I am using theano.clip to limit values of my numpy array. For e.g.
array = np.array([[ 1., -1., -3., 1., 1.],
[ 3., -4., -5., 0., -1.],
[ 8., -3., -7., -3., -3.],
[ 8., 2., -2., -3., -3.],
[ 7., 0., 0., 1., 0.]])
max_val = np.array([2.0]).astype('float32')
T.clip(array, -max_val, max_val).eval()
Output:
array([[ 1., -1., -2., 1., 1.],
[ 2., -2., -2., 0., -1.],
[ 2., -2., -2., -2., -2.],
[ 2., 2., -2., -2., -2.],
[ 2., 0., 0., 1., 0.]])
I want to calculate how many values were clipped after the clipping operation. Is it possible?
Here's one approach with np.count_nonzero on a mask of values beyond the limits computed with comparison against the min and max limits -
np.count_nonzero((array < -max_val) | (array > max_val))
np.count_nonzero is meant for performance, as it operates on a mask/boolean array to get the total count pretty efficiently.
Alternatively, a shorter version using absolute values as the min and max limits as in this case they are just negative and positive values of the same limiting number -
np.count_nonzero(np.abs(array) > max_val)
Sample run -
In [267]: array
Out[267]:
array([[ 1., -1., -3., 1., 1.],
[ 3., -4., -5., 0., -1.],
[ 8., -3., -7., -3., -3.],
[ 8., 2., -2., -3., -3.],
[ 7., 0., 0., 1., 0.]])
In [268]: max_val = np.array([2.0]).astype('float32')
In [269]: np.count_nonzero((array < -max_val) | (array > max_val))
Out[269]: 13
In [270]: np.count_nonzero(np.abs(array) > max_val)
Out[270]: 13
If your array's name is a, you can do
np.logical_or(a >= 1, a <= -1).sum()
You won't count elements twice, since - max_val < max_val. However, this requires two passes on a.
Related
I have the following pytorch tensor long_format:
tensor([[ 1., 1.],
[ 1., 2.],
[ 1., 3.],
[ 1., 4.],
[ 0., 5.],
[ 0., 6.],
[ 0., 7.],
[ 1., 8.],
[ 0., 9.],
[ 0., 10.]])
I would like to groupby the first column and store the 2nd column as a tensor. The result is NOT guranteed to be the same size for each grouping. See example below.
[tensor([ 1., 2., 3., 4., 8.]),
tensor([ 5., 6., 7., 9., 10.])]
Is there any nice way to do this using purely Pytorch operators? I would like to avoid using for loops for tracebility purposes.
I have tried using a for loop and empty list of empty tensors but this result in an incorrect trace (different inputs values gave same results)
n_groups = 2
inverted = [torch.empty([0]) for _ in range(n_groups)]
for index, value in long_format:
value = value.unsqueeze(dim=0)
index = index.int()
if type(inverted[index]) != torch.Tensor:
inverted[index] = value
else:
inverted[index] = torch.cat((inverted[index], value))
You can use this code:
import torch
x = torch.tensor([[ 1., 1.],
[ 1., 2.],
[ 1., 3.],
[ 1., 4.],
[ 0., 5.],
[ 0., 6.],
[ 0., 7.],
[ 1., 8.],
[ 0., 9.],
[ 0., 10.]])
result = [x[x[:,0]==i][:,1] for i in x[:,0].unique()]
output
[tensor([ 5., 6., 7., 9., 10.]), tensor([1., 2., 3., 4., 8.])]
I have a numpy array like this:
array([[ 3., 2., 3., ..., 0., 0., 0.],
[ 3., 2., -4., ..., 0., 0., 0.],
[ 3., -4., 1., ..., 0., 0., 0.],
...,
[-1., -2., 4., ..., 0., 0., 0.],
[ 4., -2., -2., ..., 0., 0., 0.],
[-2., 2., 4., ..., 0., 0., 0.]], dtype=float32)
what I want to do is removing all the rows that do not sum to zero and remove them, while also saving such rows indexes/positions in order to eliminate them to another array.
I'm trying the following:
for i in range(len(arr1)):
count=0
for j in arr1[i]:
count+=j
if count != 0:
arr_1 = np.delete(arr1,i,axis=0)
arr_2 = np.delete(arr2,i,axis=0)
the resulting arr_1 and arr_2 still contain rows that do not sum to zero. What am I doing wrong?
You can compute sum then keep row that have sum == 0 like below:
a=np.array([
[ 3., 2., 3., 0., 0., 0.],
[ 3., 2., -4., 0., 0., 0.],
[ 3., -4., 1., 0., 0., 0.]])
b = a.sum(axis=1)
# array([8., 1., 0.])
print(a[b==0])
Output:
array([[ 3., -4., 1., 0., 0., 0.]])
Just use sum(axis=1):
mask = a.sum(axis=1) != 0
do_sum_to_0 = a[~mask]
dont_sum_to_0 = a[mask]
Suppose I have an input matrix of shape (batch_size ,channels ,h ,w)
in this case (1 ,2 ,3 ,3)
[[[[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.]],
[[ 9., 10., 11.],
[12., 13., 14.],
[15., 16., 17.]]]])
to do a convolution with it i unroll it to the shape of
(batch_size ,channels * kernel_size * kernel_size ,out_h * out_w)
which is:
[[[ 0., 1., 3., 4.],
[ 1., 2., 4., 5.],
[ 3., 4., 6., 7.],
[ 4., 5., 7., 8.],
[ 9., 10., 12., 13.],
[10., 11., 13., 14.],
[12., 13., 15., 16.],
[13., 14., 16., 17.]]]
now i want to get the unrolled matrix back to its original form
which looks like this:
# for demonstration only the first and second column of the unrolled matrix
# the output should be the same shape as the initial matrix -> initialized to zeros
# current column -> [ 0., 1., 3., 4., 9., 10., 12., 13.]
[[[[0+0, 0+1, 0],
[0+3, 0+4, 0],
[0 , 0 , 0]],
[[0+9 , 0+10, 0],
[0+12, 0+13, 0],
[0 , 0 , 0]]]]
# for the next column it would be
# current column -> [ 1., 2., 4., 5., 10., 11., 13., 14.]
[[[[0 , 1+1, 0+2],
[3 , 4+4, 0+5],
[0 , 0 , 0 ]],
[[9 , 10+10, 0+11],
[12 , 13+13, 0+14],
[0 , 0 , 0 ]]]])
you basically put your unrolled elements back to its original place and sum the overlapping parts together.
But now to my question:
How could one implement this as fast as possible using numpy and
as less loops as possible. I already just looped through it kernel by kernel but this aproach isnt feasible with larger inputs. I think this could be parallelized quite a bit but my numpy indexing and overall knowledge isnt good enough to figure out a good solution by myself.
thanks for reading and have a nice day :)
With numpy, I expect this can be done using numpy.lib.stride_tricks.as_strided. However, I'd suggest that you look at pytorch, which interoperates easily with numpy and has quite efficient primitives for this operation. In your case, the code would look like:
kernel_size = 2
x = torch.arange(18).reshape(1, 2, 3, 3).to(torch.float32)
unfold = torch.nn.Unfold(kernel_size=kernel_size)
fold = torch.nn.Fold(kernel_size=kernel_size, output_size=(3, 3))
unfolded = unfold(x)
cols = torch.arange(kernel_size ** 2)
for col in range(kernel_size ** 2):
# col = 0
unfolded_masked = torch.where(col == cols, unfolded, torch.tensor(0.0, dtype=torch.float32))
refolded = fold(unfolded_masked)
print(refolded)
tensor([[[[ 0., 1., 0.],
[ 3., 4., 0.],
[ 0., 0., 0.]],
[[ 9., 10., 0.],
[12., 13., 0.],
[ 0., 0., 0.]]]])
tensor([[[[ 0., 1., 2.],
[ 0., 4., 5.],
[ 0., 0., 0.]],
[[ 0., 10., 11.],
[ 0., 13., 14.],
[ 0., 0., 0.]]]])
tensor([[[[ 0., 0., 0.],
[ 3., 4., 0.],
[ 6., 7., 0.]],
[[ 0., 0., 0.],
[12., 13., 0.],
[15., 16., 0.]]]])
tensor([[[[ 0., 0., 0.],
[ 0., 4., 5.],
[ 0., 7., 8.]],
[[ 0., 0., 0.],
[ 0., 13., 14.],
[ 0., 16., 17.]]]])
I have a numpy array:
arr=np.array([[1., 2., 0.],
[2., 4., 1.],
[1., 3., 2.],
[-1., -2., 4.],
[-1., -2., 5.],
[1., 2., 6.]])
I want to flip the second half of this array upward. I mean I want to have:
flipped_arr=np.array([[-1., -2., 4.],
[-1., -2., 5.],
[1., 2., 6.],
[1., 2., 0.],
[2., 4., 1.],
[1., 3., 2.]])
When I try this code:
fliped_arr=np.flip(arr, 0)
It gives me:
fliped_arr= array([[1., 2., 6.],
[-1., -2., 5.],
[-1., -2., 4.],
[1., 3., 2.],
[2., 4., 1.],
[1., 2., 0.]])
In advance, I do appreciate any help.
You can simply concatenate rows below the nth row (included) with np.r_ for instance, with row index n of your choice, at the top and the other ones at the bottom:
import numpy as np
n = 3
arr_flip_n = np.r_[arr[n:],arr[:n]]
>>> array([[-1., -2., 4.],
[-1., -2., 5.],
[ 1., 2., 6.],
[ 1., 2., 0.],
[ 2., 4., 1.],
[ 1., 3., 2.]])
you can do this by slicing the array using the midpoint:
ans = np.vstack((arr[int(arr.shape[0]/2):], arr[:int(arr.shape[0]/2)]))
to break this down a little:
find the midpoint of arr, by finding its shape, the first index of which is the number of rows, dividing by two and converting to an integer:
midpoint = int(arr.shape[0]/2)
the two halves of the array can then be sliced like so:
a = arr[:midpoint]
b = arr[midpoint:]
then stack them back together using np.vstack:
ans = np.vstack((a, b))
(note vstack takes a single argument, which is a tuple containing a and b: (a, b))
You can do this with array slicing and vstack -
arr=np.array([[1., 2., 0.],
[2., 4., 1.],
[1., 3., 2.],
[-1., -2., 4.],
[-1., -2., 5.],
[1., 2., 6.]])
mid = arr.shape[0]//2
np.vstack([arr[mid:],arr[:mid]])
array([[-1., -2., 4.],
[-1., -2., 5.],
[ 1., 2., 6.],
[ 1., 2., 0.],
[ 2., 4., 1.],
[ 1., 3., 2.]])
>>> x1
array([[ 0., -1., 2.],
[ 3., -4., 2.],
[ -2., 1., -8.]])
>>> x3
array([[ 0., -5., 2.],
[ 3., 0., -3.],
[ 3., 2., 8.]])
I need two matricies to be output: S and T, such that X is the sum of all positive values in X and Y, and T is the sum of all negative values in X and Y.
For example:
S = array([ [ 0., 0., 4.],
[ 6., 0., 2.],
[ 3., 3., 8.]])
T = array([ [ 0., -6., 0.],
[ 0., -4., -3.],
[ -2., 0., -8.]])
I am using Python 2.6.7.
You can use np.clip() to selectively add
In [140]: x1.clip(min=0) + x3.clip(min=0)
Out[140]:
array([[ 0., 0., 4.],
[ 6., 0., 2.],
[ 3., 3., 8.]])
In [141]: x1.clip(max=0) + x3.clip(max=0)
Out[141]:
array([[ 0., -6., 0.],
[ 0., -4., -3.],
[-2., 0., -8.]])
As well as clip you can do this by multiplying by boolean arrays:
>>> x1 * (x1 > 0) + x3 * (x3 > 0)
array([[ 0., -0., 4.],
[ 6., 0., 2.],
[ 3., 3., 8.]])
>>> x1 * (x1 <= 0) + x3 * (x3 <= 0)
array([[ 0., -6., 0.],
[ 0., -4., -3.],
[-2., 0., -8.]])
>>>