Would really appreciate some help with the following problem. I'm intending on using Pandas library to solve this problem, so would appreciate if you could explain how this can be done using Pandas if possible.
I want to take the following excel file:
Before
and:
1)convert the 'before' file into a pandas data frame
2)look for the text in 'Site' column. Where this text appears within the string in the 'Domain' column, return the value in 'Owner' Column under 'Output'.
3)the result should look like the 'After' file. I would like to convert this back into CSV format.
After
So essentially this is similar to an excel vlookup exercise, except its not an exact match we're looking for between the 'Site' and 'Domain' column.
I have already attempted this in Excel but im looking at over 100,000 rows, and comparing them against over 1000 sites, which crashes excel.
I have attempted to store the lookup list in the same file as the list of domains we want to classify with the 'Owner'. If there's a much better way to do this eg storing the lookup list in a separate data frame altogether, then that's fine.
Thanks in advance for any help, i really appreciate it.
Colin
I think the OP's question differs somewhat from the solutions linked in the comments which either deal with exact lookups (map) or lookups between dataframes. Here there is a single dataframe and a partial match to find.
import pandas as pd
import numpy as np
df = pd.ExcelFile('data.xlsx').parse(0)
df = df.astype(str)
df['Test'] = df.apply(lambda x: x['Site'] in x['Domain'],axis=1)
df['Output'] = np.where(df['Test']==True, df['Owner'], '')
df
The lambda allows reiteration of the in test to be applied across the axis, to return a boolean in Test. This then acts as a rule for looking up Owner and placing in Output.
Related
I have a small dataframe that I would like to sort in Python. When sorting in Python, I get a different result then when sorting in Excel. I would like to sort from A to Z and have the pandas result match what is outputted in Excel.
Here is the code I used:
import pandas as pd
df = pd.DataFrame({"Col": ['0123A', '0123B', '01-AB']})
df = df.sort_values('Col', ascending=True)
Here is the output in python:
Col
2 01-AB
0 0123A
1 0123B
My output in excel is this:
Col
0 0123A
1 0123B
2 01-AB
Is there a reason why the pandas and excel result don't match?
Yes. There is a reason that the pandas sort and the Excel sort are different. The pandas sort is utilizing an ASCIII/UTF sorting hierarchy, which probably is what you expected; whereas, Excel treats the minus sign/hyphen differently in the sorting process. If you want the Excel spreadsheet to sort in the same manner as the pandas sort, you need to utilize some additional definitions and processing like what is explained if you connect to this link.
Excel Hyphen Sorting
You might need to read through the solution a few times for it to register, but sorting columns where cell contents can contain a hyphen requires a bit of extra work in Excel.
I hope that helps.
Regards.
Imagine I have pd.DataFrame containing a lot of rows and I want to add some string data describing/summarizing it.
One way to do this would be to add column with this value, but it would be a complete waste of memory (e.g. when the string would be a long specification of ML model).
I could also insert it in file name - but this has limitations and is very impractical at saving/loading.
I could store this data in separate file, but it is not what I want.
I could make a class based on pd.DataFrame and add this field, but then I am unsure if save/load pickle would still work properly.
So is there some real clean way to store something like "description" in pandas DataFrame? Preferentially such that would withstand to_pickle/read_pickle operations.
[EDIT]: Ofc, this generates next questions such as what if we concatenate dataframes with such informations? But let's stick to saving/loading problem only.
Googled it a bit, you can name a dataframe as follows:
import pandas as pd
import numpy as np
df = pd.DataFrame( data=np.ones([10,10]) )
df.name = 'My name'
print(df.name)
I am still learning python, kindly excuse if the question looks trivial to some.
I have a csv file with following format and I want to extract a small segment of it and write to another csv file:
So, this is what I want to do:
Just extract the entries under actor_list2 and the corresponding id column and write it to a csv file in following format.
Since the format is not a regular column headers followed by some values, I am not sure how to select starting point based on a cell value in a particular column.e.g. even if we consider actor_list2, then it may have any number of entries under that. Please help me understand if it can be done using pandas dataframe processing capability.
Update: The reason why I would like to automate it is because there can be thousands of such files and it would be impractical to manually get that info to create the final csv file which will essentially have a row for each file.
As Nour-Allah has pointed out the formatting here is not very regular to say the least. The best you can do if that is the case that your data comes out like this every time is to skip some rows of the file:
import pandas as pd
df = pd.read_csv('blabla.csv', skiprows=list(range(17)), nrows=8)
df_res = df.loc[:, ['actor_list2', 'ID']]
This should get you the result but given how erratic formatting is, this is no way to automate. What if next time there's another actor? Or one fewer? Even Nour-Allah's solution would not help there.
Honestly, you should just get better data.
As the CSV file you have is not regular, so a lot of empty position, that contains 'nan' objects. Meanwhile, the columns will be indexed.
I will use pandas to read
import pandas as pd
df = pd.read_csv("not_regular_format.csv", header=None)
Then, initialize and empty dictionary to store the results in, and use it to build an output DataFram, which finally send its content to a CSV file
target={}
Now you need to find actor_list2 in the second columns which is the column with the index 0, and if it exists, start store the names and scores from in the next rows and columns 1 and 2 in the dictionary target
rows_index = df[df[1] == 'actor_list2'].index
if len(rows_index) > 0:
i = rows_index[0]
while True:
i += 1
name = df.iloc[i, 1]
score = df.iloc[i, 2]
if pd.isna(name): # the names sequence is finished and 'nan' object exists.
break
target[name] = [score]
and finally, construct DataFrame and write the new output.csv file
df_output=pd.DataFrame(target)
df_output.to_csv('output.csv')
Now, you can go anywhere with the given example above.
Good Luck
I have the following repo for the files: https://github.com/Glarez/learning.git
dataframe
I need to create a column with the bold part of that string under the params column: "ufield_18":"ONLY" I dont see how can I get that since I'm learning to code from scratch. The solution to this would be nice, but what I would really appreciate is you to point me at the right direction to get the answer for myself. THANKS!
Since you do not want the exact answer. I will provide you one of the ways to achieve this:
filter the params column into a dictionary variable
create a loop to access the keys of the dictionary
append it to the pandas df you have (df[key] = np.nan) - Make sure you add some values while appending the column if your df already has some rows or just add np.nan
note np is numpy library which needs to be imported
I'm trying to organise data using a pandas dataframe.
Given the structure of the data it seems logical to use a composite index; 'league_id' and 'fixture_id'. I believe I have implemented this according to the examples in the docs, however I am unable to access the data using the index.
My code can be found here;
https://repl.it/repls/OldCorruptRadius
** I am very new to Pandas and programming in general, so any advice would be much appreciated! Thanks! **
For multi-indexing, you would need to use the pandas MutliIndex API, which brings its own learning curve; thus, I would not recommend it for beginners. Link: https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html
The way that I use multi-indexing is only to display a final product to others (i.e. making it easy/pretty to view). Before the multi-indexing, you filter the fixture_id and league_id as columns first:
df = pd.DataFrame(fixture, columns=features)
df[(df['fixture_id'] == 592) & (df['league_id'] == 524)]
This way, you are still technically targeting the indexes if you would have gone through with multi-indexing the two columns.
If you have to use multi-indexing, try the transform feature of a pandas DataFrame. This turns the indexes into columns and vise-versa. For example, you can do something like this:
df = pd.DataFrame(fixture, columns=features).set_index(['league_id', 'fixture_id'])
df.T[524][592].loc['event_date'] # gets you the row of `event_dates`
df.T[524][592].loc['event_date'].iloc[0] # gets you the first instance of event_dates