*n).reshape(d,n)
row=0
for x in np.nditer(a, flags=['external_loop'], order='F'):
# Iterate each column
for idx,c in enumerate(np.nditer(x)):
# Store it to the result array
newa[idx,row:row+c] = np.ones(c)
row += np.max(x)
return newa
Though, given the multiple loops, highly skeptical that this is the best approach.
I have the following numpy matrix:
R = np.matrix(np.ones([3,3]))
# Update R matrix based on sales statistics
for i in range(0, len(R)):
for j in range(0, len(R)):
R[j,i] = scipy.stats.norm(2, 1).pdf(i) * 100
print(R)
[[ 5.39909665 24.19707245 39.89422804]
[ 5.39909665 24.19707245 39.89422804]
[ 5.39909665 24.19707245 39.89422804]]
I would like to convert each column, multiplying the index (0,1,2) to the corresponding density value of the normal distribution, with mean equals to, specifically, 5.39909665 for the first column, 24.19707245 the second and 39.8942280 the third; and standard deviation equals to 1.
Ultimately, creating a matrix as:
[norm(5.39, 1).pdf(0), norm(24.197, 1).pdf(0), ...]
[ norm(5.39, 1).pdf(1), norm(24.197, 1).pdf(1), ...]
[ norm(5.39, 1).pdf(2), norm(24.197, 1).pdf(2), ...]]
How can I create the final matrix?
The pdf method works much like any numpy function, in the sense you can input arrays with same shapes in combinations with scalars. You can create R with something like:
ix = np.repeat(np.arange(3),3).reshape((3,3)) #row index, or ix.T for column index
R = scipy.stats.norm(2,1).pdf(ix.T)*100
>>array([[ 5.39909665, 24.19707245, 39.89422804],
[ 5.39909665, 24.19707245, 39.89422804],
[ 5.39909665, 24.19707245, 39.89422804]])
Following the same logic, if you want your [i,j] index to be scipy.stats.norm(scipy.stats.norm(2,1).pdf(j) * 100, 1).pdf(i) (as from the matrix you put as result), use:
scipy.stats.norm(scipy.stats.norm(2,1).pdf(ix.T) * 100, 1).pdf(ix)
I have a 2D numpy array with 3 columns. Columns 1 and 2 are a list of connections between ID's. Column 3 is a the strength of that connection. I would like to transform this 3 column matrix into a weighted adjacency matrix (an N x N matrix where cells represent the strength of connection between each ID).
I have already done this in my code below. matrix is the 3 column 2D array and t1 is the weighted adjacency matrix. My problem is this code is very slow because I am using nested for loops. I am familiar with the pandas function melt which does this, but I am not able to use pandas. Is there a faster implementation not using pandas?
import numpy as np
a = np.arange(2000)
np.random.shuffle(a)
b = np.arange(2000)
np.random.shuffle(b)
c = np.random.rand(2000,1)
matrix = np.column_stack((a,b,c))
#get unique value list of nm
flds = list(np.unique(matrix[:,0]))
flds.extend(list(np.unique(matrix[:,1])))
flds = np.asarray(flds)
flds = np.unique(flds)
#make lookup dict
lookup = dict(zip(np.arange(0,len(flds)), flds))
lookup_rev = dict(zip(flds, np.arange(0,len(flds))))
#make empty n by n matrix with unique lists
t1 = np.zeros([len(flds) , len(flds)])
#map values into the n by n matrix and make the rest 0
'''this takes a long time to run'''
#iterate through rows
for i in np.arange(0,len(lookup)):
#iterate through columns
for k in np.arange(0,len(lookup)):
val = matrix[(matrix[:,0] == lookup[i]) & (matrix[:,1] == lookup[k])][:,2]
if val:
t1[i,k] = sum(val)
Assuming that I understood the question correctly and that val is a scalar, you could use a vectorized approach that involves initializing with zeros and then indexing, like so -
out = np.zeros((len(flds),len(flds)))
out[matrix[:,0].astype(int),matrix[:,1].astype(int)] = matrix[:,2]
Please note that by my observation it looks like you can avoid using lookup.
You need to iterate your matrix only once:
import numpy as np
size = 2000
a = np.arange(size)
np.random.shuffle(a)
b = np.arange(size)
np.random.shuffle(b)
c = np.random.rand(size,1)
matrix = np.column_stack((a,b,c))
#get unique value list of nm
fields = np.unique(matrix[:,:2])
n = len(fields)
#make reverse lookup dict
lookup = dict(zip(fields, range(n)))
#make empty n by n matrix
t1 = np.zeros([n, n])
for src, dest, val in matrix:
i = lookup[src]
j = lookup[dest]
t1[i, j] += val
The main acceleration you can get is by not iterating through each element of the NxN matrix but instead iterate trough your connection list, which is much smaller.
I tried to simplify your code a bit. It use the list.index method, which can be slow, but it should still be faster that what you had.
import numpy as np
a = np.arange(2000)
np.random.shuffle(a)
b = np.arange(2000)
np.random.shuffle(b)
c = np.random.rand(2000,1)
matrix = np.column_stack((a,b,c))
lookup = np.unique(matrix[:,:2]).tolist() # You can call unique only once
t1 = np.zeros((len(lookup),len(lookup)))
for i,j,val in matrix:
t1[lookup.index(i),lookup.index(j)] = val # Fill the matrix
I've got a 2-row array called C like this:
from numpy import *
A = [1,2,3,4,5]
B = [50,40,30,20,10]
C = vstack((A,B))
I want to take all the columns in C where the value in the first row falls between i and i+2, and average them. I can do this with just A no problem:
i = 0
A_avg = []
while(i<6):
selection = A[logical_and(A >= i, A < i+2)]
A_avg.append(mean(selection))
i += 2
then A_avg is:
[1.0,2.5,4.5]
I want to carry out the same process with my two-row array C, but I want to take the average of each row separately, while doing it in a way that's dictated by the first row. For example, for C, I want to end up with a 2 x 3 array that looks like:
[[1.0,2.5,4.5],
[50,35,15]]
Where the first row is A averaged in blocks between i and i+2 as before, and the second row is B averaged in the same blocks as A, regardless of the values it has. So the first entry is unchanged, the next two get averaged together, and the next two get averaged together, for each row separately. Anyone know of a clever way to do this? Many thanks!
I hope this is not too clever. TIL boolean indexing does not broadcast, so I had to manually do the broadcasting. Let me know if anything is unclear.
import numpy as np
A = [1,2,3,4,5]
B = [50,40,30,20,10]
C = np.vstack((A,B)) # float so that I can use np.nan
i = np.arange(0, 6, 2)[:, None]
selections = np.logical_and(A >= i, A < i+2)[None]
D, selections = np.broadcast_arrays(C[:, None], selections)
D = D.astype(float) # allows use of nan, and makes a copy to prevent repeated behavior
D[~selections] = np.nan # exclude these elements from mean
D = np.nanmean(D, axis=-1)
Then,
>>> D
array([[ 1. , 2.5, 4.5],
[ 50. , 35. , 15. ]])
Another way, using np.histogram to bin your data. This may be faster for large arrays, but is only useful for few rows, since a hist must be done with different weights for each row:
bins = np.arange(0, 7, 2) # include the end
n = np.histogram(A, bins)[0] # number of columns in each bin
a_mean = np.histogram(A, bins, weights=A)[0]/n
b_mean = np.histogram(A, bins, weights=B)[0]/n
D = np.vstack([a_mean, b_mean])
This is a follow-up to Find two pairs of pairs that sum to the same value .
I have random 2d arrays which I make using
import numpy as np
from itertools import combinations
n = 50
A = np.random.randint(2, size=(m,n))
I would like to determine if the matrix has two disjoint pairs of pairs of columns which sum to the same column vector. I am looking for a fast method to do this. In the previous problem ((0,1), (0,2)) was acceptable as a pair of pairs of column indices but in this case it is not as 0 is in both pairs.
The accepted answer from the previous question is so cleverly optimised I can't see how to make this simple looking change unfortunately. (I am interested in columns rather than rows in this question but I can always just do A.transpose().)
Here is some code to show it testing all 4 by 4 arrays.
n = 4
nxn = np.arange(n*n).reshape(n, -1)
count = 0
for i in xrange(2**(n*n)):
A = (i >> nxn) %2
p = 1
for firstpair in combinations(range(n), 2):
for secondpair in combinations(range(n), 2):
if firstpair < secondpair and not set(firstpair) & set(secondpair):
if (np.array_equal(A[firstpair[0]] + A[firstpair[1]], A[secondpair[0]] + A[secondpair[1]] )):
if (p):
count +=1
p = 0
print count
This should output 3136.
Here is my solution, extended to do what I believe you want. It isn't entirely clear though; one may get an arbitrary number of row-pairs that sum to the same total; there may exist unique subsets of rows within them that sum to the same value. For instance:
Given this set of row-pairs that sum to the same total
[[19 19 30 30]
[11 16 11 16]]
There exists a unique subset of these rows that may still be counted as valid; but should it?
[[19 30]
[16 11]]
Anyway, I hope those details are easy to deal with, given the code below.
import numpy as np
n = 20
#also works for non-square A
A = np.random.randint(2, size=(n*6,n)).astype(np.int8)
##A = np.array( [[0, 0, 0], [1, 1, 1], [1, 1 ,1]], np.uint8)
##A = np.zeros((6,6))
#force the inclusion of some hits, to keep our algorithm on its toes
##A[0] = A[1]
def base_pack_lazy(a, base, dtype=np.uint64):
"""
pack the last axis of an array as minimal base representation
lazily yields packed columns of the original matrix
"""
a = np.ascontiguousarray( np.rollaxis(a, -1))
packing = int(np.dtype(dtype).itemsize * 8 / (float(base) / 2))
for columns in np.array_split(a, (len(a)-1)//packing+1):
R = np.zeros(a.shape[1:], dtype)
for col in columns:
R *= base
R += col
yield R
def unique_count(a):
"""returns counts of unique elements"""
unique, inverse = np.unique(a, return_inverse=True)
count = np.zeros(len(unique), np.int)
np.add.at(count, inverse, 1) #note; this scatter operation requires numpy 1.8; use a sparse matrix otherwise!
return unique, count, inverse
def voidview(arr):
"""view the last axis of an array as a void object. can be used as a faster form of lexsort"""
return np.ascontiguousarray(arr).view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1]))).reshape(arr.shape[:-1])
def has_identical_row_sums_lazy(A, combinations_index):
"""
compute the existence of combinations of rows summing to the same vector,
given an nxm matrix A and an index matrix specifying all combinations
naively, we need to compute the sum of each row combination at least once, giving n^3 computations
however, this isnt strictly required; we can lazily consider the columns, giving an early exit opportunity
all nicely vectorized of course
"""
multiplicity, combinations = combinations_index.shape
#list of indices into combinations_index, denoting possibly interacting combinations
active_combinations = np.arange(combinations, dtype=np.uint32)
#keep all packed columns; we might need them later
columns = []
for packed_column in base_pack_lazy(A, base=multiplicity+1): #loop over packed cols
columns.append(packed_column)
#compute rowsums only for a fixed number of columns at a time.
#this is O(n^2) rather than O(n^3), and after considering the first column,
#we can typically already exclude almost all combinations
partial_rowsums = sum(packed_column[I[active_combinations]] for I in combinations_index)
#find duplicates in this column
unique, count, inverse = unique_count(partial_rowsums)
#prune those combinations which we can exclude as having different sums, based on columns inspected thus far
active_combinations = active_combinations[count[inverse] > 1]
#early exit; no pairs
if len(active_combinations)==0:
return False
"""
we now have a small set of relevant combinations, but we have lost the details of their particulars
to see which combinations of rows does sum to the same value, we do need to consider rows as a whole
we can simply apply the same mechanism, but for all columns at the same time,
but only for the selected subset of row combinations known to be relevant
"""
#construct full packed matrix
B = np.ascontiguousarray(np.vstack(columns).T)
#perform all relevant sums, over all columns
rowsums = sum(B[I[active_combinations]] for I in combinations_index)
#find the unique rowsums, by viewing rows as a void object
unique, count, inverse = unique_count(voidview(rowsums))
#if not, we did something wrong in deciding on active combinations
assert(np.all(count>1))
#loop over all sets of rows that sum to an identical unique value
for i in xrange(len(unique)):
#set of indexes into combinations_index;
#note that there may be more than two combinations that sum to the same value; we grab them all here
combinations_group = active_combinations[inverse==i]
#associated row-combinations
#array of shape=(mulitplicity,group_size)
row_combinations = combinations_index[:,combinations_group]
#if no duplicate rows involved, we have a match
if len(np.unique(row_combinations[:,[0,-1]])) == multiplicity*2:
print row_combinations
return True
#none of identical rowsums met uniqueness criteria
return False
def has_identical_triple_row_sums(A):
n = len(A)
idx = np.array( [(i,j,k)
for i in xrange(n)
for j in xrange(n)
for k in xrange(n)
if i<j and j<k], dtype=np.uint16)
idx = np.ascontiguousarray( idx.T)
return has_identical_row_sums_lazy(A, idx)
def has_identical_double_row_sums(A):
n = len(A)
idx = np.array(np.tril_indices(n,-1), dtype=np.int32)
return has_identical_row_sums_lazy(A, idx)
from time import clock
t = clock()
for i in xrange(1):
## print has_identical_double_row_sums(A)
print has_identical_triple_row_sums(A)
print clock()-t
Edit: code cleanup