How to unpatchify array - python

Following up on this answer by jorgeca:
def patchify(img, patch_shape):
img = np.ascontiguousarray(img) # won't make a copy if not needed
X, Y = img.shape
x, y = patch_shape
shape = ((X-x+1), (Y-y+1), x, y) # number of patches, patch_shape
# The right strides can be thought by:
# 1) Thinking of `img` as a chunk of memory in C order
# 2) Asking how many items through that chunk of memory are needed when indices
# i,j,k,l are incremented by one
strides = img.itemsize*np.array([Y, 1, Y, 1])
return np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)
How can those overlapping arrays be merged back again to the original image?

Approach #1
Here's one approach after converting the 4D array of patches into 2D and then simply slicing and stacking the leftover rows and columns -
def unpatchify(img_patches, block_size):
B0, B1 = block_size
N = np.prod(img_patches.shape[1::2])
patches2D = img_patches.transpose(0,2,1,3).reshape(-1,N)
m,n = patches2D.shape
row_mask = np.zeros(m,dtype=bool)
col_mask = np.zeros(n,dtype=bool)
row_mask[::B0]= 1
col_mask[::B1]= 1
row_mask[-B0:] = 1
col_mask[-B1:] = 1
return patches2D[np.ix_(row_mask, col_mask)]
Sample run -
In [233]: img = np.random.randint(0,255,(16,25))
...: block_size = (4,8)
...:
In [234]: np.allclose(img, unpatchify(patchify(img, block_size), block_size))
Out[234]: True
Approach #2
In the previous approach, use of transpose on the big 4D array would force a copy and as such that transpose operation might prove costly. To avoid that, here's another approach making heavy usage of slicing -
def unpatchify_v2(img_patches, block_size):
B0, B1 = block_size
m,n,r,q = img_patches.shape
shp = m + r - 1, n + q - 1
p1 = img_patches[::B0,::B1].swapaxes(1,2)
p1 = p1.reshape(-1,p1.shape[2]*p1.shape[3])
p2 = img_patches[:,-1,0,:]
p3 = img_patches[-1,:,:,0].T
p4 = img_patches[-1,-1]
out = np.zeros(shp,dtype=img_patches.dtype)
out[:p1.shape[0],:p1.shape[1]] = p1
out[:p2.shape[0],-p2.shape[1]:] = p2
out[-p3.shape[0]:,:p3.shape[1]] = p3
out[-p4.shape[0]:,-p4.shape[1]:] = p4
return out
Runtime test
In [16]: img = np.random.randint(0,255,(1024,1024))
...: block_size = (3,3)
...: img_patches = patchify(img, block_size)
...:
In [17]: %timeit unpatchify(img_patches, block_size)
...: %timeit unpatchify_v2(img_patches, block_size)
10 loops, best of 3: 22.9 ms per loop
100 loops, best of 3: 2.25 ms per loop
In [18]: img = np.random.randint(0,255,(1024,1024))
...: block_size = (8,8)
...: img_patches = patchify(img, block_size)
...:
In [19]: %timeit unpatchify(img_patches, block_size)
...: %timeit unpatchify_v2(img_patches, block_size)
...:
10 loops, best of 3: 114 ms per loop
1000 loops, best of 3: 1.5 ms per loop

Related

a 2d numpy array element-wise raised to the power of another 2d array

I need to raise a large 2d numpy array element-wise to the power of another 2d array with the same dimensions. I tried to use numba to improve the speed. Is there an efficient implementation using numpy built-in functions instead of numba?
import numpy as np
from time import time
def elewise_power_raw(x, y):
z = np.zeros((n, n))
for i in range(n):
for j in range(n):
z[i,j] = x[i,j]**y[i,j]
return z
import numba
#numba.njit
def elewise_power_numba(x, y):
n = x.shape[0]
z = np.zeros((n, n))
for i in range(n):
for j in range(n):
z[i,j] = x[i,j]**y[i,j]
return z
def measure_time(n=5000):
x = np.random.rand(n, n)
y = np.random.rand(n, n)
t0 = time()
elewise_power_raw(x, y)
print('Raw: ', round(time() - t0, 2), 's' )
t1 = time()
elewise_power_numba(x, y)
print('numba: ', round(time() - t1, 2), 's' )
measure_time(5000)
# Raw: 22.31 s
# numba: 1.4 s
You can always vectorize it.
x = np.random.rand(5000, 5000)
y = np.random.rand(5000, 5000)
%timeit x**y
977 ms ± 7.01 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Arnaud Legoux Moving Average and numpy

I'd like to write the vectored version of code that calculates Arnaud Legoux Moving Average using NumPy (or Pandas). Could you help me with this, please? Thanks.
Non-vectored version looks like following (see below).
def NPALMA(pnp_array, **kwargs) :
'''
ALMA - Arnaud Legoux Moving Average,
http://www.financial-hacker.com/trend-delusion-or-reality/
https://github.com/darwinsys/Trading_Strategies/blob/master/ML/Features.py
'''
length = kwargs['length']
# just some number (6.0 is useful)
sigma = kwargs['sigma']
# sensisitivity (close to 1) or smoothness (close to 0)
offset = kwargs['offset']
asize = length - 1
m = offset * asize
s = length / sigma
dss = 2 * s * s
alma = np.zeros(pnp_array.shape)
wtd_sum = np.zeros(pnp_array.shape)
for l in range(len(pnp_array)):
if l >= asize:
for i in range(length):
im = i - m
wtd = np.exp( -(im * im) / dss)
alma[l] += pnp_array[l - length + i] * wtd
wtd_sum[l] += wtd
alma[l] = alma[l] / wtd_sum[l]
return alma
Starting Approach
We can create sliding windows along the first axis and then use tensor multiplication with the range of wtd values for the sum-reductions.
The implementation would look something like this -
# Get all wtd values in an array
wtds = np.exp(-(np.arange(length) - m)**2/dss)
# Get the sliding windows for input array along first axis
pnp_array3D = strided_axis0(pnp_array,len(wtds))
# Initialize o/p array
out = np.zeros(pnp_array.shape)
# Get sum-reductions for the windows which don't need wrapping over
out[length:] = np.tensordot(pnp_array3D,wtds,axes=((1),(0)))[:-1]
# Last element of the output needed wrapping. So, do it separately.
out[length-1] = wtds.dot(pnp_array[np.r_[-1,range(length-1)]])
# Finally perform the divisions
out /= wtds.sum()
Function to get the sliding windows : strided_axis0 is from here.
Boost with 1D convolution
Those multiplications with wtds values and then their sum-reductions are basically convolution along the first axis. As such, we can use scipy.ndimage.convolve1d along axis=0. This would be much faster given the memory efficiency, as we won't be creating huge sliding windows.
The implementation would be -
from scipy.ndimage import convolve1d as conv
avgs = conv(pnp_array, weights=wtds/wtds.sum(),axis=0, mode='wrap')
Thus, out[length-1:], which are the non-zero rows would be same as avgs[:-length+1].
There could be some precision difference if we are working with really small kernel numbers from wtds. So, keep that in mind if using this convolution method.
Runtime test
Approaches -
def original_app(pnp_array, length, m, dss):
alma = np.zeros(pnp_array.shape)
wtd_sum = np.zeros(pnp_array.shape)
for l in range(len(pnp_array)):
if l >= asize:
for i in range(length):
im = i - m
wtd = np.exp( -(im * im) / dss)
alma[l] += pnp_array[l - length + i] * wtd
wtd_sum[l] += wtd
alma[l] = alma[l] / wtd_sum[l]
return alma
def vectorized_app1(pnp_array, length, m, dss):
wtds = np.exp(-(np.arange(length) - m)**2/dss)
pnp_array3D = strided_axis0(pnp_array,len(wtds))
out = np.zeros(pnp_array.shape)
out[length:] = np.tensordot(pnp_array3D,wtds,axes=((1),(0)))[:-1]
out[length-1] = wtds.dot(pnp_array[np.r_[-1,range(length-1)]])
out /= wtds.sum()
return out
def vectorized_app2(pnp_array, length, m, dss):
wtds = np.exp(-(np.arange(length) - m)**2/dss)
return conv(pnp_array, weights=wtds/wtds.sum(),axis=0, mode='wrap')
Timings -
In [470]: np.random.seed(0)
...: m,n = 1000,100
...: pnp_array = np.random.rand(m,n)
...:
...: length = 6
...: sigma = 0.3
...: offset = 0.5
...:
...: asize = length - 1
...: m = np.floor(offset * asize)
...: s = length / sigma
...: dss = 2 * s * s
...:
In [471]: %timeit original_app(pnp_array, length, m, dss)
...: %timeit vectorized_app1(pnp_array, length, m, dss)
...: %timeit vectorized_app2(pnp_array, length, m, dss)
...:
10 loops, best of 3: 36.1 ms per loop
1000 loops, best of 3: 1.84 ms per loop
1000 loops, best of 3: 684 µs per loop
In [472]: np.random.seed(0)
...: m,n = 10000,1000 # rest same as previous one
In [473]: %timeit original_app(pnp_array, length, m, dss)
...: %timeit vectorized_app1(pnp_array, length, m, dss)
...: %timeit vectorized_app2(pnp_array, length, m, dss)
...:
1 loop, best of 3: 503 ms per loop
1 loop, best of 3: 222 ms per loop
10 loops, best of 3: 106 ms per loop

Double dot product with broadcasting in numpy

I have the following operation :
import numpy as np
x = np.random.rand(3,5,5)
w = np.random.rand(5,5)
y=np.zeros((3,5,5))
for i in range(3):
y[i] = np.dot(w.T,np.dot(x[i],w))
Which corresponds to the pseudo-expression y[m,i,j] = sum( w[k,i] * x[m,k,l] * w[l,j], axes=[k,l] or equivalently simply the dot product of w.T , x, w broadcaster over the first dimension of x.
How can I implement it with numpy's broadcasting rules ?
Thanks in advance.
Here's one vectorized approach with np.tensordot which should be better than broadcasting + summation anyday -
# Take care of "np.dot(x[i],w)" term
x_w = np.tensordot(x,w,axes=((2),(0)))
# Perform "np.dot(w.T,np.dot(x[i],w))" : "np.dot(w.T,x_w)"
y_out = np.tensordot(x_w,w,axes=((1),(0))).swapaxes(1,2)
Alternatively, all of the mess being taken care of with one np.einsum call, but could be slower -
y_out = np.einsum('ab,cae,eg->cbg',w,x,w)
Runtime test -
In [114]: def tensordot_app(x, w):
...: x_w = np.tensordot(x,w,axes=((2),(0)))
...: return np.tensordot(x_w,w,axes=((1),(0))).swapaxes(1,2)
...:
...: def einsum_app(x, w):
...: return np.einsum('ab,cae,eg->cbg',w,x,w)
...:
In [115]: x = np.random.rand(30,50,50)
...: w = np.random.rand(50,50)
...:
In [116]: %timeit tensordot_app(x, w)
1000 loops, best of 3: 477 µs per loop
In [117]: %timeit einsum_app(x, w)
1 loop, best of 3: 219 ms per loop
Giving the broadcasting a chance
The sum-notation was -
y[m,i,j] = sum( w[k,i] * x[m,k,l] * w[l,j], axes=[k,l] )
Thus, the three terms would be stacked for broadcasting, like so -
w : [ N x k x i x N x N]
x : [ m x k x N x l x N]
w : [ N x N X N x l x j]
, where N represents new-axis being appended to facilitate broadcasting along those dims.
The terms with new axes being added with None/np.newaxis would then look like this -
w : w[None, :, :, None, None]
x : x[:, :, None, :, None]
w : w[None, None, None, :, :]
Thus, the broadcasted product would be -
p = w[None,:,:,None,None]*x[:,:,None,:,None]*w[None,None,None,:,:]
Finally, the output would be sum-reduction to lose (k,l), i.e. axes =(1,3) -
y = p.sum((1,3))

Avoiding numpy loops while calculating intersections

I'd like to speed up the following calculations handling r rays and n spheres. Here is what I got so far:
# shape of mu1 and mu2 is (r, n)
# shape of rays is (r, 3)
# note that intersections has 2n columns because for every sphere one can
# get up to two intersections (secant, tangent, no intersection)
intersections = np.empty((r, 2*n, 3))
for col in range(n):
intersections[:, col, :] = rays * mu1[:, col][:, np.newaxis]
intersections[:, col + n, :] = rays * mu2[:, col][:, np.newaxis]
# [...]
# calculate euclidean distance from the center of gravity (0,0,0)
distances = np.empty((r, 2 * n))
for col in range(n):
distances[:, col] = np.linalg.norm(intersections[:, col], axis=1)
distances[:, col + n] = np.linalg.norm(intersections[:, col + n], axis=1)
I tried speeding things up by avoiding the for-Loops, but couldn't figure out how to broadcast the arrays properly so that I only need a single function call. Any help is much appreciated.
Here's a vectorized way using broadcasting -
intersections = np.hstack((mu1,mu2))[...,None]*rays[:,None,:]
distances = np.sqrt((intersections**2).sum(2))
The last step could be replaced with an use of np.einsum like so -
distances = np.sqrt(np.einsum('ijk,ijk->ij',intersections,intersections))
Or replace almost the whole thing with np.einsum for another vectorized way, like so -
mu = np.hstack((mu1,mu2))
distances = np.sqrt(np.einsum('ij,ij,ik,ik->ij',mu,mu,rays,rays))
Runtime tests and verify outputs -
def original_app(mu1,mu2,rays):
intersections = np.empty((r, 2*n, 3))
for col in range(n):
intersections[:, col, :] = rays * mu1[:, col][:, np.newaxis]
intersections[:, col + n, :] = rays * mu2[:, col][:, np.newaxis]
distances = np.empty((r, 2 * n))
for col in range(n):
distances[:, col] = np.linalg.norm(intersections[:, col], axis=1)
distances[:, col + n] = np.linalg.norm(intersections[:, col + n], axis=1)
return distances
def vectorized_app1(mu1,mu2,rays):
intersections = np.hstack((mu1,mu2))[...,None]*rays[:,None,:]
return np.sqrt((intersections**2).sum(2))
def vectorized_app2(mu1,mu2,rays):
intersections = np.hstack((mu1,mu2))[...,None]*rays[:,None,:]
return np.sqrt(np.einsum('ijk,ijk->ij',intersections,intersections))
def vectorized_app3(mu1,mu2,rays):
mu = np.hstack((mu1,mu2))
return np.sqrt(np.einsum('ij,ij,ik,ik->ij',mu,mu,rays,rays))
Timings -
In [101]: # Inputs
...: r = 1000
...: n = 1000
...: mu1 = np.random.rand(r, n)
...: mu2 = np.random.rand(r, n)
...: rays = np.random.rand(r, 3)
In [102]: np.allclose(original_app(mu1,mu2,rays),vectorized_app1(mu1,mu2,rays))
Out[102]: True
In [103]: np.allclose(original_app(mu1,mu2,rays),vectorized_app2(mu1,mu2,rays))
Out[103]: True
In [104]: np.allclose(original_app(mu1,mu2,rays),vectorized_app3(mu1,mu2,rays))
Out[104]: True
In [105]: %timeit original_app(mu1,mu2,rays)
...: %timeit vectorized_app1(mu1,mu2,rays)
...: %timeit vectorized_app2(mu1,mu2,rays)
...: %timeit vectorized_app3(mu1,mu2,rays)
...:
1 loops, best of 3: 306 ms per loop
1 loops, best of 3: 215 ms per loop
10 loops, best of 3: 140 ms per loop
10 loops, best of 3: 136 ms per loop

Optimize a numpy ndarray indexing operation

I have a numpy operation that looks like the following:
for i in range(i_max):
for j in range(j_max):
r[i, j, x[i, j], y[i, j]] = c[i, j]
where x, y and c have the same shape.
Is it possible to use numpy's advanced indexing to speed this operation up?
I tried using:
i = numpy.arange(i_max)
j = numpy.arange(j_max)
r[i, j, x, y] = c
However, I didn't get the result I expected.
Using linear indexing -
d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
Benchmarking and verification
Define functions -
def linear_indx(r,x,y,c,i_max,j_max):
d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
return r
def org_app(r,x,y,c,i_max,j_max):
for i in range(i_max):
for j in range(j_max):
r[i, j, x[i,j], y[i,j]] = c[i,j]
return r
Setup input arrays and benchmark -
In [134]: # Setup input arrays
...: i_max = 40
...: j_max = 50
...: D0 = 60
...: D1 = 70
...: N = 80
...:
...: r = np.zeros((D0,D1,N,N))
...: c = np.random.rand(i_max,j_max)
...:
...: x = np.random.randint(0,N,(i_max,j_max))
...: y = np.random.randint(0,N,(i_max,j_max))
...:
In [135]: # Make copies for testing, as both functions make in-situ changes
...: r1 = r.copy()
...: r2 = r.copy()
...:
In [136]: # Verify results by comparing with original loopy approach
...: np.allclose(linear_indx(r1,x,y,c,i_max,j_max),org_app(r2,x,y,c,i_max,j_max))
Out[136]: True
In [137]: # Make copies for testing, as both functions make in-situ changes
...: r1 = r.copy()
...: r2 = r.copy()
...:
In [138]: %timeit linear_indx(r1,x,y,c,i_max,j_max)
10000 loops, best of 3: 115 µs per loop
In [139]: %timeit org_app(r2,x,y,c,i_max,j_max)
100 loops, best of 3: 2.25 ms per loop
The indexing arrays need to be broadcastable for this to work. The only change needed is to add an axis to the first index i to match the shape with the rest. The quick way to accomplish this is by indexing with None (which is equivalent to numpy.newaxis):
i = numpy.arange(i_max)
j = numpy.arange(j_max)
r[i[:,None], j, x, y] = c

Categories