Sockets and functions - python

I have a big question I couldn't get answer from the web about
sockets in python.
I'm making a simple client program (python) based on socket:
Connecting to a server.
I would like to make a function that its purpose is just to try to connect to the server, otherwise the application will not work.
Because I had trouble with "global" socket variable across the whole class, I decided to make a local socket variable inside my main and pass it through all functions.
I wanted to make sure that I understand it 100% :
Should I return the socket from the function that's trying to connect to the server ( otherwise sleeps for 0.5 a second and tries again )
OR I don't need to return the socket at all and the socket variable itself will be updated ?
UPDATE
#will try to connect to the server
def try_connecting_to_server(socket_to_server):
connected = False
while not connected:
try:
socket_to_server.connect((HOST, PORT)) # connect to the server
connected = True
except:
print "couldn't connect to server, sleeping for 0.5 seconds"
time.sleep(0.5)
return socket_to_server
def main():
# start the socket to the server
socket_to_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # setup the socket for future use
try:
socket_to_server = try_connecting_to_server(socket_to_server)
handle_missions(socket_to_server) # pass the socket
except:
print "encountered an error"
finally:
socket_to_server.sendall(PROTOCOL_CLOSE_KEY)
socket_to_server.close()
if __name__ == "__main__":
main()

def try_connecting_to_server(socket_to_server):
connected = False
while not connected:
try:
socket_to_server.connect((HOST, PORT)) # connect to the server
connected = True
except:
print "couldn't connect to server, sleeping for 0.5 seconds"
time.sleep(0.5)
return socket_to_server
There is no reason for this function to return socket_to_server.
Since a socket object is mutable, any changes to it inside the function (e.g. connecting it to a server) are visible to the function which called it.
You can verify that by making this change in main():
returned_sock = try_connecting_to_server(socket_to_server)
if returned_sock is socket_to_server:
print "They refer to the exact same object!"
See How do I pass a variable by reference?

Related

conn.send('Hi'.encode()) BrokenPipeError: [Errno 32] Broken pipe (SOCKET)

hi i make model server client which works fine and i also create separate GUI which need to two input server IP and port it only check whether server is up or not. But when i run server and then run my GUI and enter server IP and port it display connected on GUI but on server side it throw this error. The Server Client working fine but integration of GUI with server throw below error on server side.
conn.send('Hi'.encode()) # send only takes string BrokenPipeError: [Errno 32] Broken pip
This is server Code:
from socket import *
# Importing all from thread
import threading
# Defining server address and port
host = 'localhost'
port = 52000
data = " "
# Creating socket object
sock = socket()
# Binding socket to a address. bind() takes tuple of host and port.
sock.bind((host, port))
# Listening at the address
sock.listen(5) # 5 denotes the number of clients can queue
def clientthread(conn):
# infinite loop so that function do not terminate and thread do not end.
while True:
# Sending message to connected client
conn.send('Hi'.encode('utf-8')) # send only takes string
data =conn.recv(1024)
print (data.decode())
while True:
# Accepting incoming connections
conn, addr = sock.accept()
# Creating new thread. Calling clientthread function for this function and passing conn as argument.
thread = threading.Thread(target=clientthread, args=(conn,))
thread.start()
conn.close()
sock.close()
This is part of Gui Code which cause problem:
def isOpen(self, ip, port):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
s.connect((ip, int(port)))
data=s.recv(1024)
if data== b'Hi':
print("connected")
return True
except:
print("not connected")
return False
def check_password(self):
self.isOpen('localhost', 52000)
Your problem is simple.
Your client connects to the server
The server is creating a new thread with an infinite loop
The server sends a simple message
The client receives the message
The client closes the connection by default (!!!), since you returned from its method (no more references)
The server tries to receive a message, then proceeds (Error lies here)
Since the connection has been closed by the client, the server cannot send nor receive the next message inside the loop, since it is infinite. That is the cause of the error! Also there is no error handling in case of closing the connection, nor a protocol for closing on each side.
If you need a function that checks whether the server is online or not, you should create a function, (but I'm sure a simple connect is enough), that works like a ping. Example:
Client function:
def isOpen(self, ip, port):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
s.connect((str(ip), int(port)))
s.send("ping".encode('utf-8'))
return s.recv(1024).decode('utf-8') == "pong" # return whether the response match or not
except:
return False # cant connect
Server function:
def clientthread(conn):
while True:
msg = conn.recv(1024).decode('utf-8') #receiving a message
if msg == "ping":
conn.send("pong".encode('utf-8')) # sending the response
conn.close() # closing the connection on both sides
break # since we only need to check whether the server is online, we break
From your previous questions I can tell you have some problems understanding how TCP socket communication works. Please take a moment and read a few articles about how to communicate through sockets. If you don't need live communications (continous data stream, like a video, game server, etc), only login forms for example, please stick with well-known protocols, like HTTP. Creating your own reliable protocol might be a little complicated if you just got into socket programming.
You could use flask for an HTTP back-end.

How to make a TCP server handle multiple clients?

I'm trying to make a Python server where multiple clients can connect but I've run into a problem I tried everything that I found on the internet.
I'm running a laptop whit windows 7 and an I3 processor.
This is the file called tcp:
import socket
def make_server (ip,port):
try:
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind((ip, port))
server.listen(1)
return server
except Exception as ex:
print(ex)
return None
def accept(server):
conn, addr = server.accept()
return conn
def make_client():
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
return client
def client_connect(client,ip,port):
client.connect((ip,port))
def sendall(conn,mess):
conn.send(str(mess).encode("utf-8"))
def rec(conn,rate):
mess = conn.recv(rate).decode("utf-8")
return mess
def close(client):
client.close()
This is the server:
from multiprocessing import Process
from random import randint
import tcp
import sys
def start(sip, sport):
print("Making sob server...")
print("id= {}".format(sport))
sserver = tcp.make_server(sip, sport)
print("Sub Server Started!")
sconn = tcp.accept(sserver)
tcp.sendall(sconn, "connected!!")
while True:
try:
tcp.sendall(sconn, randint(0, 100))
except Exception as ex:
print("")
print("From server {} error:".format(port))
print(ex)
print("")
break
ip = "192.168.0.102"
port = 8000
subport = 9000
server = tcp.make_server(ip, port)
if server is None:
sys.exit(0)
print("Started!")
while True:
print("Wating for new connection!")
con = tcp.accept(server)
print("Connected!")
subport = subport + 1
tcp.sendall(con, subport)
print("New Port Sent!")
print("New Port = {}".format(subport))
subs = Process(target=start, args=(ip, subport))
subs.start()
subs.join()
This is the client:
import tcp
import time
nport = 0
ip = "192.168.0.102"
port = 8000
client = tcp.make_client()
tcp.client_connect(client,ip,port)
nport = tcp.rec(client,1024)
print(nport)
tcp.close(client)
nport = int(nport)
time.sleep(1)
print(nport)
client = tcp.make_client()
tcp.client_connect(client,ip,nport)
while True:
mess = tcp.rec(client, 1024)
if(mess):
print(mess)
The error is:
[WinError 10048]Only one usage of each socket address (protocol/network address/port) is normally permitted Python
Feel free to change anything you want.
If you need any info in plus just ask.
You are creating a socket in the client with tcp.make_client. You are then using that socket to connect to the server via tcp.client_connect. Presumably you successfully receive the new port number back from the server. But then you are trying to re-use the same socket to connect to those ports.
This is the proximate cause of your error: A socket can only be used for a single TCP connection. If you want to create a new connection, you must first create a new socket.
That being said, if you are simply trying to create a server that will accept multiple connections, you're making it way too complicated. The server can receive any number of connections on its single listening port, as long as a different address/port combination is used by each client.
One way to structure this in a server is something like this:
# Create and bind listening socket
lsock = socket.socket()
lsock.bind(('', port))
lsock.listen(1)
while True:
csock, addr = lsock.accept()
print("Got connection from {}".format(addr))
# Start sub-process passing it the newly accepted socket as argument
subs = Process(target=start, args=(csock, ))
subs.start()
# Close our handle to the new socket (it will remain open in the
# sub-process which will use it to talk to the client)
csock.close()
# NOTE: do not call subs.join here unless you want the parent to *block*
# waiting for the sub-process to finish (and if so, what is the point in
# creating a sub-process?)
There are several others ways to do it as well: you can create multiple threads to handle multiple connections, or you can handle all connections in a single thread by using select or with asynchronous I/O.
The client is typically much simpler -- as it usually only cares about its own one connection -- and doesn't care which way the server is implemented:
sock = socket.socket()
sock.connect((ip, port))
while True:
sock.send(...)
sock.recv(...)
If the client does wish to connect to the same server again, it simply creates a second socket and call its connect method with the same server IP and port.
Usually, the client never needs to specify its own port, only the server's port. It simply calls connect and the client-side operating system chooses an unused port for it. So the first time, the client creates a socket and connects it (to the server's listening port), the client-side OS may choose port 50001. The next time it creates and connects a socket, it may get 50002 and so on. (The exact port numbers chosen depend on the operating system implementation and other factors, such as what other programs are running and creating connections.)
So, given client IP 192.168.0.101 and server IP 192.168.0.102, and assuming the server is listening on port 8000, this would result in these two connections:
(192.168.0.101/50001) ====> (192.168.0.102/8000)
(192.168.0.101/50002) ====> (192.168.0.102/8000)

Port Scanner python script

I'm a beginner to python and i'm learning the socket objects in python. I found out a script on the internet that is:
import socket
s = socket.socket()
socket.setdefaulttimeout(2)
try:
s = s.connect(("IP_ADD", PORT_NUM))
print "[+] connection successful"
except Exception, e:
print "[+] Port closed"
I just wanted to ask, that whether this script can work as a port scanner? Thanks alot!
Just change your code, it can be used as a TCP port scanner for localhost :
import socket
def scan_port(port_num, host):
s = socket.socket()
socket.setdefaulttimeout(2)
try:
s = s.connect((host, port_num))
print port_num, "[+] connection successful"
except Exception, e:
print port_num, "[+] Port closed"
host = 'localhost'
for i in xrange(1024):
scan_port(i, host)
But it is just a toy, you can not use it for something real, if you want scan the ports of other's computer,
try nmap.
Here is my version of your port scanner. I tried to explain how everything works in the comments.
#-*-coding:utf8;-*-
#qpy:3
#qpy:console
import socket
import os
# This is used to set a default timeout on socket
# objects.
DEFAULT_TIMEOUT = 0.5
# This is used for checking if a call to socket.connect_ex
# was successful.
SUCCESS = 0
def check_port(*host_port, timeout=DEFAULT_TIMEOUT):
''' Try to connect to a specified host on a specified port.
If the connection takes longer then the TIMEOUT we set we assume
the host is down. If the connection is a success we can safely assume
the host is up and listing on port x. If the connection fails for any
other reason we assume the host is down and the port is closed.'''
# Create and configure the socket.
sock = socket.socket()
sock.settimeout(timeout)
# the SO_REUSEADDR flag tells the kernel to reuse a local
# socket in TIME_WAIT state, without waiting for its natural
# timeout to expire.
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
# Like connect(address), but return an error indicator instead
# of raising an exception for errors returned by the C-level connect() 
# call (other problems, such as “host not found,” can still raise exceptions).
# The error indicator is 0 if the operation succeeded, otherwise the value of
# the errnovariable. This is useful to support, for example, asynchronous connects.
connected = sock.connect_ex(host_port) is SUCCESS
# Mark the socket closed.
# The underlying system resource (e.g. a file descriptor)
# is also closed when all file objects from makefile() are closed.
# Once that happens, all future operations on the socket object will fail.
# The remote end will receive no more data (after queued data is flushed).
sock.close()
# return True if port is open or False if port is closed.
return connected
con = check_port('www.google.com', 83)
print(con)

Python: Socket Programming: accept() and connect calls

I have been self-learning python since few months now , and finally learning Socket programming. As an text book exercise, I am supposed to design a half-duplex chat system . Below is the code. The first request and response are just fine , but everytime I try sending a second message from client, the server seems to be hanging. The program is TCP based.
I am suspecting that since ss.accept() is being called everytime a new message has to be sent, a new thread is being created but since I have made only 1 call to sc.connect() from client , may be my new connection at the server end is hanging there for infinite time.
As a trail : I called ss.accept() outside the while loop, ie making only 1 connection and listening to data over and over on while loop, the conversations works just fine
Can someone please have a look a the code and help me understand where exactly is the issue.
Since, I am learning, I have not moved to twisted yet. I want to learn all the basics first before I move to frameworks.
!bin/usr/env python
import socket, sys
HOST =''
PORT = 1060
ADDR =(HOST,PORT)
def userinput(sock):
usermessage = input('>')
sock.sendall(str(len(usermessage)))
return usermessage
def server():
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
s.bind(ADDR)
s.listen(1)
print 'the server is listening at',s.getsockname()
while True:
ss,sockname = s.accept()
#listen to determine the bytes sent by client
msglen = ss.recv(4096)
#accept the complete message
msg = ss.recv(int(msglen))
print 'client:', repr(msg)
servermsg = userinput(ss)
ss.sendall(servermsg)
print " ---------------"
ss.close()
def client():
sc = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
sc.connect(ADDR)
while True:
message = userinput(sc)
sc.sendall(message)
replylen = sc.recv(4096)
reply = sc.recv(int(replylen))
print "reply:",reply
print "----------------"
sc.close()
if sys.argv[1:] == ['server']:
server()
elif sys.argv[1:] == ['client']:
client()
else:
print >> sys.stderr,'usage:tcp_2_7.py server|client[host]'
Your trial - accepting once and then receiving multiple messages - is how you should do this. Calling accept is waiting for a new connection - you don't need to do this every time you want to send or receive a message, just as you don't want to call connect every time you want to send or receive.
Think of it this way:
When you connect to a chat server, do you connect, send a message, then disconnect immediately? No - you have a constant open connection which messages are sent through, and the connection is only closed at the end of a chat session.
From the docs on accept:
socket.accept()
Accept a connection. The socket must be bound to an
address and listening for connections. The return value is a pair
(conn, address) where conn is a new socket object usable to send and
receive data on the connection, and address is the address bound to
the socket on the other end of the connection.

Python Socket connection class

I'm trying to create a small program that will log information output from a device via TCP
Basically this just streams data out, that i want to capture, and dump into a database for dealing with later
but the device reboots so i need to be able to reconnect when the socket closes with out any human interference
so this is what i have so far
import socket, time, logging, sys, smtplib # Import socket module
logging.basicConfig(filename='Tcplogger.log',level=logging.DEBUG,format='%(asctime)s : %(levelname)s : %(message)s')
logging.info('|--------------------------------------|')
logging.info('|--------------- TCP Logger Starting---|')
logging.info('|--------------------------------------|')
host = '127.0.0.01' # host or Ip address
port = 12345 # output port
retrytime = 1 # reconnect time
reconnectattemps = 10 # Number of time to try and reconnect
class TPCLogger:
def __init__(self):
logging.debug('****Trying connection****')
print('****Trying connection****')
self.initConnection()
def initConnection(self):
s = socket.socket()
try:
s.connect((host, port))
logging.debug('****Connected****')
except IOError as e:
while 1:
reconnectcount = 0;
logging.error(format(e.errno)+' : '+format(e.strerror))
while 1:
reconnectcount = reconnectcount + 1
logging.error('Retrying connection to Mitel attempt : '+str(reconnectcount))
try:
s.connect((host, port))
connected = True
logging.debug('****Connected****')
except IOError as e:
connected = False
logging.error(format(e.errno)+' : '+format(e.strerror))
if reconnectcount == reconnectattemps:
logging.error('******####### Max Reconnect attempts reached logger will Terminate ######******')
sys.exit("could Not connect")
time.sleep(retrytime)
if connected == True:
break
break
while 1:
s.recv(1034)
LOGGER= TCPLogger()
Which all works fine on start up if a try to connect and its not there it will retry the amount of times set by reconnectattemps
but he is my issue
while 1:
s.recv(1034)
when this fails i want to try to reconnect
i could of course type out or just copy my connection part again but what i want to be able todo is call a function that will handle the connection and retry and hand me back the connection object
for example like this
class tcpclient
#set some var
host, port etc....
def initconnection:
connect to socket and retry if needed
RETURN SOCKET
def dealwithdata:
initconnection()
while 1:
try:
s.recv
do stuff here copy to db
except:
log error
initconnection()
I think this is possible but im really not geting how the class/method system works in python so i think im missing something here
FYI just in case you didn't notice iv very new to python. any other comments on what i already have are welcome too :)
Thanks
Aj
Recommendation
For this use-case I would recommend something higher-level than sockets. Why? Controlling all these exceptions and errors for yourself can be irritating when you just want to retrieve or send data and maintain connection.
Of course you can achieve what you want with your plain solution, but you mess with code a bit more, methinks. Anyway it'll look similarly to class amustafa wrote, with handling socket errors to close/reconnect method, etc.
Example
I made some example for easier solution using asyncore module:
import asyncore
import socket
from time import sleep
class Client(asyncore.dispatcher_with_send):
def __init__(self, host, port, tries_max=5, tries_delay=2):
asyncore.dispatcher.__init__(self)
self.host, self.port = host, port
self.tries_max = tries_max
self.tries_done = 0
self.tries_delay = tries_delay
self.end = False # Flag that indicates whether socket should reconnect or quit.
self.out_buffer = '' # Buffer for sending.
self.reconnect() # Initial connection.
def reconnect(self):
if self.tries_done == self.tries_max:
self.end = True
return
print 'Trying connecting in {} sec...'.format(self.tries_delay)
sleep(self.tries_delay)
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
try:
self.connect((self.host, self.port))
except socket.error:
pass
if not self.connected:
self.tries_done += 1
print 'Could not connect for {} time(s).'.format(self.tries_done)
def handle_connect(self):
self.tries_done = 0
print 'We connected and can get the stuff done!'
def handle_read(self):
data = self.recv(1024)
if not data:
return
# Check for terminator. Can be any action instead of this clause.
if 'END' in data:
self.end = True # Everything went good. Shutdown.
else:
print data # Store to DB or other thing.
def handle_close(self):
print 'Connection closed.'
self.close()
if not self.end:
self.reconnect()
Client('localhost', 6666)
asyncore.loop(timeout=1)
reconnnect() method is somehow core of your case - it's called when connection is needed to be made: when class initializes or connection brokes.
handle_read() operates any recieved data, here you log it or something.
You can even send data using buffer (self.out_buffer += 'message'), which will remain untouched after reconnection, so class will resume sending when connected again.
Setting self.end to True will inform class to quit when possible.
asyncore takes care of exceptions and calls handle_close() when such events occur, which is convenient way of dealing with connection failures.
You should look at the python documentation to understand how classes and methods work. The biggest difference between python methods and methods in most other languages is the addition of the "self" tag. The self represents the instance that a method is called against and is automatically fed in by the python system. So:
class TCPClient():
def __init__(self, host, port, retryAttempts=10 ):
#this is the constructor that takes in host and port. retryAttempts is given
# a default value but can also be fed in.
self.host = host
self.port = port
self.retryAttempts = retryAttempts
self.socket = None
def connect(self, attempt=0):
if attempts<self.retryAttempts:
#put connecting code here
if connectionFailed:
self.connect(attempt+1)
def diconnectSocket(self):
#perform all breakdown operations
...
self.socket = None
def sendDataToDB(self, data):
#send data to db
def readData(self):
#read data here
while True:
if self.socket is None:
self.connect()
...
Just make sure you properly disconnect the socket and set it to None.

Categories