Providing an integer as external representation of an object - python

I have a family of classes that are composited upon one another. The innermost leaf of this composition is a Coordinate class that defines the position of its parent Variant class.
I would like to iterate over a list of Coordinates and check if any of the Coordinates are equal to a separate integer coordinate. I have looked at Python __ methods and I cannot find an exact form of what i wish to do, although __repr__ comes close (but only provides a string form).
Is there another way to implement this?

Sounds like eq might be more suited to what you want to do. Either that or just create a util function to do the comparison?

Related

Any way to prevent modifications to content of a ndarray subclass?

I am creating various classes for computational geometry that all subclass numpy.ndarray. The DataCloud class, which is typical of these classes, has Python properties (for example, convex_hull, delaunay_trangulation) that would be time consuming and wasteful to calculate more than once. I want to do calculations once and only once. Also, just in time, because for a given instance, I might not need a given property at all. It is easy enough to set this up by setting self.__convex_hull = None in the constructor and, if/when the convex_hull property is called, doing the required calculation, setting self.__convex_hull, and returning the calculated value.
The problem is that once any of those complicated properties is invoked, any changes to the contents made, external to my subclass, by the various numpy (as opposed to DataCloud subclass) methods will invalidate all the calculated properties, and I won't know about it. For example, suppose external code simply does this to the instance: datacloud[3,8] = 5. So is there any way to either (1) make the ndarray base class read-only once any of those properties is calculated or (2) have ndarray set some indicator that there has been a change to its contents (which for my purposes makes it dirty), so that then invoking any of the complex properties will require recalculation?
Looks like the answer is:
np.ndarray.setflags(write=False)

Difference between Python methods which is can make new variable or not

Some methods don't need to make a new variable, i.e. lists.reverse() works like this:
lists = [123, 456, 789]
lists.reverse()
print(lists)
this method make itself reversed (without new variable).
Why there is vary ways to manufacture variable in Python?
Some cases which is like variable.method().method2().method3() are typed continuously but type(variable) and print() are not. Why we can't typing like variable.print() or variable.type()?
Is there any philosophical reasons for Python?
You may be confused by the difference between a function and a method, and by three different purposes to them. As much as I dislike using SO for tutorial purposes, these issues can be hard to grasp from other documentation. You can look up function vs method easily enough -- once you know it's a (slightly) separate issue.
Your first question is a matter of system design. Python merely facilitates what programmers want to do, and the differentiation is common to many (most?) programming languages since ASM and FORTRAN crawled out of the binary slime pools in the days when dinosaurs roamed the earth.
When you design how your application works, you need to make a lot of implementation decisions: individual variables vs a sequence, in-line coding vs functions, separate functions vs encased functions vs classes and methods, etc. Part of this decision making is what each function should do. You've raised three main types:
(1) Process this data -- take the given data and change it, rearrange it, whatever needs doing -- but I don't need the previous version, just the improved version, so just put the new stuff where the old stuff was. This is used almost exclusively when one variable is getting processed; we don't generally take four separate variables and change each of them. In that case, we'd put them all in a list and change the list (a single variable). reverse falls into this class.
One important note is that for such a function, the argument in question must be mutable (capable of change). Python has mutable and immutable types. For instance, a list is mutable; a tuple is immutable. If you wanted to reverse a tuple, you'd need to return a new tuple; you can't change the original.
(2) Tell me something interesting -- take the given data and extract some information. However, I'm going to need the originals, so leave them alone. If I need to remember this cool new insight, I'll put it in a variable of my own. This is a function that returns a value. sqrt is one such function.
(3) Interact with the outside world -- input or output data permanently. For output, nothing in the program changes; we may present the data in an easy-to-read format, but we don't change anything internally. print is such a function.
Much of this decision also depends on the function's designed purpose: is this a "verb" function (do something) or a noun/attribute function (look at this data and tell me what you see)?
Now you get the interesting job for yourself: learn the art of system design. You need to become familiar enough with the available programming tools that you have a feeling for how they can be combined to form useful applications.
See the documentation:
The reverse() method modifies the sequence in place for economy of space when reversing a large sequence. To remind users that it operates by side effect, it does not return the reversed sequence.

Creating class objects in a function and retaining them

I'm building a game in Python with Pygame. I have created a class that acts as a button. When clicked it cycles through various states (it'll do more later.)
What I need is a grid of them that I can adjust the size of dynamically. I have a function that iterates and assigns the class objects coordinates and makes the grid (the images spawn but end up being static), but I'm not sure it's creating the objects correctly. Even if it does, they get dropped from memory when the function ends since they're local.
I've looked at a lot of stuff and people say to use dictionaries to store dynamically created objects, but I need the class objects to still be able to use their functions. Is there a way to iterate a group of class objects with dynamic names and retain them? I can manually make a huge grid of them, but I'd really rather not have to explicitly create and assign 100 or more coordinates to objects.
The dictionary (or list, or whatever) is the answer. I don't understand why you would think that storing instances in a container would mean you can't access their methods. You can, in exactly the same way as before.
For example, if your class has a method "my_method" you can call it on an object of that class retrieved from a dictionary:
my_dict['my_instance'].my_method()

Python Style: nested vs extra function

I'm quite new to python (2.7) and have a question about what's the most Pythonic way to do something; my code (part of a class) Looks like this (a somewhat naive Version):
def calc_pump_height(self):
for i in range(len(self.primary_)):
for j in range(len(self.primary_)):
if self.connections_[i][j].sub_kind_ in [1,4]:
self.calc_spec_pump_height(i,j)
def calc_spec_pump_height(self,i,j):
pass
(obviously pass will be replaced by something else, manipulating attributes of the object of this class, without generating a return value)
I'd like to ask how I should do this: I could avoid the second function and write the extra code directly into the first function, getting rid of one function (Simple is better than complex), but creating a heavily nested function at the same time (Flat is better than nested).
I could also create some sort of list comprehension to avoid using a double Loop, eg:
def calc_pump_height(self):
ra = range(len(self.primary_))
[self.calc_spec_pump_height(i,j) for i,j in zip(ra, ra)]
(I'd have to move the if condition into the 2nd function; this would also create a null-list but I don't care about this, since calc_spec_pump_height is supposed to manipulate the object, not return something useful)
In essence: I'm iterating over a 2D list, testing each object for a certain characteristic and then do something with that object.
Which of the above methods is 'the best'? Or is there another way that I'm missing?
The key thing about functions/methods is that they should do one thing.
calc_pump_height implements two things: It finds elements in a 2D list that match some criteria, and then it calculates a value for each of those elements. It's ok for its purpose to be combining the other two operations, if that makes sense for the object's public API, but its not ok for it to implement either or both.
Finding the elements that match the criteria is a discrete step; that should be a function.
Calculating your value is clearly a discrete step; that should be a function.
I would implement the element matcher as a (private) generator, that takes the test condition as an argument, and yields all matching elements. It's just an iterator over your data structure, masked by the logical test. You can wrap that in a named public method called get_1_4_subkinds() or something that makes more sense in your domain. That generalises the code and gives you the flexibility to implement other conditions in the future. Also, your i and j are tightly coupled, so it makes sense to pass them around as a single concept. Then your code becomes:
def calc_pump_height(self):
for subkind_indices in self.get_1_4_subkinds():
self.calc_pump_spec_height(subkind_indices)
You have misunderstood “simplicity”:
write the extra code directly into the first function, getting rid of one function (Simple is better than complex)
That's not simple. Breaking complex sequences into discrete, focussed functions increases simplicity.
In that light, I would say that yes, you should definitely prefer calc_spec_pump_height as a separate function.
You can eliminate one level of nesting in your first function by using itertools.product to generate your i and j values at the same time (itertools.product(range(len(self.primary_)), repeat=2). The zip you use in the your second version won't work correctly, it will only yield identical pairs, 0,0, 1,1, 2,2, etc.
As for the overall design, you should not use a list comprehension if you don't care about the return value from the function you're calling. Use an explicit loop when it's the looping you want (rather than a list of computed values).
If there's a non-trivial amount of code that will go in calc_spec_pump_height, it makes perfect sense to make it as a separate method. If it's a one or two liner, then it might be OK to inline within calc_pump_height, but that method's loops and condition testing may be complicated enough already to justify factoring out the inner part of the algorithm.
You should usually think about splitting a big function up when it is too long to fit onto a single screen in your editor. That is about the limit of how many details (variable names, etc.) we can keep in our mind simultaneously. On the other hand, you shouldn't waste time (either your own programming time or function call overhead at run time) by factoring out every little piece of every problem. Factor part of a function out if you're using it from more than one place, or if you can't keep the details of the whole function in your head at once otherwise.
So, other than the (marginal) improvement of itertools.product and given the limited information you've provided about what calc_spec_pump_height will do, I think your code is already about as good as it can get!

Python 3.2: Information on class, class attributes, and values of objects

I'm new to Python, and I'm learning about the class function. Does anyone know of any good sources/examples for this? Here's an example I wrote up. I'm trying to read more about self and init
class Example:
def __init__(a, b, c, d):
self.a = a
self.b = b
self.c = c
self.d = d
test = Example(1, 1, 1, 1)
I've been to python.org, as well as this site. I've also been reading beginners Python books, but I'd like more information.
Thanks.
A couple of generic clarifications here:
Python's "class" keyword is not a function, it's a statement which signals to the language that the following code describes a class (a user-defined data type and its associated behavior). "class" takes a name (and a possibly empty list of "parent" classes) ... and introduces a "suite" (an indented block of code).
The "def" keyboard is a similar statement which defines a function. In your example, which should have read: *def _init_(self, a, b, c)*) you're defining a special type of function which is "part of" (associated with, bound to) the Example class. It's also possible (and fairly common) to create unbound functions. Commonly, in Python, unbound functions are simple called "functions" while those which are part of a class are called "methods" ... or "instance functions."
classes are templates for instantiating objects. The terms "instance" and "object" are synonymous in this context. Your example "test" is an instance ... and the Python interpreter "instantiates" and initializes that object according to the class description.
A class is also a "type", that is to say that it's a user definition of a type of data and its associated methods. "class" and "type" are somewhat synonymous in Python though they are conventionally used in different ways. The core "types" of Python data (integers, real numbers, imaginary/complex numbers, strings, lists, tuples, and dictionaries) are all referred to as "types" while the more complex data/operational structures are called classes. Early versions of Python were implemented with constraints that made the distinction between "type" and "class" more than merely a matter of terminological difference. However, the last several versions of Python have eliminated those underlying technical distinctions. Those distinctions related to "subclassing" (inheritance).
classes can be described as a set of additions and modifications to another class. This is called "inheritance" and the class which is derived from another in this manner is referred to as a "subclass." It's common for programmers to create hierarchies of classes ... with specific variations all deriving from more common bases. It's also common to define related functionality within the same files or sets of files. These are "class libraries" and sometimes they are built as "packages."
_init_() is a method; in particular it's the initializer for Python objects (instances of a class).
Python generally uses _..._ (prefixing and suffixing pairs of underscore characters around selected keywords) for "special" method or attribute names ... which is intended to reduce the likelihood that its naming choices will conflict with the meaningful names that you might wish to give to your own methods. While you can name your other methods and attributes with this _XXXX_ --- Python will not inherently treat that as an error --- it's an extremely bad idea to do so. Even if you don't pick any of the currently defined special names there's no guarantee that some future version of Python won't conflict with your usage later.
"methods" are functions ... but they are a type of function which is bound (associated with) a particular instance of a particular class. There are also "class methods" which are associated with the class rather than with a specific instance of the class.
In your example self.b, self.c and so on are "attributes" or "members" of the object (instance). (The terms are synonymous).
In general the purpose of object orient programming is to provide ways of describing types of data and operations on those types of data in a way that's amenable to both human comprehension and computerized interpretation and execution. (All programming languages are intended to strike some balance between human readability/comprehension and machine parsing/execution; but object-oriented languages do so specifically with a focus on the description and definition of "types," and the instantiation of those types into "objects" and finally the various interactions among those objects.
"self" is a Python specific convention for naming the special (and generally required) first argument to any bound method. It's a "self" reference (a way for the code in a method to refer to the object/instance's own attributes and other methods without any ambiguity). While you can call your first argument to your bound methods "a" (as you've unwittingly done in your Example) it's an extremely bad idea to do so. Not only will it likely confuse you later ... it will make no sense to anyone else trying to read your Python code).
The term "object-oriented" is confusing unless one is aware of the comparisons to other forms of programming language. It's an evolution from "procedural" programming. The simplest gist of that comparison is when you consider the sorts of functions one would define in a procedural language were one might have to define and separately name different functions to perform analogous operations on different types of data: print_student_record(this_student) vs. print_teacher_report(some_report) --- a programming model which necessitates a fair amount of overhead on the part of the programmer, to keep track of which functions work on which types. This sort of problem is eliminated in OO (object oriented) programming where one can, conceivably, call on this.print_() ... and, assuming one has created compatible classes, this will "print" regardless of whether "this" is a student (record/object) or a teacher (report/record/object). That's greatly oversimplified but useful for understanding the pressures which led to the development and adoption of OO based programming.
In Python it's possible to create classes with little or no functionality. Your example does nothing, yet, but transfer a set of arguments into "attributes" (members) during initialization (instantiation). After that you could use these attributes in programming statements like: test.a += 1 and print (test.a). This is possible because Python is a "multi-paradigm" language. It supports procedural as well as object-orient programming styles. Objects used this way are very similar to "structs" from the C programming language (predecessor to C++) and to the "records" in Pascal, etc. That style of programming is largely considered to be obsolete (particularly when using a modern, "very high level" language such as Python).
The gist of what I'm getting at is this ... you'll want to learn how to think of your data as the combination of it's "parts" (attributes) and the functionality that changes, manipulates, validates, and handles input, output, and possibly storage, of those attributes.
For example if you were writing a "code breaker" program to solve simply ciphers you might implement a "Histogram" object which counts the letter frequencies of a given coded message. That would have attributes (one integer for every letter) and behavior (feeding ports of the coded message(s) into the instance, splitting the strings into individual characters, filtering out all the non-letter characters, converting all the letters to upper or lower case, and counting them --- that is incrementing the integer corresponding to each letter). Additionally you'd need to have some way of querying the histogram ... for example getting list of the letters sorted by their frequency in the cipher text.
Once you had such a "histogram" class then you could think of ways to use that for your solver. For example to solve a cryptogram puzzle you might computer the histogram then try substituting "etaon" for the five most common ciphered letters ... then check how many of the "partial" strings (t.e for "the") match words, trying permutations, and so on. Each of these might be it's own class. A key point of programming is that your histogram class might be useful for counting all sorts of other things (even in a simple voting system or popularity context). A particular subclass or instantiation might make it a histogram of letters while others could be re-used for other types of "things" you want counted. Similarly the code that iterates over permutions of some list might be used in any number of simulation, optimization, and related programs. (In fact Python's standard libraries already including "counters" and "permutations" functions in the "collections" and "itertools" modules, respectively).
Of course you're going to hear of all of these concepts repeatedly as you study programming. This has been a rather rambling attempt to kickstart that process. I know I've been a bit repetitious in a few points here --- part of that is because I'm typing this a 4am after having started work at 7am yesterday; but part of it serves a pedagogical purpose as well.
There's an error in your class definition. Always include the variable self in your __init__ method. It represents the instance of the object itself and should be included as the first parameter to all of your methods.
What do you want to accomplish with this class? Up until now, it just stores a few variables. Try adding a few methods to spice things up a little bit! There is a plethora of available resources on classes in Python. To start, you may wanna give this one a try:
Python Programming - Classes
I'm learning python now also, and there is an intro class that's pretty good on codecademy.com
http://www.codecademy.com/tracks/python
It has a section that goes through an exercise on classes. Hope this helps

Categories