Add values to dictionary / tuple - python

I have a tuple which I convert to a dict. The outcome is e.g.:
{'test-rz-01.test.de': '10.60.1.100','test2.test.de': '10.60.1.10’}
I now need to add "static" content to each entry so that it looks like a list of dicts:
[{'name': 'test-rz-01.test.de', 'ipv4addr':'10.60.1.100', 'view':
'External', 'zone': 'test.de'}, {'name': 'test2.test.de', 'ipv4addr':
'10.60.1.10’, 'view': 'External', 'zone': 'test.de'}]
what would be the "best" way to accomplish this?

Starting with your dictionary
>>> d = {'test-rz-01.htwk-leipzigtest.de': '10.60.1.100', 'test2.test.de': '10.60.1.10'}
employ a list comprehension in which you construct the dicts.
>>> [{'name':domain, 'ipv4addr':ip, 'view': 'External', 'zone': 'test.de'}
... for domain, ip in d.items()]
output:
[{'ipv4addr': '10.60.1.10', 'name': 'test2.test.de', 'zone': 'test.de', 'view': 'External'}, {'ipv4addr': '10.60.1.100', 'name': 'test-rz-01.htwk-leipzigtest.de', 'zone': 'test.de', 'view': 'External'}]

Related

How can I remove nested keys and create a new dict and link both with an ID?

I have a problem. I have a dict my_Dict. This is somewhat nested. However, I would like to 'clean up' the dict my_Dict, by this I mean that I would like to separate all nested ones and also generate a unique ID so that I can later find the corresponding object again.
For example, I have detail: {...}, this nested, should later map an independent dict my_Detail_Dict and in addition, detail should receive a unique ID within my_Dict. Unfortunately, my list that I give out is empty. How can I remove my slaughtered keys and give them an ID?
my_Dict = {
'_key': '1',
'group': 'test',
'data': {},
'type': '',
'code': '007',
'conType': '1',
'flag': None,
'createdAt': '2021',
'currency': 'EUR',
'detail': {
'selector': {
'number': '12312',
'isTrue': True,
'requirements': [{
'type': 'customer',
'requirement': '1'}]
}
}
}
def nested_dict(my_Dict):
my_new_dict_list = []
for key in my_Dict.keys():
#print(f"Looking for {key}")
if isinstance(my_Dict[key], dict):
print(f"{key} is nested")
# Add id to nested stuff
my_Dict[key]["__id"] = 1
my_nested_Dict = my_Dict[key]
# Delete all nested from the key
del my_Dict[key]
# Add id to key, but not the nested stuff
my_Dict[key] = 1
my_new_dict_list.append(my_Dict[key])
my_new_dict_list.append(my_Dict)
return my_new_dict_list
nested_dict(my_Dict)
[OUT] []
# What I want
[my_Dict, my_Details_Dict, my_Data_Dict]
What I have
{'_key': '1',
'group': 'test',
'data': {},
'type': '',
'code': '007',
'conType': '1',
'flag': None,
'createdAt': '2021',
'currency': 'EUR',
'detail': {'selector': {'number': '12312',
'isTrue': True,
'requirements': [{'type': 'customer', 'requirement': '1'}]}}}
What I want
my_Dict = {'_key': '1',
'group': 'test',
'data': 18,
'type': '',
'code': '007',
'conType': '1',
'flag': None,
'createdAt': '2021',
'currency': 'EUR',
'detail': 22}
my_Data_Dict = {'__id': 18}
my_Detail_Dict = {'selector': {'number': '12312',
'isTrue': True,
'requirements': [{'type': 'customer', 'requirement': '1'}]}, '__id': 22}
The following code snippet will solve what you are trying to do:
my_Dict = {
'_key': '1',
'group': 'test',
'data': {},
'type': '',
'code': '007',
'conType': '1',
'flag': None,
'createdAt': '2021',
'currency': 'EUR',
'detail': {
'selector': {
'number': '12312',
'isTrue': True,
'requirements': [{
'type': 'customer',
'requirement': '1'}]
}
}
}
def nested_dict(my_Dict):
# Initializing a dictionary that will store all the nested dictionaries
my_new_dict = {}
idx = 0
for key in my_Dict.keys():
# Checking which keys are nested i.e are dictionaries
if isinstance(my_Dict[key], dict):
# Generating ID
idx += 1
# Adding generated ID as another key
my_Dict[key]["__id"] = idx
# Adding nested key with the ID to the new dictionary
my_new_dict[key] = my_Dict[key]
# Replacing nested key value with the generated ID
my_Dict[key] = idx
# Returning new dictionary containing all nested dictionaries with ID
return my_new_dict
result = nested_dict(my_Dict)
print(my_Dict)
# Iterating through dictionary to get all nested dictionaries
for item in result.items():
print(item)
If I understand you correctly, you wish to automatically make each nested dictionary it's own variable, and remove it from the main dictionary.
Finding the nested dictionaries and removing them from the main dictionary is not so difficult. However, automatically assigning them to a variable is not recommended for various reasons. Instead, what I would do is store all these dictionaries in a list, and then assign them manually to a variable.
# Prepare a list to store data in
inidividual_dicts = []
id_index = 1
for key in my_Dict.keys():
# For each key, we get the current value
value = my_Dict[key]
# Determine if the current value is a dictionary. If so, then it's a nested dict
if isinstance(value, dict):
print(key + " is a nested dict")
# Get the nested dictionary, and replace it with the ID
dict_value = my_Dict[key]
my_Dict[key] = id_index
# Add the id to previously nested dictionary
dict_value['__id'] = id_index
id_index = id_index + 1 # increase for next nested dic
inidividual_dicts.append(dict_value) # store it as a new dictionary
# Manually write out variables names, and assign the nested dictionaries to it.
[my_Details_Dict, my_Data_Dict] = inidividual_dicts

Update certain keys in a dictionary

I would not know very well how to explain it, I have two dictionaries, I know how to put them together, here an example:
dict1 = {'machine': {'ip': '123', 'name': 'example', 'disks': {} }, 'machine2': {'ip': '1234', 'name': 'example2', 'disks': {} }}
dict2 = {'machine': {'disk1': {'name': 'exampledisk', 'capacity': '123'}}}
To put both dictionaries together I use this:
for key, value in dict1.items():
try:
value.update(dict2[key])
except KeyError:
continue
But the result is something like this:
{'machine': {'ip': '123', 'name': 'example', 'disks': {}, 'disk1'{'name': 'exampledisk', 'capacity': '123'} }}
And I would like to put the data for those disks inside the "disk" key, to receive something like this:
dict = {'machine': {'ip': '123', 'name': 'example', 'disks': {'disk1':{'name': 'exampledisk', 'capacity': '123'}, 'disk2': .... etc} }}
You need to update the nested disks dictionary within the value:
for key, value in dict1.items():
try:
value['disks'].update(dict2[key])
except KeyError:
continue
Obviously this is a very specific update assuming that all entries in dict2 are disks. A more generic way to update would require knowing which keys in dict2 correspond with the nested dictionaries in dict1.

Build a dictionary with single elements or lists as values

I have a list of dictionaries:
mydict = [
{'name': 'test1', 'value': '1_1'},
{'name': 'test2', 'value': '2_1'},
{'name': 'test1', 'value': '1_2'},
{'name': 'test1', 'value': '1_3'},
{'name': 'test3', 'value': '3_1'},
{'name': 'test4', 'value': '4_1'},
{'name': 'test4', 'value': '4_2'},
]
I would like to use it to create a dictionary where the values are lists or single values depending of number of their occurrences in the list above.
Expected output:
outputdict = {
'test1': ['1_1', '1_2', '1_3'],
'test2': '2_1',
'test3': '3_1',
'test4': ['4_1', '4_2'],
}
I tried to do it the way below but it always returns a list, even when there is just one value element.
outputdict = {}
outputdict.setdefault(mydict.get('name'), []).append(mydict.get('value'))
The current output is:
outputdict = {
'test1': ['1_1', '1_2', '1_3'],
'test2': ['2_1'],
'test3': ['3_1'],
'test4': ['4_1', '4_2'],
}
Do what you have already done, and then convert single-element lists afterwards:
outputdict = {
name: (value if len(value) > 1 else value[0])
for name, value in outputdict.items()
}
You can use a couple of the built-in functions mainly itertools.groupby:
from itertools import groupby
from operator import itemgetter
mydict = [
{'name': 'test1', 'value': '1_1'},
{'name': 'test2', 'value': '2_1'},
{'name': 'test1', 'value': '1_2'},
{'name': 'test1', 'value': '1_3'},
{'name': 'test3', 'value': '3_1'},
{'name': 'test4', 'value': '4_1'},
{'name': 'test4', 'value': '4_2'},
]
def keyFunc(x):
return x['name']
outputdict = {}
# groupby groups all the items that matches the returned value from keyFunc
# in our case it will use the names
for name, groups in groupby(mydict, keyFunc):
# groups will contains an iterator of all the items that have the matched name
values = list(map(itemgetter('value'), groups))
if len(values) == 1:
outputdict[name] = values[0]
else:
outputdict[name] = values
print(outputdict)

Find item in a list of dictionaries

I have this data
data = [
{
'id': 'abcd738asdwe',
'name': 'John',
'mail': 'test#test.com',
},
{
'id': 'ieow83janx',
'name': 'Jane',
'mail': 'test#foobar.com',
}
]
The id's are unique, it's impossible that multiple dictonaries have the same id.
For example I want to get the item with the id "ieow83janx".
My current solution looks like this:
search_id = 'ieow83janx'
item = [x for x in data if x['id'] == search_id][0]
Do you think that's the be solution or does anyone know an alternative solution?
Since the ids are unique, you can store the items in a dictionary to achieve O(1) lookup.
lookup = {ele['id']: ele for ele in data}
then you can do
user_info = lookup[user_id]
to retrieve it
If you are going to get this kind of operations more than once on this particular object, I would recommend to translate it into a dictionary with id as a key.
data = [
{
'id': 'abcd738asdwe',
'name': 'John',
'mail': 'test#test.com',
},
{
'id': 'ieow83janx',
'name': 'Jane',
'mail': 'test#foobar.com',
}
]
data_dict = {item['id']: item for item in data}
#=> {'ieow83janx': {'mail': 'test#foobar.com', 'id': 'ieow83janx', 'name': 'Jane'}, 'abcd738asdwe': {'mail': 'test#test.com', 'id': 'abcd738asdwe', 'name': 'John'}}
data_dict['ieow83janx']
#=> {'mail': 'test#foobar.com', 'id': 'ieow83janx', 'name': 'Jane'}
In this case, this lookup operation will cost you some constant* O(1) time instead of O(N).
How about the next built-in function (docs):
>>> data = [
... {
... 'id': 'abcd738asdwe',
... 'name': 'John',
... 'mail': 'test#test.com',
... },
... {
... 'id': 'ieow83janx',
... 'name': 'Jane',
... 'mail': 'test#foobar.com',
... }
... ]
>>> search_id = 'ieow83janx'
>>> next(x for x in data if x['id'] == search_id)
{'id': 'ieow83janx', 'name': 'Jane', 'mail': 'test#foobar.com'}
EDIT:
It raises StopIteration if no match is found, which is a beautiful way to handle absence:
>>> search_id = 'does_not_exist'
>>> try:
... next(x for x in data if x['id'] == search_id)
... except StopIteration:
... print('Handled absence!')
...
Handled absence!
Without creating a new dictionary or without writing several lines of code, you can simply use the built-in filter function to get the item lazily, not checking after it finds the match.
next(filter(lambda d: d['id']==search_id, data))
should for just fine.
Would this not achieve your goal?
for i in data:
if i.get('id') == 'ieow83janx':
print(i)
(xenial)vash#localhost:~/python$ python3.7 split.py
{'id': 'ieow83janx', 'name': 'Jane', 'mail': 'test#foobar.com'}
Using comprehension:
[i for i in data if i.get('id') == 'ieow83janx']
if any(item['id']=='ieow83janx' for item in data):
#return item
As any function returns true if iterable (List of dictionaries in your case) has value present.
While using Generator Expression there will not be need of creating internal List. As there will not be duplicate values for the id in List of dictionaries, any will stop the iteration until the condition returns true. i.e the generator expression with any will stop iterating on shortcircuiting. Using List comprehension will create a entire List in the memory where as GE creates the element on the fly which will be better if you are having large items as it uses less memory.

Remove item from nested dictionaries if specified key contains None values

I have a list of dictionaries in which I am trying to remove any dictionary should the value of a certain key is None, it will be removed.
item_dict = [
{'code': 'aaa0000',
'id': 415294,
'index_range': '10-33',
'location': 'A010',
'type': 'True'},
{'code': 'bbb1458',
'id': 415575,
'index_range': '30-62',
'location': None,
'type': 'True'},
{'code': 'ccc3013',
'id': 415575,
'index_range': '14-59',
'location': 'C041',
'type': 'True'}
]
for item in item_dict:
filtered = dict((k,v) for k,v in item.iteritems() if v is not None)
# Output Results
# Item - aaa0000 is missing
# {'index_range': '14-59', 'code': 'ccc3013', 'type': 'True', 'id': 415575, 'location': 'C041'}
In my example, the output result is missing one of the dictionary and if I tried to create a new list to append filtered, item bbb1458 will be included in the list as well.
How can I rectify this?
[item for item in item_dict if None not in item.values()]
Each item in this list is a dictionary. And a dictionary is only appended to this list if None does not appear in the dictionary values.
You can create a new list using a list comprehension, filtering on the condition that all values are not None:
item_dict = [
{'code': 'aaa0000',
'id': 415294,
'index_range': '10-33',
'location': 'A010',
'type': 'True'},
{'code': 'bbb1458',
'id': 415575,
'index_range': '30-62',
'location': None,
'type': 'True'},
{'code': 'ccc3013',
'id': 415575,
'index_range': '14-59',
'location': 'C041',
'type': 'True'}
]
filtered = [d for d in item_dict if all(value is not None for value in d.values())]
print(filtered)
#[{'index_range': '10-33', 'id': 415294, 'location': 'A010', 'type': 'True', 'code': 'aaa0000'}, {'index_range': '14-59', 'id': 415575, 'location': 'C041', 'type': 'True', 'code': 'ccc3013'}]

Categories