I have a DF according to below:
id_var1 id_var2 num_var1 num_var2
1 1 1 1
1 2 1 0
1 3 2 0
1 4 2 3
1 5 3 3
1 6 3 3
1 7 3 0
1 8 4 0
2 1 1 0
2 2 2 1
2 3 5 0
2 4 2 0
2 5 1 2
2 6 1 2
2 7 2 0
I want a DF with the following appearance:
id_var1 id_var2 num_var1 num_var2 row_sum
1 1 1 1 2
1 2 1 0 NaN
1 3 2 0 Nan
1 4 2 3 11
1 5 3 3 Nan
1 6 3 3 Nan
1 7 3 0 Nan
1 8 4 0 Nan
2 1 1 0 Nan
2 2 2 1 7
2 3 5 0 Nan
2 4 2 0 Nan
2 5 1 2 4
2 6 1 2 Nan
2 7 2 0 Nan
At each first num_var2 which is not 0 I want to sum(num_var1) the same row + as many rows down as num_var2 states.
Example1: Row 4 has num_var2 = 3 --> sum(num_var1) for row 4 + 3 rows down = 11 for id_var1 = 1 and id_var2 = 4
Example2: Row 12 has num_var2 = 2 --> sum(num_var1) for row 12 + 2 rows down = 4 for id_var1 = 2 and id_var2 = 5.
Can someone please help me with this one? Can it be done without a slow row-itteration?
Code for DF below:
df = pd.DataFrame({ 'id_var1' : [1] * 8 + [2] * 7
,'id_var2' : [i for i in range(1,9)] + [i for i in range(1,8)]
,'num_var1' : [1,1,2,2,3,3,3,4] + [1,2,5,2,1,1,2]
,'num_var2' : [1, 0,0,3,3,3,0,0] + [0,1,0,0,2,2,0]
})
Let me know if this works for you.
First create a list of values from num_var1 column.
Then get sum of sub list- Created from num_var1 , from the current index to the required number items (taken from column num_var2).
sublst() function is called only when the previous record's num_var2 not matching current record's num_var2 .
import pandas as pd
df = pd.DataFrame({ 'id_var1' : [1] * 8 + [2] * 7
,'id_var2' : [i for i in range(1,9)] + [i for i in range(1,8)]
,'num_var1' : [1,1,2,2,3,3,3,4] + [1,2,5,2,1,1,2]
,'num_var2' : [1, 0,0,3,3,3,0,0] + [0,1,0,0,2,2,0]
})
num_var1 =df['num_var1'].tolist() # values to be used for calcualtion
df['index1'] = df.index
def sublst(row):
if row['num_var2']>0:
x= num_var1[row['index1']:row['index1']+row['num_var2']+1]
return sum(x)
df['sum'] = df[df.num_var2 != df.num_var2.shift()].apply(sublst,axis=1)
print df
Output
id_var1 id_var2 num_var1 num_var2 index1 sum
0 1 1 1 1 0 2.0
1 1 2 1 0 1 NaN
2 1 3 2 0 2 NaN
3 1 4 2 3 3 11.0
4 1 5 3 3 4 NaN
5 1 6 3 3 5 NaN
6 1 7 3 0 6 NaN
7 1 8 4 0 7 NaN
8 2 1 1 0 8 NaN
9 2 2 2 1 9 7.0
10 2 3 5 0 10 NaN
11 2 4 2 0 11 NaN
12 2 5 1 2 12 4.0
13 2 6 1 2 13 NaN
14 2 7 2 0 14 NaN
Related
I've got a df
df1
a b
4 0 1
5 0 1
6 0 2
2 0 3
3 1 2
15 1 3
12 1 3
13 1 1
15 3 1
14 3 1
8 3 3
9 3 2
10 3 1
the df should be grouped by a and b and I need a column c that goes up from 1 to amount of groups within subgroups of a
df1
a b c
4 0 1 1
5 0 1 1
6 0 2 2
2 0 3 3
3 1 2 1
15 1 3 2
12 1 3 2
13 1 1 3
15 3 1 1
14 3 1 1
8 3 3 2
9 3 2 3
10 3 1 4
How can I do that?
We can do groupby + transform factorize
df['C']=df.groupby('a').b.transform(lambda x : x.factorize()[0]+1)
4 1
5 1
6 2
2 3
3 1
15 2
12 2
13 3
15 1
14 1
8 1
9 1
10 2
Name: b, dtype: int64
Just so we can see the loop version
from itertools import count
from collections import defaultdict
x = defaultdict(count)
y = {}
c = []
for a, b in zip(df.a, df.b):
if (a, b) not in y:
y[(a, b)] = next(x[a]) + 1
c.append(y[(a, b)])
df.assign(C=c)
a b C
4 0 1 1
5 0 1 1
6 0 2 2
2 0 3 3
3 1 2 1
15 1 3 2
12 1 3 2
13 1 1 3
15 3 1 1
14 3 1 1
8 3 3 2
9 3 2 3
10 3 1 1
One option is groupby a and then iterate through each group and groupby b. Then use can use ngroup
df['c'] = np.hstack([g.groupby('b').ngroup().to_numpy() for _,g in df.groupby('a')])
a b c
4 0 1 0
5 0 1 0
6 0 2 1
2 0 3 2
3 1 2 1
15 1 3 2
12 1 3 2
13 1 1 0
15 3 1 0
14 3 1 0
8 3 1 0
9 3 1 0
10 3 2 1
you can use groupby.rank if you don't care about the order in the data.
df['c'] = df.groupby('a')['b'].rank('dense').astype(int)
I have a data-frame with n rows:
df = 1 2 3
4 5 6
4 2 3
3 1 9
6 7 0
9 2 5
I want to add a columns with the same value in groups of 3.
n (num rows) is for sure divided by 3.
So the new df will be:
df = 1 2 3 A
4 5 6 A
4 2 3 A
3 1 9 B
6 7 0 B
9 2 5 B
What is the best way to do so?
First remove last rows if not dividsable by 3 with DataFrame.iloc and then create 100% unique group by divide by 3 with integer division by 3:
print (df)
a b d
0 1 2 3
1 4 5 6
2 4 2 3
3 3 1 9
4 6 7 0
5 9 2 5
6 0 0 4 <- removed last row
N = 3
num = len(df) // N * N
df = df.iloc[:num]
df['groups'] = np.arange(len(df)) // N
print (df)
a b d groups
0 1 2 3 0
1 4 5 6 0
2 4 2 3 0
3 3 1 9 1
4 6 7 0 1
5 9 2 5 1
IIUC, groupby:
df['new_col'] = df.sum(1).groupby(np.arange(len(df))//3).transform('sum')
Output:
0 1 2 new_col
0 1 2 3 30
1 4 5 6 30
2 4 2 3 30
3 3 1 9 42
4 6 7 0 42
5 9 2 5 42
I have dataframe df with following data.
A B C D
1 1 3 1
1 2 9 8
1 3 3 9
2 1 2 9
2 2 1 4
2 3 9 5
2 4 6 4
3 1 4 1
3 2 0 4
4 1 2 6
5 1 2 4
5 2 8 3
grp = df.groupby('A')
Next I want to make all groups of dataframe df grouped on columns A to have same number of rows. Either Truncate extra rows or pad 0 rows. For above data, I want to make all groups to have 3 rows. I required the following results.
A B C D
1 1 3 1
1 2 9 8
1 3 3 9
2 1 2 9
2 2 1 4
2 3 9 5
3 1 4 1
3 2 0 4
3 0 0 0
4 1 2 6
4 0 0 0
4 0 0 0
5 1 2 4
5 2 8 3
5 0 0 0
Similarly, I may want to groupby on multiple columns, like
grp = df.groupby(['A','B'])
Use GroupBy.cumcount for counter column with DataFrame.reindex by MultiIndex.from_product:
df['g'] = df.groupby('A').cumcount()
mux = pd.MultiIndex.from_product([df['A'].unique(), range(3)], names=('A','g'))
df = (df.set_index(['A','g'])
.reindex(mux, fill_value=0)
.reset_index(level=1, drop=True)
.reset_index())
print (df)
A B C D
0 1 1 3 1
1 1 2 9 8
2 1 3 3 9
3 2 1 2 9
4 2 2 1 4
5 2 3 9 5
6 3 1 4 1
7 3 2 0 4
8 3 0 0 0
9 4 1 2 6
10 4 0 0 0
11 4 0 0 0
12 5 1 2 4
13 5 2 8 3
14 5 0 0 0
Another solution with DataFrame.merge with left join with helper DataFrame:
from itertools import product
df['g'] = df.groupby('A').cumcount()
df1 = pd.DataFrame(list(product(df['A'].unique(), range(3))), columns=['A','g'])
df = df1.merge(df, how='left').fillna(0).astype(int).drop('g', axis=1)
print (df)
A B C D
0 1 1 3 1
1 1 2 9 8
2 1 3 3 9
3 2 1 2 9
4 2 2 1 4
5 2 3 9 5
6 3 1 4 1
7 3 2 0 4
8 3 0 0 0
9 4 1 2 6
10 4 0 0 0
11 4 0 0 0
12 5 1 2 4
13 5 2 8 3
14 5 0 0 0
EDIT:
df['g'] = df.groupby(['A','B']).cumcount()
mux = pd.MultiIndex.from_product([df['A'].unique(),
df['B'].unique(),
range(3)], names=('A','B','g'))
df = (df.set_index(['A','B','g'])
.reindex(mux, fill_value=0)
.reset_index(level=2, drop=True)
.reset_index())
print (df.head(10))
A B C D
0 1 1 3 1
1 1 1 0 0
2 1 1 0 0
3 1 2 9 8
4 1 2 0 0
5 1 2 0 0
6 1 3 3 9
7 1 3 0 0
8 1 3 0 0
9 1 4 0 0
from itertools import product
df['g'] = df.groupby(['A','B']).cumcount()
df1 = pd.DataFrame(list(product(df['A'].unique(),
df['B'].unique(),
range(3))), columns=['A','B','g'])
df = df1.merge(df, how='left').fillna(0).astype(int).drop('g', axis=1)
I have a dataframe now:
class1 class2 value value2
0 1 0 1 4
1 2 1 2 3
2 2 0 3 5
3 3 1 4 6
I want to repeat rows and insert an increment column in the same amount according to the difference between value and value2. I want to get the dataframe should like this:
class1 class2 value value2 value3
0 1 0 1 4 1
1 1 0 1 4 2
2 1 0 1 4 3
3 1 0 1 4 4
4 2 1 2 3 2
5 2 1 2 3 3
6 2 0 3 5 3
7 2 0 3 5 4
8 2 0 3 5 5
9 3 1 4 6 4
10 3 1 4 6 5
11 3 1 4 6 6
I tried it like:
def func(x):
copy = x.copy()
num = x.value2+1-x.value
return pd.concat([copy]*num.values[0])
df= df.groupby(['class1','class2']).apply(lambda x:func(x))
But there will be a oredr problem that leads me to not know how to add column value3. And I'd like to have an elegant way of doing it.
Can anyone help me? Thanks in advance
Compute the difference and call Index.repeat:
idx = df.index.repeat(df.value2 - df.value + 1)
Now, either use reindex:
df = df.reindex(idx).reset_index(drop=True)
Or loc:
df = df.loc[idx].reset_index(drop=True)
And you get
df
class1 class2 value value2
0 1 0 1 4
1 1 0 1 4
2 1 0 1 4
3 1 0 1 4
4 2 1 2 3
5 2 1 2 3
6 2 0 3 5
7 2 0 3 5
8 2 0 3 5
9 3 1 4 6
10 3 1 4 6
11 3 1 4 6
For the second part of your question, you'll need groupby.cumcount:
s = idx.to_series()
df['value3'] = df['value'] + s.groupby(idx).cumcount().values
df
class1 class2 value value2 value3
0 1 0 1 4 1
1 1 0 1 4 2
2 1 0 1 4 3
3 1 0 1 4 4
4 2 1 2 3 2
5 2 1 2 3 3
6 2 0 3 5 3
7 2 0 3 5 4
8 2 0 3 5 5
9 3 1 4 6 4
10 3 1 4 6 5
11 3 1 4 6 6
Here's a sequence of things that would get you the desired output:
df.join(df
.apply(lambda x: pd.Series(range(x.value, x.value2+1)), axis=1)
.stack().astype(int)
.reset_index(level=1, drop=1)
.to_frame('value3')).reset_index(drop=1)
Out[]:
class1 class2 value value2 value3
0 1 0 1 4 1
1 1 0 1 4 2
2 1 0 1 4 3
3 1 0 1 4 4
4 2 1 2 3 2
5 2 1 2 3 3
6 2 0 3 5 3
7 2 0 3 5 4
8 2 0 3 5 5
9 3 1 4 6 4
10 3 1 4 6 5
11 3 1 4 6 6
I have a data frame like below
df=pd.DataFrame({'a':['a','a','b','a','b','a','a','a'], 'b' : [1,0,0,1,0,1,1,1], 'c' : [1,2,3,4,5,6,7,8],'d':['1','2','1','2','1','2','1','2']})
df
Out[94]:
a b c d
0 a 1 1 1
1 a 0 2 2
2 b 0 3 1
3 a 1 4 2
4 b 0 5 1
5 a 1 6 2
6 a 1 7 1
7 a 1 8 2
I want something like below
df[(df['a']=='a') & (df['b']==1)]
In [97]:
df[(df['a']=='a') & (df['b']==1)].groupby('d')['c'].rank()
df[(df['a']=='a') & (df['b']==1)].groupby('d')['c'].rank()
Out[97]:
0 1
3 1
5 2
6 2
7 3
dtype: float64
I want this rank as a new column in dataframe df and wherever there is no rank I want NaN. SO final output will be something like below
a b c d rank
0 a 1 1 1 1
1 a 0 2 2 NaN
2 b 0 3 1 NaN
3 a 1 4 2 1
4 b 0 5 1 NaN
5 a 1 6 2 2
6 a 1 7 1 2
7 a 1 8 2 3
I will appreciate all the help and guidance. Thanks a lot.
Almost there, you just need to call transform to return a series with an index aligned to your orig df:
In [459]:
df['rank'] = df[(df['a']=='a') & (df['b']==1)].groupby('d')['c'].transform(pd.Series.rank)
df
Out[459]:
a b c d rank
0 a 1 1 1 1
1 a 0 2 2 NaN
2 b 0 3 1 NaN
3 a 1 4 2 1
4 b 0 5 1 NaN
5 a 1 6 2 2
6 a 1 7 1 2
7 a 1 8 2 3