Standardizing X different in Python Lasso and R glmnet? - python

I was trying to get the same result fitting lasso using Python's scikit-learn and R's glmnet. A helpful link
If I specify "normalize =True" in Python and "standardize = T" in R, they gave me the same result.
Python:
from sklearn.linear_model import Lasso
X = np.array([[1, 1, 2], [3, 4, 2], [6, 5, 2], [5, 5, 3]])
y = np.array([1, 0, 0, 1])
reg = Lasso(alpha =0.01, fit_intercept = True, normalize =True)
reg.fit(X, y)
np.hstack((reg.intercept_, reg.coef_))
Out[95]: array([-0.89607695, 0. , -0.24743375, 1.03286824])
R:
reg_glmnet = glmnet(X, y, alpha = 1, lambda = 0.02,standardize = T)
coef(reg_glmnet)
4 x 1 sparse Matrix of class "dgCMatrix"
s0
(Intercept) -0.8960770
V1 .
V2 -0.2474338
V3 1.0328682
However, if I don't want to standardize variables and set normalize =False and standardize = F, they gave me quite different results.
Python:
from sklearn.linear_model import Lasso
Z = np.array([[1, 1, 2], [3, 4, 2], [6, 5, 2], [5, 5, 3]])
y = np.array([1, 0, 0, 1])
reg = Lasso(alpha =0.01, fit_intercept = True, normalize =False)
reg.fit(Z, y)
np.hstack((reg.intercept_, reg.coef_))
Out[96]: array([-0.88 , 0.09384212, -0.36159299, 1.05958478])
R:
reg_glmnet = glmnet(X, y, alpha = 1, lambda = 0.02,standardize = F)
coef(reg_glmnet)
4 x 1 sparse Matrix of class "dgCMatrix"
s0
(Intercept) -0.76000000
V1 0.04441697
V2 -0.29415542
V3 0.97623074
What's the difference between "normalize" in Python's Lasso and "standardize" in R's glmnet?

Currently, with regard to the normalize parameter the docs state "If you wish to standardize, please use StandardScaler before calling fit on an estimator with normalize=False.''
So evidently normalize and standardize are not the same with sklearn.linear_model.Lasso. Having read the StandardScaler docs I fail to understand the difference, but the fact that there is one is implied by the provided description of the normalize parameter.

Related

Expectation Maximization Algorithm (EM) for Gaussian Mixture Models (GMMs)

I'm trying to apply the Expectation Maximization Algorithm (EM) to a Gaussian Mixture Model (GMM) using Python and NumPy. The PDF document I am basing my implementation on can be found here.
Below are the equations:
When applying the algorithm I get the mean of the first and second cluster equal to:
array([[2.50832195],
[2.51546208]])
When the actual vector means for the first and second cluster are, respectively:
array([[0],
[0]])
and:
array([[5],
[5]])
The same thing happens when getting the values of the covariance matrices I get:
array([[7.05168736, 6.17098629],
[6.17098629, 7.23009494]])
When it should be:
array([[1, 0],
[0, 1]])
for both clusters.
Here is the code:
np.random.seed(1)
# first cluster
X_11 = np.random.normal(0, 1, 1000)
X_21 = np.random.normal(0, 1, 1000)
# second cluster
X_12 = np.random.normal(5, 1, 1000)
X_22 = np.random.normal(5, 1, 1000)
X_1 = np.concatenate((X_11,X_12), axis=None)
X_2 = np.concatenate((X_21,X_22), axis=None)
# data matrix of k x n dimensions (2 x 2000 dimensions)
X = np.concatenate((np.array([X_1]),np.array([X_2])), axis=0)
# multivariate normal distribution function gives n x 1 vector (2000 x 1 vector)
def normal_distribution(x, mu, sigma):
mvnd = []
for i in range(np.shape(x)[1]):
gd = (2*np.pi)**(-2/2) * np.linalg.det(sigma)**(-1/2) * np.exp((-1/2) * np.dot(np.dot((x[:,i:i+1]-mu).T, np.linalg.inv(sigma)), (x[:,i:i+1]-mu)))
mvnd.append(gd)
return np.reshape(np.array(mvnd), (np.shape(x)[1], 1))
# Initialized parameters
sigma_1 = np.array([[10, 0],
[0, 10]])
sigma_2 = np.array([[10, 0],
[0, 10]])
mu_1 = np.array([[10],
[10]])
mu_2 = np.array([[10],
[10]])
pi_1 = 0.5
pi_2 = 0.5
Sigma_1 = np.empty([2000, 2, 2])
Sigma_2 = np.empty([2000, 2, 2])
for i in range(10):
# E-step:
w_i1 = (pi_1*normal_distribution(X, mu_1, sigma_1))/(pi_1*normal_distribution(X, mu_1, sigma_1) + pi_2*normal_distribution(X, mu_2, sigma_2))
w_i2 = (pi_2*normal_distribution(X, mu_2, sigma_2))/(pi_1*normal_distribution(X, mu_1, sigma_1) + pi_2*normal_distribution(X, mu_2, sigma_2))
# M-step:
pi_1 = np.sum(w_i1)/2000
pi_2 = np.sum(w_i2)/2000
mu_1 = np.array([(1/(np.sum(w_i1)))*np.sum(w_i1.T*X, axis=1)]).T
mu_2 = np.array([(1/(np.sum(w_i2)))*np.sum(w_i2.T*X, axis=1)]).T
for i in range(2000):
Sigma_1[i:i+1, :, :] = w_i1[i:i+1,:]*np.dot((X[:,i:i+1]-mu_1), (X[:,i:i+1]-mu_1).T)
Sigma_2[i:i+1, :, :] = w_i2[i:i+1,:]*np.dot((X[:,i:i+1]-mu_2), (X[:,i:i+1]-mu_2).T)
sigma_1 = (1/(np.sum(w_i1)))*np.sum(Sigma_1, axis=0)
sigma_2 = (1/(np.sum(w_i2)))*np.sum(Sigma_2, axis=0)
Would really appreciate if someone could point out the mistake in my code or in my misunderstanding of the algorithm..

Scipy KDTree get rectangular subset of grid defined by two points

I am using the following example from :
from scipy import spatial
x, y = np.mgrid[0:5, 2:8]
tree = spatial.KDTree(list(zip(x.ravel(), y.ravel())))
pts = np.array([[0, 0], [2.1, 2.9]])
idx = tree.query(pts)[1]
data = tree.data[??????????]
If I input two arbitrary points (see variable pts), I am looking to return all pairs of coordinates that lie within the rectangle defined by the two points (KDTree finds the closest neighbour). So in this case:
array([[0, 0],
[0, 1],
[0, 2],
[1, 0],
[1, 1],
[1, 2],
[2, 0],
[2, 1],
[2, 2]])
How can I achieve that from the tree data?
Seems that I found a solution:
from scipy import spatial
import numpy as np
x, y = np.mgrid[0:5, 0:5]
tree = spatial.KDTree(list(zip(x.ravel(), y.ravel())))
pts = np.array([[0, 0], [2.1, 2.2]])
idx = tree.query(pts)[1]
data = tree.data[[idx[0], idx[1]]]
rectangle = tree.data[np.where((tree.data[:,0]>=min(data[:,0])) & (tree.data[:,0]<=max(data[:,0])) & (tree.data[:,1]>=min(data[:,1])) & (tree.data[:,1]<=max(data[:,1])))]
However, I would love to see a solution using the query option!

Generating random numbers around a set of coordinates without for loop

I have a set of coordinate means (3D) and a set of standard deviations (3D) accompying them like this:
means = [[x1, y1, z1],
[x2, y2, z2],
...
[xn, yn, zn]]
stds = [[sx1, sy1, sz1],
[sx2, sy2, sz2],
...
[sxn, syn, szn]]
so the problem is N x 3
I am looking to generate 1000 coordinate sample sets (N x 3 x 1000) randomly using np.random.normal(). Currently I generate the samples using a for loop:
for i in range(0,1000):
samples = np.random.normal(means, stds)
But I have the feeling I can lose the for loop and let numpy do it faster and in one call, anybody know how I should code that?
or alternatively use the size argument:
import numpy as np
means = [ [0, 0, 0], [1, 1, 1] ]
std = [ [1, 1, 1], [1, 1, 1] ]
#100 samples
print(np.random.normal(means, std, size = (100, len(means), 3)))
You can repeat your means and stds arrays 1000 times, and then call np.random.normal() once.
means = [[0, 0, 0],
[1, 1, 1]]
stds = [[1, 1, 1],
[2, 2, 2]]
means = numpy.array(means) * numpy.ones(1000)[:, None, None]
stds = numpy.array(stds) * numpy.ones(1000)[:, None, None]
samples = numpy.random.normal(means, stds)

Can sklearn.decomposition.TruncatedSVD be applied to a matrix in parts?

I am applying sklearn.decomposition.TruncatedSVD to very large matrices. If the matrix is above a certain size (say 350k by 25k), svd.fit(x) runs out of RAM.
I am applying svd to feature matrices, where each row represents a set of features extracted from a single image.
To work around the memory issues, is it safe to apply svd to parts of the matrix (and then concatenate)?
Will the result be the same? I.e.:
from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_components=128)
part_1 = svd.fit_transform(features[0:100000, :])
part_2 = svd.fit_transform(features[100000:, :])
svd_features = np.concatenate((part_1, part_2), axis=0)
.. equivalent to(?):
from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_components=128)
svd_features = svd.fit_transform(svd_features)
If not, is there a workaround for dim reduction of very large matrices?
The results will not be the same,
For example, consider the code below:
import numpy as np
features=np.array([[3, 2, 1, 3, 1],
[2, 0, 1, 2, 2],
[1, 3, 2, 1, 3],
[1, 1, 3, 2, 3],
[1, 1, 2, 1, 3]])
from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_components=2)
svd = TruncatedSVD(n_components=2)
part_1 = svd.fit_transform(features[0:2, :])
part_2 = svd.fit_transform(features[2:, :])
svd_features = np.concatenate((part_1, part_2), axis=0)
svd_b = TruncatedSVD(n_components=2)
svd_features_b = svd_b.fit_transform(features)
print(svd_features)
print(svd_features_b)
This prints
[[ 4.81379561 -0.90959982]
[ 3.36212985 1.30233746]
[ 4.70088886 1.37354278]
[ 4.76960857 -1.06524658]
[ 3.94551566 -0.34876626]]
[[ 4.17420185 2.47515867]
[ 3.23525763 0.9479915 ]
[ 4.53499272 -1.13912762]
[ 4.69967028 -0.89231578]
[ 3.81909069 -1.05765576]]
which are different from each other.

R lm versus Python sklearn linear_model

When I study Python SKlearn, the first example that I come across is Generalized Linear Models.
Code of its very first example:
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit([[0, 0], [1, 1], [2,2]], [0, 1,2])
reg.fit
reg.coef_
array([ 0.5, 0.5])
Here I assume [[0, 0], [1, 1], [2,2]] represents a data.frame containing x1 = c(0,1,2) and x2 = c(0,1,2) and y = c(0,1,2) as well.
Immediately, I begin to think that array([ 0.5, 0.5]) are the coeffs for x1 and x2.
But, are there standard errors for those estimates? What about t tests p values, R2 and other figures?
Then I try to do the same thing in R.
X = data.frame(x1 = c(0,1,2),x2 = c(0,1,2),y = c(0,1,2))
lm(data=X, y~x1+x2)
Call:
lm(formula = y ~ x1 + x2, data = X)
#Coefficients:
#(Intercept) x1 x2
# 1.282e-16 1.000e+00 NA
Obviously x1 and x2 are completely linearly dependent so the OLS will fail. Why the SKlearn still works and gives this results? Am I getting sklearn in a wrong way? Thanks.
Both solutions are correct (assuming that NA behaves like a zero). Which solution is favored depends on the numerical solver used by the OLS estimator.
sklearn.linear_model.LinearRegression is based on scipy.linalg.lstsq which in turn calls the LAPACK gelsd routine which is described here:
http://www.netlib.org/lapack/lug/node27.html
In particular it says that when the problem is rank deficient it seeks the minimum norm least squares solution.
If you want to favor the other solution, you can use a coordinate descent solver with a tiny bit of L1 penalty as implemented in th Lasso class:
>>> from sklearn.linear_model import Lasso
>>> reg = Lasso(alpha=1e-8)
>>> reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
Lasso(alpha=1e-08, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)
>>> reg.coef_
array([ 9.99999985e-01, 3.97204719e-17])

Categories