Why single addition takes longer than single additions plus single assignment? - python

Here is the python code, I use python 3.5.2/Intel(R) Core(TM) i7-4790K CPU # 4.00GHz :
import time
empty_loop_t = 0.14300823211669922
N = 10000000
def single_addition(n):
a = 1.0
b = 0.0
start_t = time.time()
for i in range(0, n):
a + b
end_t = time.time()
cost_t = end_t - start_t - empty_loop_t
print(n,"iterations single additions:", cost_t)
return cost_t
single_addition(N)
def single_addition_plus_single_assignment(n):
a = 1.0
b = 0.0
c = 0.0
start_t = time.time()
for i in range(0, n):
c = a + b
end_t = time.time()
cost_t = end_t - start_t - empty_loop_t
print(n,"iterations single additions and single assignments:", cost_t)
return cost_t
single_addition_plus_single_assignment(N)
The output is:
10000000 iterations single additions: 0.19701123237609863
10000000 iterations single additions and single assignments: 0.1890106201171875
Normally, to get a more reliable result, it is better to do the test using K-fold. However, since K-fold loop itself has influence on the result, I don't use it in my test. And I'm sure this inequality can be reproduced, at least on my machine. So the question is why this happened?

I run it with pypy (had to set empty_loop_t = 0) and got the following results:
(10000000, 'iterations single additions:', 0.014394044876098633)
(10000000, 'iterations single additions and single assignments:', 0.018398046493530273)
So I guess it's up to what interpreter does with the source code and how interpreter executes it. It might be that deliberate assignment takes less operations and workload than disposing of the result with non-JIT interpreter while JIT-compiler forces the code to perform the actual number of operations.
Furthermore, the use of JIT-interpreter makes your script run ~50 times faster on my configuration. If you general aim is to optimize the running time of your script you are probably to look that way.

Related

Dramatic drop in numpy fromfile performance when switching from python 2 to python 3

Background
I am analyzing large (between 0.5 and 20 GB) binary files, which contain information about particle collisions from a simulation. The number of collisions, number of incoming and outgoing particles can vary, so the files consist of variable length records. For analysis I use python and numpy. After switching from python 2 to python 3 I have noticed a dramatic decrease in performance of my scripts and traced it down to numpy.fromfile function.
Simplified code to reproduce the problem
This code, iotest.py
Generates a file of a similar structure to what I have in my studies
Reads it using numpy.fromfile
Reads it using numpy.frombuffer
Compares timing of both
import numpy as np
import os
def generate_binary_file(filename, nrecords):
n_records = np.random.poisson(lam = nrecords)
record_lengths = np.random.poisson(lam = 10, size = n_records).astype(dtype = 'i4')
x = np.random.normal(size = record_lengths.sum()).astype(dtype = 'd')
with open(filename, 'wb') as f:
s = 0
for i in range(n_records):
f.write(record_lengths[i].tobytes())
f.write(x[s:s+record_lengths[i]].tobytes())
s += record_lengths[i]
# Trick for testing: make sum of records equal to 0
f.write(np.array([1], dtype = 'i4').tobytes())
f.write(np.array([-x.sum()], dtype = 'd').tobytes())
return os.path.getsize(filename)
def read_binary_npfromfile(filename):
checksum = 0.0
with open(filename, 'rb') as f:
while True:
try:
record_length = np.fromfile(f, 'i4', 1)[0]
x = np.fromfile(f, 'd', record_length)
checksum += x.sum()
except:
break
assert(np.abs(checksum) < 1e-6)
def read_binary_npfrombuffer(filename):
checksum = 0.0
with open(filename, 'rb') as f:
while True:
try:
record_length = np.frombuffer(f.read(np.dtype('i4').itemsize), dtype = 'i4', count = 1)[0]
x = np.frombuffer(f.read(np.dtype('d').itemsize * record_length), dtype = 'd', count = record_length)
checksum += x.sum()
except:
break
assert(np.abs(checksum) < 1e-6)
if __name__ == '__main__':
from timeit import Timer
from functools import partial
fname = 'testfile.tmp'
print("# File size[MB], Timings and errors [s]: fromfile, frombuffer")
for i in [10**3, 3*10**3, 10**4, 3*10**4, 10**5, 3*10**5, 10**6, 3*10**6]:
fsize = generate_binary_file(fname, i)
t1 = Timer(partial(read_binary_npfromfile, fname))
t2 = Timer(partial(read_binary_npfrombuffer, fname))
a1 = np.array(t1.repeat(5, 1))
a2 = np.array(t2.repeat(5, 1))
print('%8.3f %12.6f %12.6f %12.6f %12.6f' % (1.0 * fsize / (2**20), a1.mean(), a1.std(), a2.mean(), a2.std()))
Results
Conclusions
In Python 2 numpy.fromfile was probably the fastest way to deal with binary files of variable structure. It was approximately 3 times faster than numpy.frombuffer. Performance of both scaled linearly with file size.
In Python 3 numpy.frombuffer became around 10% slower, while numpy.fromfile became around 9.3 times slower compared to Python 2! Performance of both still scales linearly with file size.
In the documentation of numpy.fromfile it is described as "A highly efficient way of reading binary data with a known data-type". It is not correct in Python 3 anymore. This was in fact noticed earlier by other people already.
Questions
In Python 3 how to obtain a comparable (or better) performance to Python 2, when reading binary files of variable structure?
What happened in Python 3 so that numpy.fromfile became an order of magnitude slower?
TL;DR: np.fromfile and np.frombuffer are not optimized to read many small buffers. You can load the whole file in a big buffer and then decode it very efficiently using Numba.
Analysis
The main issue is that the benchmark measure overheads. Indeed, it perform a lot of system/C calls that are very inefficient. For example, on the 24 MiB file, the while loops calls 601_214 times np.fromfile and np.frombuffer. The timing on my machine are 10.5s for read_binary_npfromfile and 1.2s for read_binary_npfrombuffer. This means respectively 17.4 us and 2.0 us per call for the two function. Such timing per call are relatively reasonable considering Numpy is not designed to efficiently operate on very small arrays (it needs to perform many checks, call some functions, wrap/unwrap CPython types, allocate some objects, etc.). The overhead of these functions can change from one version to another and unless it becomes huge, this is not a bug. The addition of new features to Numpy and CPython often impact overheads and this appear to be the case here (eg. buffering interface). The point is that it is not really a problem because there is a way to use a different approach that is much much faster (as it does not pay huge overheads).
Faster Numpy code
The main solution to write a fast implementation is to read the whole file once in a big byte buffer and then decode it using np.view. That being said, this is a bit tricky because of data alignment and the fact that nearly all Numpy function needs to be prohibited in the while loop due to their overhead. Here is an example:
def read_binary_faster_numpy(filename):
buff = np.fromfile(filename, dtype=np.uint8)
buff_int32 = buff.view(np.int32)
buff_double_1 = buff[0:len(buff)//8*8].view(np.float64)
buff_double_2 = buff[4:4+(len(buff)-4)//8*8].view(np.float64)
nblocks = buff.size // 4 # Number of 4-byte blocks
pos = 0 # Displacement by block of 4 bytes
lst = []
while pos < nblocks:
record_length = buff_int32[pos]
pos += 1
if pos + record_length * 2 > nblocks:
break
offset = pos // 2
if pos % 2 == 0: # Aligned with buff_double_1
x = buff_double_1[offset:offset+record_length]
else: # Aligned with buff_double_2
x = buff_double_2[offset:offset+record_length]
lst.append(x) # np.sum is too expensive here
pos += record_length * 2
checksum = np.sum(np.concatenate(lst))
assert(np.abs(checksum) < 1e-6)
The above implementation should be faster but it is a bit tricky to understand and it is still bounded by the latency of Numpy operations. Indeed, the loop is still calling Numpy functions due to operations like buff_int32[pos] or buff_double_1[offset:offset+record_length]. Even though the overheads of indexing is much smaller than the one of previous functions, it is still quite big for such a critical loop (with ~300_000 iterations)...
Better performance with... a basic pure-Python code
It turns out that the following pure-python implementation is faster, safer and simpler:
from struct import unpack_from
def read_binary_python_struct(filename):
checksum = 0.0
with open(filename, 'rb') as f:
data = f.read()
offset = 0
while offset < len(data):
record_length = unpack_from('#i', data, offset)[0]
checksum += sum(unpack_from(f'{record_length}d', data, offset + 4))
offset += 4 + record_length * 8
assert(np.abs(checksum) < 1e-6)
This is because the overhead of unpack_from is far lower than the one of Numpy functions but it is still not great.
In fact, now the main issue is actually the CPython interpreter. It is clearly not designed with high-performance in mind. The above code push it to the limit. Allocating millions of temporary reference-counted dynamic objects like variable-sized integers and strings is very expensive. This is not reasonable to let CPython do such an operation.
Writing a high-performance code with Numba
We can drastically speed it up using Numba which can compile Numpy-based Python codes to native ones using a just-in-time compiler! Here is an example:
#nb.njit('float64(uint8[::1])')
def decode_buffer(buff):
checksum = 0.0
offset = 0
while offset + 4 < buff.size:
record_length = buff[offset:offset+4].view(np.int32)[0]
start = offset + 4
end = start + record_length * 8
if end > buff.size:
break
x = buff[start:end].view(np.float64)
checksum += x.sum()
offset = end
return checksum
def read_binary_numba(filename):
buff = np.fromfile(filename, dtype=np.uint8)
checksum = decode_buffer(buff)
assert(np.abs(checksum) < 1e-6)
Numba removes nearly all Numpy overheads thanks to a native compiled code. That being said note that Numba does not implement all Numpy functions yet. This include np.fromfile which need to be called outside a Numba-compiled function.
Benchmark
Here are the performance results on my machine (i5-9600KF with a high-performance Nvme SSD) with Python 3.8.1, Numpy 1.20.3 and Numba 0.54.1.
read_binary_npfromfile: 10616 ms ( x1)
read_binary_npfrombuffer: 1132 ms ( x9)
read_binary_faster_numpy: 509 ms ( x21)
read_binary_python_struct: 222 ms ( x48)
read_binary_numba: 12 ms ( x885)
Optimal time: 7 ms (x1517)
One can see that the Numba implementation is extremely fast compared to the initial Python implementation and even to the fastest alternative Python implementation. This is especially true considering that 8 ms is spent in np.fromfile and only 4 ms in decode_buffer!

Shared Memory between Julia and Python seems very slow (60 micros for round trip)

I am generating strings in Julia to use in Python. I would like to use Shared Memory (InterProcessCommunication.jl and Multiprocessing in Python). Currently, Julia generates strings then sends them to Python, which then reads the first number (so determine string length) before converting the rest into an encoded string.
I thought that shared memory would be much faster, but my method of timing (see below) seems to give 60-65 micros to:
Send the string and string length
Detect change in python, read the message and convert to bytes.
Send back an indication for julia to detect.
I am using Ubuntu. Comparatively, using TCP sockets gives 200 micros (so only a 3x speedup).
GSTiming comes from here:
#How can I get millisecond and microsecond-resolution timestamps in Python?
Julia:
using InterProcessCommunication
using Random
function copy_string_to_shared_memory(Aptr::Ptr{UInt8}, p::Vector{UInt8})
for i = 1:length(p)
unsafe_store!(Aptr, p[i], i + 4)
end
end
function main()
A = SharedMemory("myid"; readonly=false)
Aptr = convert(Ptr{UInt8}, pointer(A))
Bptr = convert(Ptr{UInt32}, pointer(A))
u = []
for i = 1:105
# p = Vector{UInt8}(randstring(rand(50:511)))
p = Vector{UInt8}("Hello Stack Exchange" * randstring(rand(1:430)))
a = time_ns()
copy_string_to_shared_memory(Aptr, p)
unsafe_store!(Bptr, length(p), 1)
# Make sure we can write to it
while unsafe_load(Aptr, 1) != 1
nanosleep(10e-7)
end
b = time_ns()
println((b - a) / 1000) # How i get times
sleep(0.01)
end
end
main()
Python Code:
from multiprocessing import shared_memory
import array
import time
import GSTiming
def main():
shm_a = shared_memory.SharedMemory("myid", create=True, size=512)
shm_a.buf[0] = 1 # Modify single byte at a time
u = []
for i in range(105):
while shm_a.buf[0] == 1:
GSTiming.delayMicroseconds(1)
s = bytes(shm_a.buf[4:shm_a.buf[0]+4])
shm_a.buf[0] = 1
shm_a.close()
shm_a.unlink() # Call unlink only once to release the shared memory
main()

Numba Python - how to exploit parallelism effectively?

I have been trying to exploit Numba to speed up large array calculations. I have been measuring the calculation speed in GFLOPS, and it consistently falls far short of my expectations for my CPU.
My processor is i9-9900k, which according to float32 benchmarks should be capable of over 200 GFLOPS. In my tests I have never exceeded about 50 GFLOPS. This is running on all 8 cores.
On a single core I achieve about 17 GFLOPS, which (I believe) is 50% of the theoretical performance. I'm not sure if this is improvable, but the fact that it doesn't extend well to multi-core is a problem.
I am trying to learn this because I am planning to write some image processing code that desperately needs every speed boost possible. I also feel I should understand this first, before I dip my toes into GPU computing.
Here is some example code with a few of my attempts at writing fast functions. The operation I am testing, is multiplying an array by a float32 then summing the whole array, i.e. a MAC operation.
How can I get better results?
import os
# os.environ["NUMBA_ENABLE_AVX"] = "1"
import numpy as np
import timeit
from timeit import default_timer as timer
import numba
# numba.config.NUMBA_ENABLE_AVX = 1
# numba.config.LOOP_VECTORIZE = 1
# numba.config.DUMP_ASSEMBLY = 1
from numba import float32, float64
from numba import jit, njit, prange
from numba import vectorize
from numba import cuda
lengthY = 16 # 2D array Y axis
lengthX = 2**16 # X axis
totalops = lengthY * lengthX * 2 # MAC operation has 2 operations
iters = 100
doParallel = True
#njit(fastmath=True, parallel=doParallel)
def MAC_numpy(testarray):
output = (float)(0.0)
multconst = (float)(.99)
output = np.sum(np.multiply(testarray, multconst))
return output
#njit(fastmath=True, parallel=doParallel)
def MAC_01(testarray):
lengthX = testarray.shape[1]
lengthY = testarray.shape[0]
output = (float)(0.0)
multconst = (float)(.99)
for y in prange(lengthY):
for x in prange(lengthX):
output += multconst*testarray[y,x]
return output
#njit(fastmath=True, parallel=doParallel)
def MAC_04(testarray):
lengthX = testarray.shape[1]
lengthY = testarray.shape[0]
output = (float)(0.0)
multconst = (float)(.99)
for y in prange(lengthY):
for x in prange(int(lengthX/4)):
xn = x*4
output += multconst*testarray[y,xn] + multconst*testarray[y,xn+1] + multconst*testarray[y,xn+2] + multconst*testarray[y,xn+3]
return output
# ======================================= TESTS =======================================
testarray = np.random.rand(lengthY, lengthX)
# ==== MAC_numpy ====
time = 1000
for n in range(iters):
start = timer()
output = MAC_numpy(testarray)
end = timer()
if((end-start) < time): #get shortest time
time = end-start
print("\nMAC_numpy")
print("output = %f" % (output))
print(type(output))
print("fastest time = %16.10f us" % (time*10**6))
print("Compute Rate = %f GFLOPS" % ((totalops/time)/10**9))
# ==== MAC_01 ====
time = 1000
lengthX = testarray.shape[1]
lengthY = testarray.shape[0]
for n in range(iters):
start = timer()
output = MAC_01(testarray)
end = timer()
if((end-start) < time): #get shortest time
time = end-start
print("\nMAC_01")
print("output = %f" % (output))
print(type(output))
print("fastest time = %16.10f us" % (time*10**6))
print("Compute Rate = %f GFLOPS" % ((totalops/time)/10**9))
# ==== MAC_04 ====
time = 1000
for n in range(iters):
start = timer()
output = MAC_04(testarray)
end = timer()
if((end-start) < time): #get shortest time
time = end-start
print("\nMAC_04")
print("output = %f" % (output))
print(type(output))
print("fastest time = %16.10f us" % (time*10**6))
print("Compute Rate = %f GFLOPS" % ((totalops/time)/10**9))
Q : How can I get better results?
1st : Learn how to avoid doing useless work - you can straight eliminate HALF of the FLOP-s not speaking about also the half of all the RAM-I/O-s avoided, each one being at a cost of +100~350 [ns] per writeback
Due to the distributive nature of MUL and ADD ( a.C + b.C ) == ( a + b ).C, better first np.sum( A ) and only after that then MUL the sum by the (float) constant.
#utput = np.sum(np.multiply(testarray, multconst)) # AWFULLY INEFFICIENT
output = np.sum( testarray)*multconst #######################
2nd : Learn how to best align data along the order of processing ( cache-line reuses get you ~100x faster re-use of pre-fetched data. Not aligning vectorised-code along these already pre-fetched data side-effects just let your code pay many times the RAM-access latencies, instead of smart re-using the already paid for data-blocks. Designing work-units aligned according to this principle means a few SLOCs more, but the rewards are worth that - who gets ~100x faster CPUs+RAMs for free and right now or about a ~100x speedup for free, just from not writing a badly or naively designed looping iterators?
3rd : Learn how to efficiently harness vectorised (block-directed) operations inside numpy or numba code-blocks and avoid pressing numba to spend time on auto-analysing the call-signatures ( you pay an extra time for this auto-analyses per call, while you have designed the code and knew exactly what data-types are going to go there, so why to pay an extra time for auto-analysis each time a numba-block gets called???)
4th : Learn where the extended Amdahl's Law, having all the relevant add-on costs and processing atomicity put into the game, supports your wish to get speedups, not to ever pay way more than you will get back (to at least justify the add-on costs... ) - paying extra costs for not getting any reward is possible, yet has no beneficial impact on your code's performance ( rather the opposite )
5th : Learn when and how the manually created inline(s) may save your code, once the steps 1-4 are well learnt and routinely excersised with proper craftmanship ( Using popular COTS frameworks is fine, yet these may deliver results after a few days of work, while a hand-crafted single purpose smart designed assembly code was able to get the same results in about 12 minutes(!), not several days without any GPU/CPU tricks etc - yes, that faster - just by not doing a single step more than what was needed for the numerical processing of the large matrix data )
Did I mention float32 may surprise at being processed slower on small scales than float64, while on larger data-scales ~ n [GB] the RAM I/O-times grow slower for more efficient float32 pre-fetches? This never happens here, as float64 array gets processed here. Sure, unless one explicitly instructs the constructor(s) to downconvert the default data type, like this: np.random.rand( lengthY, lengthX ).astype( dtype = np.float32 )>>> np.random.rand( 10, 2 ).dtypedtype('float64')Avoiding extensive memory allocations is another performance trick, supported in numpy call-signatures. Using this option for large arrays will save you a lot of extra time wasted on mem-allocs for large interim arrays. Reusing already pre-allocated memory-zones and wisely controlled gc-policing are another signs of a professional, focused on low-latency & design-for-performance

What is the fastest way to sort strings in Python if locale is a non-concern?

I was trying to find a fast way to sort strings in Python and the locale is a non-concern i.e. I just want to sort the array lexically according to the underlying bytes. This is perfect for something like radix sort. Here is my MWE
import numpy as np
import timeit
# randChar is workaround for MemoryError in mtrand.RandomState.choice
# http://stackoverflow.com/questions/25627161/how-to-solve-memory-error-in-mtrand-randomstate-choice
def randChar(f, numGrp, N) :
things = [f%x for x in range(numGrp)]
return [things[x] for x in np.random.choice(numGrp, N)]
N=int(1e7)
K=100
id3 = randChar("id%010d", N//K, N) # small groups (char)
timeit.Timer("id3.sort()" ,"from __main__ import id3").timeit(1) # 6.8 seconds
As you can see it took 6.8 seconds which is almost 10x slower than R's radix sort below.
N = 1e7
K = 100
id3 = sample(sprintf("id%010d",1:(N/K)), N, TRUE)
system.time(sort(id3,method="radix"))
I understand that Python's .sort() doesn't use radix sort, is there an implementation somewhere that allows me to sort strings as performantly as R?
AFAIK both R and Python "intern" strings so any optimisations in R can also be done in Python.
The top google result for "radix sort strings python" is this gist which produced an error when sorting on my test array.
It is true that R interns all strings, meaning it has a "global character cache" which serves as a central dictionary of all strings ever used by your program. This has its advantages: the data takes less memory, and certain algorithms (such as radix sort) can take advantage of this structure to achieve higher speed. This is particularly true for the scenarios such as in your example, where the number of unique strings is small relative to the size of the vector. On the other hand it has its drawbacks too: the global character cache prevents multi-threaded write access to character data.
In Python, afaik, only string literals are interned. For example:
>>> 'abc' is 'abc'
True
>>> x = 'ab'
>>> (x + 'c') is 'abc'
False
In practice it means that, unless you've embedded data directly into the text of the program, nothing will be interned.
Now, for your original question: "what is the fastest way to sort strings in python"? You can achieve very good speeds, comparable with R, with python datatable package. Here's the benchmark that sorts N = 10⁸ strings, randomly selected from a set of 1024:
import datatable as dt
import pandas as pd
import random
from time import time
n = 10**8
src = ["%x" % random.getrandbits(10) for _ in range(n)]
f0 = dt.Frame(src)
p0 = pd.DataFrame(src)
f0.to_csv("test1e8.csv")
t0 = time(); f1 = f0.sort(0); print("datatable: %.3fs" % (time()-t0))
t0 = time(); src.sort(); print("list.sort: %.3fs" % (time()-t0))
t0 = time(); p1 = p0.sort_values(0); print("pandas: %.3fs" % (time()-t0))
Which produces:
datatable: 1.465s / 1.462s / 1.460s (multiple runs)
list.sort: 44.352s
pandas: 395.083s
The same dataset in R (v3.4.2):
> require(data.table)
> DT = fread("test1e8.csv")
> system.time(sort(DT$C1, method="radix"))
user system elapsed
6.238 0.585 6.832
> system.time(DT[order(C1)])
user system elapsed
4.275 0.457 4.738
> system.time(setkey(DT, C1)) # sort in-place
user system elapsed
3.020 0.577 3.600
Jeremy Mets posted in the comments of this blog post that Numpy can sort string fairly by converting the array to np.araray. This indeed improve performance, however it is still slower than Julia's implementation.
import numpy as np
import timeit
# randChar is workaround for MemoryError in mtrand.RandomState.choice
# http://stackoverflow.com/questions/25627161/how-to-solve-memory-error-in-mtrand-randomstate-choice
def randChar(f, numGrp, N) :
things = [f%x for x in range(numGrp)]
return [things[x] for x in np.random.choice(numGrp, N)]
N=int(1e7)
K=100
id3 = np.array(randChar("id%010d", N//K, N)) # small groups (char)
timeit.Timer("id3.sort()" ,"from __main__ import id3").timeit(1) # 6.8 seconds

Parallelizing a Numpy vector operation

Let's use, for example, numpy.sin()
The following code will return the value of the sine for each value of the array a:
import numpy
a = numpy.arange( 1000000 )
result = numpy.sin( a )
But my machine has 32 cores, so I'd like to make use of them. (The overhead might not be worthwhile for something like numpy.sin() but the function I actually want to use is quite a bit more complicated, and I will be working with a huge amount of data.)
Is this the best (read: smartest or fastest) method:
from multiprocessing import Pool
if __name__ == '__main__':
pool = Pool()
result = pool.map( numpy.sin, a )
or is there a better way to do this?
There is a better way: numexpr
Slightly reworded from their main page:
It's a multi-threaded VM written in C that analyzes expressions, rewrites them more efficiently, and compiles them on the fly into code that gets near optimal parallel performance for both memory and cpu bounded operations.
For example, in my 4 core machine, evaluating a sine is just slightly less than 4 times faster than numpy.
In [1]: import numpy as np
In [2]: import numexpr as ne
In [3]: a = np.arange(1000000)
In [4]: timeit ne.evaluate('sin(a)')
100 loops, best of 3: 15.6 ms per loop
In [5]: timeit np.sin(a)
10 loops, best of 3: 54 ms per loop
Documentation, including supported functions here. You'll have to check or give us more information to see if your more complicated function can be evaluated by numexpr.
Well this is kind of interesting note if you run the following commands:
import numpy
from multiprocessing import Pool
a = numpy.arange(1000000)
pool = Pool(processes = 5)
result = pool.map(numpy.sin, a)
UnpicklingError: NEWOBJ class argument has NULL tp_new
wasn't expecting that, so whats going on, well:
>>> help(numpy.sin)
Help on ufunc object:
sin = class ufunc(__builtin__.object)
| Functions that operate element by element on whole arrays.
|
| To see the documentation for a specific ufunc, use np.info(). For
| example, np.info(np.sin). Because ufuncs are written in C
| (for speed) and linked into Python with NumPy's ufunc facility,
| Python's help() function finds this page whenever help() is called
| on a ufunc.
yep numpy.sin is implemented in c as such you can't really use it directly with multiprocessing.
so we have to wrap it with another function
perf:
import time
import numpy
from multiprocessing import Pool
def numpy_sin(value):
return numpy.sin(value)
a = numpy.arange(1000000)
pool = Pool(processes = 5)
start = time.time()
result = numpy.sin(a)
end = time.time()
print 'Singled threaded %f' % (end - start)
start = time.time()
result = pool.map(numpy_sin, a)
pool.close()
pool.join()
end = time.time()
print 'Multithreaded %f' % (end - start)
$ python perf.py
Singled threaded 0.032201
Multithreaded 10.550432
wow, wasn't expecting that either, well theres a couple of issues for starters we are using a python function even if its just a wrapper vs a pure c function, and theres also the overhead of copying the values, multiprocessing by default doesn't share data, as such each value needs to be copy back/forth.
do note that if properly segment our data:
import time
import numpy
from multiprocessing import Pool
def numpy_sin(value):
return numpy.sin(value)
a = [numpy.arange(100000) for _ in xrange(10)]
pool = Pool(processes = 5)
start = time.time()
result = numpy.sin(a)
end = time.time()
print 'Singled threaded %f' % (end - start)
start = time.time()
result = pool.map(numpy_sin, a)
pool.close()
pool.join()
end = time.time()
print 'Multithreaded %f' % (end - start)
$ python perf.py
Singled threaded 0.150192
Multithreaded 0.055083
So what can we take from this, multiprocessing is great but we should always test and compare it sometimes its faster and sometimes its slower, depending how its used ...
Granted you are not using numpy.sin but another function I would recommend you first verify that indeed multiprocessing will speed up the computation, maybe the overhead of copying values back/forth may affect you.
Either way I also do believe that using pool.map is the best, safest method of multithreading code ...
I hope this helps.
SciPy actually has a pretty good writeup on this subject here.

Categories