Suppose I produce the following using pandas:
df = pd.DataFrame(np.ones(25).reshape((5,5)),index = ['A','B','C','D','E'])
df1 = pd.DataFrame(np.ones(25).reshape((5,5))*2,index = ['A','B','C','D','E'])
df[2] = np.nan
df1[3] = np.nan
df[4] = np.nan
df1[4] = np.nan
df2 = df+df1
print(df2)
0 1 2 3 4
A 3.0 3.0 NaN NaN NaN
B 3.0 3.0 NaN NaN NaN
C 3.0 3.0 NaN NaN NaN
D 3.0 3.0 NaN NaN NaN
E 3.0 3.0 NaN NaN NaN
What do I have to do to get this instead?
0 1 2 3 4
A 3 3 2 1 NaN
B 3 3 2 1 NaN
C 3 3 2 1 NaN
D 3 3 2 1 NaN
E 3 3 2 1 NaN
Use the fill_value argument of the DataFrame.add method:
fill_value : None or float value, default None Fill missing (NaN)
values with this value. If both DataFrame locations are missing, the
result will be missing.
df.add(df1, fill_value=0)
Out:
0 1 2 3 4
A 3.0 3.0 2.0 1.0 NaN
B 3.0 3.0 2.0 1.0 NaN
C 3.0 3.0 2.0 1.0 NaN
D 3.0 3.0 2.0 1.0 NaN
E 3.0 3.0 2.0 1.0 NaN
Related
Suppose I have two dataframes:
df_a
A B C
0 1.0 NaN NaN
1 NaN 1.0 NaN
2 NaN NaN 1.0
df_b
A B C
0 NaN NaN 2.0
1 NaN 2.0 NaN
2 2.0 NaN NaN
How would I go about merging/concatenating them so the result dataframe looks like this:
df_c
A B C
0 1.0 NaN 2.0
1 NaN 2.0 NaN
2 2.0 NaN 1.0
The way I got closer conceptually was by using pd.merge(df_a, df_b, "right"), but all values on df_a ended up replaced.
Is there any way to ignore NaN values when merging?
In your case do combine_first
df_c = df_b.combine_first(df_a)
df_c
Out[151]:
A B C
0 1.0 NaN 2.0
1 NaN 2.0 NaN
2 2.0 NaN 1.0
df_c = df_a.combine_first(df_b)
df_c
A B C
0 1.0 NaN 2.0
1 NaN 1.0 NaN
2 2.0 NaN 1.0
df_d = df_b.combine_first(df_a)
df_d
A B C
0 1.0 NaN 2.0
1 NaN 2.0 NaN
2 2.0 NaN 1.0
I am working with a pandas data frame that contains also nan values. I want to substitute the nans with interpolated values with df.interpolate, but only if the length of the sequence of nan values is =<N. As an example, let's assume that I choose N = 2 (so I want to fill in sequences of nans if they are up to 2 nans long) and I have a dataframe with
print(df)
A B C
1 1 1
nan nan 2
nan nan 3
nan 4 nan
5 5 5
In such a case I want to apply a function on df that only the nan sequences with length N<=2 get filled, but the larger sequences get untouched, resulting in my desired output of
print(df)
A B C
1 1 1
nan 2 2
nan 3 3
nan 4 4
5 5 5
Note that I am aware of the option of limit=N inside df.interpolate, but it doesn't fulfil what I want, because it would fill any length of nan sequence, just limit the filling to a the first 3 nans resulting in the undesired output
print(df)
A B C
1 1 1
2 2 2
3 3 3
nan 4 4
5 5 5
So do you know of a function/ do you know how to construct a code that results in my desired output? Tnx
You can perform run length encoding and identify the runs of NaN that are shorter than or equal to two elements for each columns. One way to do that is to use get_id from package pdrle (disclaimer: I wrote it).
import pdrle
chk = df.isna() & (df.apply(lambda x: x.groupby(pdrle.get_id(x)).transform(len)) <= 2)
df[chk] = df.interpolate()[chk]
# A B C
# 0 1.0 1.0 1.0
# 1 NaN 2.0 2.0
# 2 NaN 3.0 3.0
# 3 NaN 4.0 4.0
# 4 5.0 5.0 5.0
Try:
N = 2
df_interpolated = df.interpolate()
for c in df:
mask = df[c].isna()
x = (
mask.groupby((mask != mask.shift()).cumsum()).transform(
lambda x: len(x) > N
)
* mask
)
df_interpolated[c] = df_interpolated.loc[~x, c]
print(df_interpolated)
Prints:
A B C
0 1.0 1.0 1.0
1 NaN 2.0 2.0
2 NaN 3.0 3.0
3 NaN 4.0 4.0
4 5.0 5.0 5.0
Trying with different df:
A B C
0 1.0 1.0 1.0
1 NaN NaN 2.0
2 NaN NaN 3.0
3 NaN 4.0 NaN
4 5.0 5.0 5.0
5 NaN 5.0 NaN
6 NaN 5.0 NaN
7 8.0 5.0 NaN
produces:
A B C
0 1.0 1.0 1.0
1 NaN 2.0 2.0
2 NaN 3.0 3.0
3 NaN 4.0 4.0
4 5.0 5.0 5.0
5 6.0 5.0 NaN
6 7.0 5.0 NaN
7 8.0 5.0 NaN
You can try the following -
n=2
cols = df.columns[df.isna().sum()<=n]
df[cols] = df[cols].interpolate()
df
A B C
0 1.0 1.0 1.0
1 NaN 2.0 2.0
2 NaN 3.0 3.0
3 NaN 4.0 4.0
4 5.0 5.0 5.0
df.columns[df.isna().sum()<=n] filters the columns based on your condition. Then, you simply overwrite the columns after interpolation.
If I have a pandas data frame of ones like this:
NaN 1 1 1 1 NaN 1 1 1 NaN 1
Nan NaN 1 1 1 1 NaN NaN 1 NaN 1
NaN NaN 1 1 1 1 1 1 1 1 1
How do I do a cumulative sum in each row such but then set each grouping with the maximum value of the cumulative sum such that I get a pandas data frame like this:
NaN 4 4 4 4 NaN 3 3 3 NaN 1
Nan NaN 4 4 4 4 NaN NaN 1 NaN 1
NaN NaN 9 9 9 9 9 9 9 9 9
First we do stack with isnull, the create the sub-group with cumsum and count the continue 1 with transform , last step we just need unstack convert the data back
s=df.isnull().stack()
s=s.groupby(level=0).cumsum()[~s]
s=s.groupby([s.index.get_level_values(0),s]).transform('count').unstack().reindex_like(df)
1 2 3 4 5 6 7 8 9 10 11
0 NaN 4.0 4.0 4.0 4.0 NaN 3.0 3.0 3.0 NaN 1.0
1 NaN NaN 4.0 4.0 4.0 4.0 NaN NaN 1.0 NaN 1.0
2 NaN NaN 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
Many more steps than #YOBEN_S but we can make use of melt and groupby
we use cumcount to create a condtional helper column to group with.
from io import StringIO
import pandas as pd
d = """ NaN 1 1 1 1 NaN 1 1 1 NaN 1
NaN NaN 1 1 1 1 NaN NaN 1 NaN 1
NaN NaN 1 1 1 1 1 1 1 1 1"""
df = pd.read_csv(StringIO(d), header=None, sep=r"\s+")
s = df.reset_index().melt(id_vars="index")
s.loc[s["value"].isnull(), "counter"] = s.groupby(
[s["index"], s["value"].isnull()]
).cumcount()
s["counter"] = s.groupby(["index"])["counter"].ffill()
s["val"] = s.groupby(["index", "counter"])["value"].cumsum()
s["val"] = s.groupby(["counter", "index"])["val"].transform("max")
s.loc[s["value"].isnull(), "val"] = np.nan
df2 = (
s.groupby(["index", "variable"])["val"]
.first()
.unstack()
.rename_axis(None, axis=1)
.rename_axis(None)
)
print(df2)
0 1 2 3 4 5 6 7 8 9 10
0 NaN 4.0 4.0 4.0 4.0 NaN 3.0 3.0 3.0 NaN 1.0
1 NaN NaN 4.0 4.0 4.0 4.0 NaN NaN 1.0 NaN 1.0
2 NaN NaN 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
I have a following dataframe:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4
Now I want to fill null values of A with the values in B or D. i.e. if the value is Null in B than check D. So resultant dataframe looks like this.
A B C D
0 2.0 2.0 NaN 0
1 3.0 4.0 NaN 1
2 5 NaN NaN 5
3 3.0 3.0 NaN 4
I can do this using following code:
df['A'] = df['A'].fillna(df['B'])
df['A'] = df['A'].fillna(df['D'])
But I want to do this in one line, how can I do that?
You could simply chain both .fillna():
df['A'] = df.A.fillna(df.B).fillna(df.D)
A B C D
0 2.0 2.0 NaN 0
1 3.0 4.0 NaN 1
2 5.0 NaN NaN 5
3 3.0 3.0 NaN 4
Or using fillna with combine_first:
df['A'] = df.A.fillna(df.B.combine_first(df.D))
If dont need chain because many columns better is use back filling missing values with seelcting first column by positions:
df['A'] = df['A'].fillna(df[['B','D']].bfill(axis=1).iloc[:, 0])
print (df)
A B C D
0 2.0 2.0 NaN 0
1 3.0 4.0 NaN 1
2 5.0 NaN NaN 5
3 3.0 3.0 NaN 4
I have a long list of columns and I want to subtract the previous column from the current column and replace the current column with the difference.
So if I have:
A B C D
1 NaN 3 7
3 NaN 8 10
2 NaN 6 11
I want the output to be:
A B C D
1 NaN 2 4
3 NaN 5 2
2 NaN 4 5
I have been trying to use this code:
df2 = df1.diff(axis=1)
but this does not produce the desired output
Thanks in advance.
You can do this with df.where and then update to bring back the first non-null entry for each row of your DataFrame.
Sample Data: df
A B C D
0 1.0 NaN 3.0 7.0
1 1.0 4.0 5.0 9.0
2 NaN 4.0 NaN 4.0
3 NaN 4.0 NaN NaN
4 NaN NaN 3.0 7.0
5 3.0 NaN NaN 7.0
6 6.0 NaN NaN NaN
Code:
df_d = df.where(df.isnull(),
df.fillna(method='ffill', axis=1).diff(axis=1))
df_d.update(df.where(df.notnull().cumsum(1).cumsum(1) == 1))
Output: df_d
A B C D
0 1.0 NaN 2.0 4.0
1 1.0 3.0 1.0 4.0
2 NaN 4.0 NaN 0.0
3 NaN 4.0 NaN NaN
4 NaN NaN 3.0 4.0
5 3.0 NaN NaN 4.0
6 6.0 NaN NaN NaN
Actually, it is producing the desired result but you are trying to calculate diff on nan values which will be nan so diff is working as expected.
For your case just fetch the first column from original dataframe and you should be fine
df2=df1.diff(axis=1)
df2.A=df1.A
print(df2)
Output
A B C D
1 NaN 2.0 4.0