Move or copy patches between figures - python

How can I move (or copy) patches between figures in matplotlib?
I'm working with a set of pickled figures, and would like to combine them to one plot.
This is no problem when working with line plots, as I can access the data through ax.get_lines.
However, when working with histograms, ax.get_lines returns <a list of 0 Line2D objects>. As far as I can see, the only way to access the plotted data is through ax.patches.
If I try to set a patch from one figure to another with ax.add_patch, I get RuntimeError: Can not put single artist in more than one figure.
Edit
I'm using matplotlib2.0.0.
The following example illustrates the problem
import numpy as np
import matplotlib.pylab as plt
import copy
# Creating the two figures
x = np.random.rand(20)
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
nr = 0
for color, ax in zip(("red", "blue"), (ax1, ax2)):
x = np.random.rand(20) + nr
ax.hist(x, color=color)
nr += 0.5
# Copying from ax1 to ax2
for patch in ax1.patches:
patch_cpy = copy.copy(patch)
# del patch # Uncommenting seems this makes no difference
ax2.add_patch(patch_cpy)
# RuntimeError: Can not put single artist in more than one figure
I would like to copy the red patches to the figure with the blue patches.
Edit 2
Although #ImportanceOfBeingErnest's answer worked for the case above, it did not work in the real-life problem I had.
I ended up making a new axis, and manually created new patches like so:
import numpy as np
import matplotlib.pylab as plt
from matplotlib import patches
# Creating the two figures
x = np.random.rand(20)
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
nr = 0
for color, ax in zip(("red", "blue"), (ax1, ax2)):
x = np.random.rand(20) + nr
ax.hist(x, color=color)
nr += 0.5
# Create another axis
fig3, ax3 = plt.subplots()
# Copy the properties of the patches to the new axis
for p in ax1.patches:
ax3.add_patch(patches.Rectangle(p.get_xy(),\
p.get_width(),\
p.get_height(),\
color = "red"))
for p in ax2.patches:
ax3.add_patch(patches.Rectangle(p.get_xy(),\
p.get_width(),\
p.get_height(),\
color = "blue"))
ax3.autoscale()
plt.show()

Apparently, the old solution of just deleting the artist doesn't work any more in matplotlib 2.0.
The patch_cpy will still be connected to the same axis as the original. You can see this by print patch_cpy.axes == ax1 which prints True.
So the solution can be to just set the axes and figure attribute of patch_cpy to None. I have to admit that I'm not sure if this hasn't got any side effects, but, at least the example below works.
Additionally, the copied patch wil still have the data transform of the old axes incorporated. This needs to be updated using patch_cpy.set_transform(ax2.transData).
Finally, to make sure the plot limits cover both the old and newly copied artists, use ax2.autoscale().
import numpy as np
import matplotlib.pylab as plt
import copy
# Creating the two figures
x = np.random.rand(20)
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
nr = 0
for color, ax in zip(("red", "blue"), (ax1, ax2)):
x = np.random.rand(20) + nr
ax.hist(x, color=color)
nr += 0.5
# Copying from ax1 to ax2
for patch in ax1.patches:
patch_cpy = copy.copy(patch)
# cut the umbilical cord the hard way
patch_cpy.axes = None
patch_cpy.figure = None
patch_cpy.set_transform(ax2.transData)
ax2.add_patch(patch_cpy)
ax2.autoscale()
plt.show()

You can make a copy of each patch. Here is an example where all the pathces are copied from one axes to another:
import copy
x = np.random.rand(20)
fig, ax = plt.subplots()
for color in ("red", "blue"):
x = np.random.rand(20)
ax.hist(x, color=color)
fig2, ax2 = plt.subplots()
for patch in ax.patches:
patch_cpy = copy.copy(patch)
ax2.add_patch(patch_cpy)
If you want to remove the patches from the first axes you can use del to do that, for example deleting every other patch:
del ax.patches[::2]
Remember to redraw the figure afterward with:
fig.canvas.draw()

Related

copy subplot to another figure in matplotlib (changing figure size) [duplicate]

let say I have this code:
num_rows = 10
num_cols = 1
fig, axs = plt.subplots(num_rows, num_cols, sharex=True)
for i in xrange(num_rows):
ax = axs[i]
ax.plot(np.arange(10), np.arange(10)**i)
plt.show()
the result figure has too much info and now I want to pick 1 of the axes and draw it alone in a new figure
I tried doing something like this
def on_click(event):
axes = event.inaxes.get_axes()
fig2 = plt.figure(15)
fig2.axes.append(axes)
fig2.show()
fig.canvas.mpl_connect('button_press_event', on_click)
but it didn't quite work. what would be the correct way to do it? searching through the docs and throw SE gave hardly any useful result
edit:
I don't mind redrawing the chosen axes, but I'm not sure how can I tell which of the axes was chosen so if that information is available somehow then it is a valid solution for me
edit #2:
so I've managed to do something like this:
def on_click(event):
fig2 = plt.figure(15)
fig2.clf()
for line in event.inaxes.axes.get_lines():
xydata = line.get_xydata()
plt.plot(xydata[:, 0], xydata[:, 1])
fig2.show()
which seems to be "working" (all the other information is lost - labels, lines colors, lines style, lines width, xlim, ylim, etc...)
but I feel like there must be a nicer way to do it
thanks
Copying the axes
The inital answer here does not work, we keep it for future reference and also to see why a more sophisticated approach is needed.
#There are some pitfalls on the way with the initial approach.
#Adding an `axes` to a figure can be done via `fig.add_axes(axes)`. However, at this point,
#the axes' figure needs to be the figure the axes should be added to.
#This may sound a bit like running in circles but we can actually set the axes'
#figure as `axes.figure = fig2` and hence break out of this.
#One might then also position the axes in the new figure to take the usual dimensions.
#For this a dummy axes can be added first, the axes can change its position to the position
#of the dummy axes and then the dummy axes is removed again. In total, this would look as follows.
import matplotlib.pyplot as plt
import numpy as np
num_rows = 10
num_cols = 1
fig, axs = plt.subplots(num_rows, num_cols, sharex=True)
for i in xrange(num_rows):
ax = axs[i]
ax.plot(np.arange(10), np.arange(10)**i)
def on_click(event):
axes = event.inaxes
if not axes: return
fig2 = plt.figure()
axes.figure=fig2
fig2.axes.append(axes)
fig2.add_axes(axes)
dummy = fig2.add_subplot(111)
axes.set_position(dummy.get_position())
dummy.remove()
fig2.show()
fig.canvas.mpl_connect('button_press_event', on_click)
plt.show()
#So far so good, however, be aware that now after a click the axes is somehow
#residing in both figures, which can cause all sorts of problems, e.g. if you
# want to resize or save the initial figure.
Instead, the following will work:
Pickling the figure
The problem is that axes cannot be copied (even deepcopy will fail). Hence to obtain a true copy of an axes, you may need to use pickle. The following will work. It pickles the complete figure and removes all but the one axes to show.
import matplotlib.pyplot as plt
import numpy as np
import pickle
import io
num_rows = 10
num_cols = 1
fig, axs = plt.subplots(num_rows, num_cols, sharex=True)
for i in range(num_rows):
ax = axs[i]
ax.plot(np.arange(10), np.arange(10)**i)
def on_click(event):
if not event.inaxes: return
inx = list(fig.axes).index(event.inaxes)
buf = io.BytesIO()
pickle.dump(fig, buf)
buf.seek(0)
fig2 = pickle.load(buf)
for i, ax in enumerate(fig2.axes):
if i != inx:
fig2.delaxes(ax)
else:
axes=ax
axes.change_geometry(1,1,1)
fig2.show()
fig.canvas.mpl_connect('button_press_event', on_click)
plt.show()
Recreate plots
The alternative to the above is of course to recreate the plot in a new figure each time the axes is clicked. To this end one may use a function that creates a plot on a specified axes and with a specified index as input. Using this function during figure creation as well as later for replicating the plot in another figure ensures to have the same plot in all cases.
import matplotlib.pyplot as plt
import numpy as np
num_rows = 10
num_cols = 1
colors = plt.rcParams["axes.prop_cycle"].by_key()["color"]
labels = ["Label {}".format(i+1) for i in range(num_rows)]
def myplot(i, ax):
ax.plot(np.arange(10), np.arange(10)**i, color=colors[i])
ax.set_ylabel(labels[i])
fig, axs = plt.subplots(num_rows, num_cols, sharex=True)
for i in xrange(num_rows):
myplot(i, axs[i])
def on_click(event):
axes = event.inaxes
if not axes: return
inx = list(fig.axes).index(axes)
fig2 = plt.figure()
ax = fig2.add_subplot(111)
myplot(inx, ax)
fig2.show()
fig.canvas.mpl_connect('button_press_event', on_click)
plt.show()
If you have, for example, a plot with three lines generated by the function plot_something, you can do something like this:
fig, axs = plot_something()
ax = axs[2]
l = list(ax.get_lines())[0]
l2 = list(ax.get_lines())[1]
l3 = list(ax.get_lines())[2]
plot(l.get_data()[0], l.get_data()[1])
plot(l2.get_data()[0], l2.get_data()[1])
plot(l3.get_data()[0], l3.get_data()[1])
ylim(0,1)

How to add one legend bar for all maps in subplot in matplotlib? [duplicate]

I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:

Add figures in new subplot in Python [duplicate]

Looking at the matplotlib documentation, it seems the standard way to add an AxesSubplot to a Figure is to use Figure.add_subplot:
from matplotlib import pyplot
fig = pyplot.figure()
ax = fig.add_subplot(1,1,1)
ax.hist( some params .... )
I would like to be able to create AxesSubPlot-like objects independently of the figure, so I can use them in different figures. Something like
fig = pyplot.figure()
histoA = some_axes_subplot_maker.hist( some params ..... )
histoA = some_axes_subplot_maker.hist( some other params ..... )
# make one figure with both plots
fig.add_subaxes(histo1, 211)
fig.add_subaxes(histo1, 212)
fig2 = pyplot.figure()
# make a figure with the first plot only
fig2.add_subaxes(histo1, 111)
Is this possible in matplotlib and if so, how can I do this?
Update: I have not managed to decouple creation of Axes and Figures, but following examples in the answers below, can easily re-use previously created axes in new or olf Figure instances. This can be illustrated with a simple function:
def plot_axes(ax, fig=None, geometry=(1,1,1)):
if fig is None:
fig = plt.figure()
if ax.get_geometry() != geometry :
ax.change_geometry(*geometry)
ax = fig.axes.append(ax)
return fig
Typically, you just pass the axes instance to a function.
For example:
import matplotlib.pyplot as plt
import numpy as np
def main():
x = np.linspace(0, 6 * np.pi, 100)
fig1, (ax1, ax2) = plt.subplots(nrows=2)
plot(x, np.sin(x), ax1)
plot(x, np.random.random(100), ax2)
fig2 = plt.figure()
plot(x, np.cos(x))
plt.show()
def plot(x, y, ax=None):
if ax is None:
ax = plt.gca()
line, = ax.plot(x, y, 'go')
ax.set_ylabel('Yabba dabba do!')
return line
if __name__ == '__main__':
main()
To respond to your question, you could always do something like this:
def subplot(data, fig=None, index=111):
if fig is None:
fig = plt.figure()
ax = fig.add_subplot(index)
ax.plot(data)
Also, you can simply add an axes instance to another figure:
import matplotlib.pyplot as plt
fig1, ax = plt.subplots()
ax.plot(range(10))
fig2 = plt.figure()
fig2.axes.append(ax)
plt.show()
Resizing it to match other subplot "shapes" is also possible, but it's going to quickly become more trouble than it's worth. The approach of just passing around a figure or axes instance (or list of instances) is much simpler for complex cases, in my experience...
The following shows how to "move" an axes from one figure to another. This is the intended functionality of #JoeKington's last example, which in newer matplotlib versions is not working anymore, because axes cannot live in several figures at once.
You would first need to remove the axes from the first figure, then append it to the next figure and give it some position to live in.
import matplotlib.pyplot as plt
fig1, ax = plt.subplots()
ax.plot(range(10))
ax.remove()
fig2 = plt.figure()
ax.figure=fig2
fig2.axes.append(ax)
fig2.add_axes(ax)
dummy = fig2.add_subplot(111)
ax.set_position(dummy.get_position())
dummy.remove()
plt.close(fig1)
plt.show()
For line plots, you can deal with the Line2D objects themselves:
fig1 = pylab.figure()
ax1 = fig1.add_subplot(111)
lines = ax1.plot(scipy.randn(10))
fig2 = pylab.figure()
ax2 = fig2.add_subplot(111)
ax2.add_line(lines[0])
TL;DR based partly on Joe nice answer.
Opt.1: fig.add_subplot()
def fcn_return_plot():
return plt.plot(np.random.random((10,)))
n = 4
fig = plt.figure(figsize=(n*3,2))
#fig, ax = plt.subplots(1, n, sharey=True, figsize=(n*3,2)) # also works
for index in list(range(n)):
fig.add_subplot(1, n, index + 1)
fcn_return_plot()
plt.title(f"plot: {index}", fontsize=20)
Opt.2: pass ax[index] to a function that returns ax[index].plot()
def fcn_return_plot_input_ax(ax=None):
if ax is None:
ax = plt.gca()
return ax.plot(np.random.random((10,)))
n = 4
fig, ax = plt.subplots(1, n, sharey=True, figsize=(n*3,2))
for index in list(range(n)):
fcn_return_plot_input_ax(ax[index])
ax[index].set_title(f"plot: {index}", fontsize=20)
Outputs respect.
Note: Opt.1 plt.title() changed in opt.2 to ax[index].set_title(). Find more Matplotlib Gotchas in Van der Plas book.
To go deeper in the rabbit hole. Extending my previous answer, one could return a whole ax, and not ax.plot() only. E.g.
If dataframe had 100 tests of 20 types (here id):
dfA = pd.DataFrame(np.random.random((100,3)), columns = ['y1', 'y2', 'y3'])
dfB = pd.DataFrame(np.repeat(list(range(20)),5), columns = ['id'])
dfC = dfA.join(dfB)
And the plot function (this is the key of this whole answer):
def plot_feature_each_id(df, feature, id_range=[], ax=None, legend_bool=False):
feature = df[feature]
if not len(id_range): id_range=set(df['id'])
legend_arr = []
for k in id_range:
pass
mask = (df['id'] == k)
ax.plot(feature[mask])
legend_arr.append(f"id: {k}")
if legend_bool: ax.legend(legend_arr)
return ax
We can achieve:
feature_arr = dfC.drop('id',1).columns
id_range= np.random.randint(len(set(dfC.id)), size=(10,))
n = len(feature_arr)
fig, ax = plt.subplots(1, n, figsize=(n*6,4));
for i,k in enumerate(feature_arr):
plot_feature_each_id(dfC, k, np.sort(id_range), ax[i], legend_bool=(i+1==n))
ax[i].set_title(k, fontsize=20)
ax[i].set_xlabel("test nr. (id)", fontsize=20)

Matplotlib: adding a third subplot in the plot

I am completely new to Matplotlib and I have written this code to plot two series that so far is working fine:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
list1 = [1,2,3,4]
list2 = [4,3,2,1]
somecondition = True
plt.figure(1) #create one of the figures that must appear with the chart
gs = gridspec.GridSpec(3,1)
if not somecondition:
ax = plt.subplot(gs[:,:]) #create the first subplot that will ALWAYS be there
ax.plot(list1) #populate the "main" subplot
else:
ax = plt.subplot(gs[:2, :])
ax.plot(list1)
ax = plt.subplot(gs[2, :]) #create the second subplot, that MIGHT be there
ax.plot(list2) #populate the second subplot
plt.show()
What I would like to do is adding a third series to this plot, let's say:
list3 = [4,1,2,4]
What matters is that the first subplot (list1) has to be twice as bigger than the other two; for doing this I have used gridspace, but as I am really new I'm not being able to understand how I should set the parameter for this sample code to get the third one. Can anyone explain me how I should edit the block somecondition == True to get 3 subplots (first 1 twice bigger than the other 2 below) rather than just two?
P.S. the code is executable.
This is an example with Matplotlib subplots
import matplotlib.pyplot as plt
import numpy as np
x,y = np.random.randn(2,100)
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.xcorr(x, y, usevlines=True, maxlags=50, normed=True, lw=2)
ax1.grid(True)
ax1.axhline(0, color='black', lw=2)
ax2 = fig.add_subplot(212, sharex=ax1)
ax2.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
ax2.grid(True)
ax2.axhline(0, color='black', lw=2)
plt.show()
it is using pyplot, and add_subplot with a quite straightforward syntax.
To get 2:1 ratio, you can use 4 rows, and make plots take 2, 1, 1 row respectively:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
list1 = [1,2,3,4]
list2 = [4,3,2,1]
list3 = [4,1,2,4]
somecondition = True
plt.figure(1) #create one of the figures that must appear with the chart
gs = gridspec.GridSpec(4,1)
if not somecondition:
ax = plt.subplot(gs[:,:]) #create the first subplot that will ALWAYS be there
ax.plot(list1) #populate the "main" subplot
else:
ax = plt.subplot(gs[:2, :])
ax.plot(list1)
ax = plt.subplot(gs[2, :]) #create the second subplot, that MIGHT be there
ax.plot(list2) #populate the second subplot
ax = plt.subplot(gs[3, :]) #create the second subplot, that MIGHT be there
ax.plot(list3)
plt.show()

How to have one colorbar for all subplots

I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:

Categories