Lemmatize string according to pos nlp - python

I'm trying to lemmatize a string according to the part of speech but at the final stage, i'm getting an error. My code:
import nltk
from nltk.stem import *
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import wordnet
wordnet_lemmatizer = WordNetLemmatizer()
text = word_tokenize('People who help the blinging lights are the way of the future and are heading properly to their goals')
tagged = nltk.pos_tag(text)
def get_wordnet_pos(treebank_tag):
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return ''
for word in tagged: print(wordnet_lemmatizer.lemmatize(word,pos='v'), end=" ")
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-40-afb22c78f770> in <module>()
----> 1 for word in tagged: print(wordnet_lemmatizer.lemmatize(word,pos='v'), end=" ")
E:\Miniconda3\envs\uol1\lib\site-packages\nltk\stem\wordnet.py in lemmatize(self, word, pos)
38
39 def lemmatize(self, word, pos=NOUN):
---> 40 lemmas = wordnet._morphy(word, pos)
41 return min(lemmas, key=len) if lemmas else word
42
E:\Miniconda3\envs\uol1\lib\site-packages\nltk\corpus\reader\wordnet.py in _morphy(self, form, pos)
1710
1711 # 1. Apply rules once to the input to get y1, y2, y3, etc.
-> 1712 forms = apply_rules([form])
1713
1714 # 2. Return all that are in the database (and check the original too)
E:\Miniconda3\envs\uol1\lib\site-packages\nltk\corpus\reader\wordnet.py in apply_rules(forms)
1690 def apply_rules(forms):
1691 return [form[:-len(old)] + new
-> 1692 for form in forms
1693 for old, new in substitutions
1694 if form.endswith(old)]
E:\Miniconda3\envs\uol1\lib\site-packages\nltk\corpus\reader\wordnet.py in <listcomp>(.0)
1692 for form in forms
1693 for old, new in substitutions
-> 1694 if form.endswith(old)]
1695
1696 def filter_forms(forms):
I want to be able to lemmatize that string based on each word's part of speech all at once. Please help.

Firstly, try not to mix top-level, absolute and relative imports like these:
import nltk
from nltk.stem import *
from nltk import pos_tag, word_tokenize
This would be better:
from nltk import sent_tokenize, word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet as wn
(See Absolute vs. explicit relative import of Python module)
The error you're getting is most probably because you are feeding in the outputs of pos_tag as the input to the WordNetLemmatizer.lemmatize(), i.e. :
>>> from nltk import pos_tag
>>> from nltk.stem import WordNetLemmatizer
>>> wnl = WordNetLemmatizer()
>>> sent = 'People who help the blinging lights are the way of the future and are heading properly to their goals'.split()
>>> pos_tag(sent)
[('People', 'NNS'), ('who', 'WP'), ('help', 'VBP'), ('the', 'DT'), ('blinging', 'NN'), ('lights', 'NNS'), ('are', 'VBP'), ('the', 'DT'), ('way', 'NN'), ('of', 'IN'), ('the', 'DT'), ('future', 'NN'), ('and', 'CC'), ('are', 'VBP'), ('heading', 'VBG'), ('properly', 'RB'), ('to', 'TO'), ('their', 'PRP$'), ('goals', 'NNS')]
>>> pos_tag(sent)[0]
('People', 'NNS')
>>> first_word = pos_tag(sent)[0]
>>> wnl.lemmatize(first_word)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/nltk/stem/wordnet.py", line 40, in lemmatize
lemmas = wordnet._morphy(word, pos)
File "/usr/local/lib/python2.7/dist-packages/nltk/corpus/reader/wordnet.py", line 1712, in _morphy
forms = apply_rules([form])
File "/usr/local/lib/python2.7/dist-packages/nltk/corpus/reader/wordnet.py", line 1694, in apply_rules
if form.endswith(old)]
AttributeError: 'tuple' object has no attribute 'endswith'
The input to WordNetLemmatizer.lemmatize() should be str not a tuple, so if you do:
>>> tagged_sent = pos_tag(sent)
>>> def penn2morphy(penntag, returnNone=False):
... morphy_tag = {'NN':wn.NOUN, 'JJ':wn.ADJ,
... 'VB':wn.VERB, 'RB':wn.ADV}
... try:
... return morphy_tag[penntag[:2]]
... except:
... return None if returnNone else ''
...
>>> for word, tag in tagged_sent:
... wntag = penn2morphy(tag)
... if wntag:
... print wnl.lemmatize(word, pos=wntag)
... else:
... print word
...
People
who
help
the
blinging
light
be
the
way
of
the
future
and
be
head
properly
to
their
goal
Or if you like an easy way out:
pip install pywsd
Then:
>>> from pywsd.utils import lemmatize, lemmatize_sentence
>>> sent = 'People who help the blinging lights are the way of the future and are heading properly to their goals'
>>> lemmatize_sentence(sent)
['people', 'who', 'help', 'the', u'bling', u'light', u'be', 'the', 'way', 'of', 'the', 'future', 'and', u'be', u'head', 'properly', 'to', 'their', u'goal']

Related

An error in implementing regex function on a list

I was trying to implement a regex on a list of grammar tags in python, for finding the tense form of the list of grammar. And I wrote the following code to implement it.
Data preprocessing:
from nltk import word_tokenize, pos_tag
import nltk
text = "He will have been doing his homework."
tokenized = word_tokenize(text)
tagged = pos_tag(tokenized)
tags = []
for i in range(len(tagged)):
t = tagged[i]
tags.append(t[1])
print(tags)
regex formula i.e. to be implemented
grammar = r"""
Future_Perfect_Continuous: {<MD><VB><VBN><VBG>}
Future_Continuous: {<MD><VB><VBG>}
Future_Perfect: {<MD><VB><VBN>}
Past_Perfect_Continuous: {<VBD><VBN><VBG>}
Present_Perfect_Continuous:{<VBP|VBZ><VBN><VBG>}
Future_Indefinite: {<MD><VB>}
Past_Continuous: {<VBD><VBG>}
Past_Perfect: {<VBD><VBN>}
Present_Continuous: {<VBZ|VBP><VBG>}
Present_Perfect: {<VBZ|VBP><VBN>}
Past_Indefinite: {<VBD>}
Present_Indefinite: {<VBZ>|<VBP>}
Function to implement the regex on the list tags
def check_grammar(grammar, tags):
cp = nltk.RegexpParser(grammar)
result = cp.parse(tags)
print(result)
result.draw()
check_grammar(grammar, tags)
But it returned an error as:
Traceback (most recent call last):
File "/home/samar/Desktop/twitter_tense/main.py", line 35, in <module>
check_grammar(grammar, tags)
File "/home/samar/Desktop/twitter_tense/main.py", line 31, in check_grammar
result = cp.parse(tags)
File "/home/samar/.local/lib/python3.8/site-packages/nltk/chunk/regexp.py", line 1276, in parse
chunk_struct = parser.parse(chunk_struct, trace=trace)
File "/home/samar/.local/lib/python3.8/site-packages/nltk/chunk/regexp.py", line 1083, in parse
chunkstr = ChunkString(chunk_struct)
File "/home/samar/.local/lib/python3.8/site-packages/nltk/chunk/regexp.py", line 95, in __init__
tags = [self._tag(tok) for tok in self._pieces]
File "/home/samar/.local/lib/python3.8/site-packages/nltk/chunk/regexp.py", line 95, in <listcomp>
tags = [self._tag(tok) for tok in self._pieces]
File "/home/samar/.local/lib/python3.8/site-packages/nltk/chunk/regexp.py", line 105, in _tag
raise ValueError("chunk structures must contain tagged " "tokens or trees")
ValueError: chunk structures must contain tagged tokens or trees
Your call to the cp.parse() function expects each of the tokens in your sentence to be tagged, however, the tags list you created only contains the tags but not the tokens as well, hence your ValueError. The solution is to instead pass the output from the pos_tag() call (i.e. tagged) to your check_grammar call (see below).
Solution
from nltk import word_tokenize, pos_tag
import nltk
text = "He will have been doing his homework."
tokenized = word_tokenize(text)
tagged = pos_tag(tokenized)
print(tagged)
# Output
>>> [('He', 'PRP'), ('will', 'MD'), ('have', 'VB'), ('been', 'VBN'), ('doing', 'VBG'), ('his', 'PRP$'), ('homework', 'NN'), ('.', '.')]
my_grammar = r"""
Future_Perfect_Continuous: {<MD><VB><VBN><VBG>}
Future_Continuous: {<MD><VB><VBG>}
Future_Perfect: {<MD><VB><VBN>}
Past_Perfect_Continuous: {<VBD><VBN><VBG>}
Present_Perfect_Continuous:{<VBP|VBZ><VBN><VBG>}
Future_Indefinite: {<MD><VB>}
Past_Continuous: {<VBD><VBG>}
Past_Perfect: {<VBD><VBN>}
Present_Continuous: {<VBZ|VBP><VBG>}
Present_Perfect: {<VBZ|VBP><VBN>}
Past_Indefinite: {<VBD>}
Present_Indefinite: {<VBZ>|<VBP>}"""
def check_grammar(grammar, tags):
cp = nltk.RegexpParser(grammar)
result = cp.parse(tags)
print(result)
result.draw()
check_grammar(my_grammar, tagged)
Output
>>> (S
>>> He/PRP
>>> (Future_Perfect_Continuous will/MD have/VB been/VBN doing/VBG)
>>> his/PRP$
>>> homework/NN
>>> ./.)

Python - Update tuple string element error

I have a dataframe where every row is a list of tuples , i.e.: tuple = (word, pos_tag). In each row, I want to change the word of some tuples by marking it and then update the tuple with the marked word. For example:
Initial dataframe row :
[('This', 'DET'), ('is', 'VERB'), ('an', 'DET'), ('example', 'NOUN'), ('text', 'NOUN'), ('that', 'DET'), ('I', 'PRON'), ('use', 'VERB'), ('in', 'ADP'), ('order', 'NOUN'), ('to', 'PART'), ('get', 'VERB'), ('an', 'DET'), ('answer', 'NOUN')]
Updated words :
updated_word : <IN>example</IN>
updated_word : <TAR>answer</TAR>
Desired output :
[('This', 'DET'), ('is', 'VERB'), ('an', 'DET'), ('<IN>example</IN>', 'NOUN'), ('text', 'NOUN'), ('that', 'DET'), ('I', 'PRON'), ('use', 'VERB'), ('in', 'ADP'), ('order', 'NOUN'), ('to', 'PART'), ('get', 'VERB'), ('an', 'DET'), ('<TAR>answer</TAR>', 'NOUN')]
But I get an error that TypeError: 'tuple' object is not callable. Can someone help? Here's the code :
for idx, row in df.iterrows():
doc = nlp(row['title'])
pos_tags = [(token.text, token.pos_) for token in doc if not token.pos_ == "PUNCT"]
for position, tuple in enumerate(pos_tags, start=1):
word = tuple[0]
spacy_pos_tag = tuple[1]
word = re.sub(r'[^\w\s]', '', word)
for col in cols:
if position in row[col]:
word = f'<{col.upper()}>{word}</{col.upper()}>'
else:
continue
tuple = tuple(word, spacy_pos_tag)
print(tuple)
>>>> Traceback (most recent call last):
>>>> tuple = tuple(word, spacy_pos_tag)
>>>> TypeError: 'tuple' object is not callable
Updated question
I have replaced tuple with tuple_ as suggested, but I still can't get back the desired output which is a list of tuples in every row. Can someone help how to update the dataframe rows? Here's the updated code :
for idx, row in df.iterrows():
doc = nlp(row['title'])
pos_tags = [(token.text, token.pos_) for token in doc if not token.pos_ == "PUNCT"]
# print(idx, "tokens, pos : ", pos_tags, "\n")
for position, tuple_ in enumerate(pos_tags, start=1):
word = tuple_[0]
spacy_pos_tag = tuple_[1]
word = re.sub(r'[^\w\s]', '', word)
for col in cols:
if position in row[col]:
word = f'<{col.upper()}>{word}</{col.upper()}>'
else:
continue
tuple_ = (word, spacy_pos_tag)
pos_tags.append(' '.join(position, tuple_))
# pos_tags.append(' '.join(tuple_))
print(idx, "tokens, pos : ", pos_tags, "\n")
>>>> Traceback (most recent call last):
>>>> pos_tag(df=df_matched)
>>>> pos_tags.append(' '.join(position, tuple_))
>>>> TypeError: join() takes exactly one argument (2 given)
Do not use tuple as a variable name, as it is a built-in python type name. Try the following instead:
for position, tuple_ in enumerate(pos_tags, start=1):
word = tuple_[0]
spacy_pos_tag = tuple_[1]
word = re.sub(r'[^\w\s]', '', word)
for col in cols:
if position in row[col]:
word = f'<{col.upper()}>{word}</{col.upper()}>'
else:
continue
tuple_ = (word, spacy_pos_tag)
print(tuple_)
Don't use "tuple" as name of a variable. It's a type name

How to ignore punctuation in-between words using word_tokenize in NLTK?

I'm looking to ignore characters in-between words using NLTK word_tokenize.
If I have a a sentence:
test = 'Should I trade on the S&P? This works with a phone number 333-445-6635 and email test#testing.com'
The word_tokenize method is splitting the S&P into
'S','&','P','?'
Is there a way to have this library ignore punctuation between words or letters?
Expected output: 'S&P','?'
Let me know how this works with your sentences.
I added an additional test with a bunch of punctuation.
The regular expression is, in the final portion, modified from the WordPunctTokenizer regexp.
from nltk.tokenize import RegexpTokenizer
punctuation = r'[]!"$%&\'()*+,./:;=##?[\\^_`{|}~-]?'
tokenizer = RegexpTokenizer(r'\w+' + punctuation + r'\w+?|[^\s]+?')
# result:
In [156]: tokenizer.tokenize(test)
Out[156]: ['Should', 'I', 'trade', 'on', 'the', 'S&P', '?']
# additional test:
In [225]: tokenizer.tokenize('"I am tired," she said.')
Out[225]: ['"', 'I', 'am', 'tired', ',', '"', 'she', 'said', '.']
Edit: the requirements changed a bit so we can slightly modify PottsTweetTokenizer for this purpose.
emoticon_string = r"""
(?:
[<>]?
[:;=8] # eyes
[\-o\*\']? # optional nose
[\)\]\(\[dDpP/\:\}\{#\|\\] # mouth
|
[\)\]\(\[dDpP/\:\}\{#\|\\] # mouth
[\-o\*\']? # optional nose
[:;=8] # eyes
[<>]?
)"""
# Twitter symbols/cashtags: # Added by awd, 20140410.
# Based upon Twitter's regex described here: <https://blog.twitter.com/2013/symbols-entities-tweets>.
cashtag_string = r"""(?:\$[a-zA-Z]{1,6}([._][a-zA-Z]{1,2})?)"""
# The components of the tokenizer:
regex_strings = (
# Phone numbers:
r"""
(?:
(?: # (international)
\+?[01]
[\-\s.]*
)?
(?: # (area code)
[\(]?
\d{3}
[\-\s.\)]*
)?
\d{3} # exchange
[\-\s.]*
\d{4} # base
)"""
,
# Emoticons:
emoticon_string
,
# HTML tags:
r"""(?:<[^>]+>)"""
,
# URLs:
r"""(?:http[s]?://t.co/[a-zA-Z0-9]+)"""
,
# Twitter username:
r"""(?:#[\w_]+)"""
,
# Twitter hashtags:
r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)"""
,
# Twitter symbols/cashtags:
cashtag_string
,
# email addresses
r"""(?:[\w.+-]+#[\w-]+\.(?:[\w-]\.?)+[\w-])""",
# Remaining word types:
r"""
(?:[a-z][^\s]+[a-z]) # Words with punctuation (modification here).
|
(?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals.
|
(?:[\w_]+) # Words without apostrophes or dashes.
|
(?:\.(?:\s*\.){1,}) # Ellipsis dots.
|
(?:\S) # Everything else that isn't whitespace.
"""
)
word_re = re.compile(r"""(%s)""" % "|".join(regex_strings), re.VERBOSE | re.I | re.UNICODE)
# The emoticon and cashtag strings get their own regex so that we can preserve case for them as needed:
emoticon_re = re.compile(emoticon_string, re.VERBOSE | re.I | re.UNICODE)
cashtag_re = re.compile(cashtag_string, re.VERBOSE | re.I | re.UNICODE)
# These are for regularizing HTML entities to Unicode:
html_entity_digit_re = re.compile(r"&#\d+;")
html_entity_alpha_re = re.compile(r"&\w+;")
amp = "&"
class CustomTweetTokenizer(object):
def __init__(self, *, preserve_case: bool=False):
self.preserve_case = preserve_case
def tokenize(self, tweet: str) -> list:
"""
Argument: tweet -- any string object.
Value: a tokenized list of strings; concatenating this list returns the original string if preserve_case=True
"""
# Fix HTML character entitites:
tweet = self._html2unicode(tweet)
# Tokenize:
matches = word_re.finditer(tweet)
if self.preserve_case:
return [match.group() for match in matches]
return [self._normalize_token(match.group()) for match in matches]
#staticmethod
def _normalize_token(token: str) -> str:
if emoticon_re.search(token):
# Avoid changing emoticons like :D into :d
return token
if token.startswith('$') and cashtag_re.search(token):
return token.upper()
return token.lower()
#staticmethod
def _html2unicode(tweet: str) -> str:
"""
Internal method that seeks to replace all the HTML entities in
tweet with their corresponding unicode characters.
"""
# First the digits:
ents = set(html_entity_digit_re.findall(tweet))
if len(ents) > 0:
for ent in ents:
entnum = ent[2:-1]
try:
entnum = int(entnum)
tweet = tweet.replace(ent, chr(entnum))
except:
pass
# Now the alpha versions:
ents = set(html_entity_alpha_re.findall(tweet))
ents = filter((lambda x: x != amp), ents)
for ent in ents:
entname = ent[1:-1]
try:
tweet = tweet.replace(ent, chr(html.entities.name2codepoint[entname]))
except:
pass
tweet = tweet.replace(amp, " and ")
return tweet
To test it out:
tknzr = CustomTweetTokenizer(preserve_case=True)
tknzr.tokenize(test)
# result:
['Should',
'I',
'trade',
'on',
'the',
'S&P',
'?',
'This',
'works',
'with',
'a',
'phone',
'number',
'333-445-6635',
'and',
'email',
'test#testing.com']
Following up on #mechanical_meat answer,
There's a twitter text tokenizer in NLTK
Most probably, it's derived from the PottsTweetTokenizer at https://github.com/nltk/nltk/blob/develop/nltk/tokenize/casual.py
from nltk.tokenize import TweetTokenizer
tt = TweetTokenizer()
text = 'Should I trade on the S&P? This works with a phone number 333-445-6635 and email test#testing.com'
print(tt.tokenize(text))
[out]:
['Should', 'I', 'trade', 'on', 'the', 'S', '&', 'P', '?', 'This', 'works', 'with', 'a', 'phone', 'number', '333-445-6635', 'and', 'email', 'test#testing.com']
But that doesn't solve the S&P problem!!
So you can try the Multi-Word Expression approach, see https://stackoverflow.com/a/55644296/610569
from nltk import word_tokenize
from nltk.tokenize import TweetTokenizer
from nltk.tokenize import MWETokenizer
def multiword_tokenize(text, mwe, tokenize_func=word_tokenize):
# Initialize the MWETokenizer
protected_tuples = [tokenize_func(word) for word in mwe]
protected_tuples_underscore = ['_'.join(word) for word in protected_tuples]
tokenizer = MWETokenizer(protected_tuples)
# Tokenize the text.
tokenized_text = tokenizer.tokenize(tokenize_func(text))
# Replace the underscored protected words with the original MWE
for i, token in enumerate(tokenized_text):
if token in protected_tuples_underscore:
tokenized_text[i] = mwe[protected_tuples_underscore.index(token)]
return tokenized_text
text = 'Should I trade on the S&P? This works with a phone number 333-445-6635 and email test#testing.com'
mwe = ['S&P']
tt = TweetTokenizer()
print(multiword_tokenize(text, mwe, tt.tokenize))
[out]:
['Should', 'I', 'trade', 'on', 'the', 'S&P', '?', 'This', 'works', 'with', 'a', 'phone', 'number', '333-445-6635', 'and', 'email', 'test#testing.com']

How to store ner result in json/ database

import nltk
from itertools import groupby
def get_continuous_chunks(tagged_sent):
continuous_chunk = []
current_chunk = []
for token, tag in tagged_sent:
if tag != "O":
current_chunk.append((token, tag))
else:
if current_chunk: # if the current chunk is not empty
continuous_chunk.append(current_chunk)
current_chunk = []
# Flush the final current_chunk into the continuous_chunk, if any.
if current_chunk:
continuous_chunk.append(current_chunk)
return continuous_chunk
ne_tagged_sent = [('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'), ('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'), ('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'LOCATION')]
named_entities = get_continuous_chunks(ne_tagged_sent)
named_entities = get_continuous_chunks(ne_tagged_sent)
named_entities_str = [" ".join([token for token, tag in ne]) for ne in named_entities]
named_entities_str_tag = [(" ".join([token for token, tag in ne]), ne[0][1]) for ne in named_entities]
def parser(n,string):
for i in named_entities_str_tag[n]:
if i==string:
pass
else:
return i
print named_entities_str_tag
print
I got this output from the above code:
('PERSON ', 'Rami Eid')
('ORGANIZATION', 'Stony Brook University')
('LOCATION ', 'NY')
('PERSON ', 'GuruRaj Bagali')
('ORGANIZATION', 'Christ University')
But I want it should be map like PERSON WITH ORGANIZATION AND LOCATION I want to store it in json format.
It's not very clear what ne_tagged_sent list contains (Is there a LOCATION for each PERSON, ORGANIZATION ?), you must clarify it that we could answer your question.
You should format your data as a dictionary, each entry corresponds to a person like:
import json
data = {
'Rami Eid':{'job': 'engineer', 'location':'NY'},
'GuruRaj Bagali':{'job': 'professor', 'location': 'NY'}
}
#Save it in a json file
json.dump(data, open('path/to_your_file', 'w')

How to extract chunks from BIO chunked sentences? - python

Give an input sentence, that has BIO chunk tags:
[('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed',
'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'),
('swallow', 'I-NP'), ('?', 'O')]
I would need to extract the relevant phrases out, e.g. if I want to extract 'NP', I would need to extract the fragments of tuples that contains B-NP and I-NP.
[out]:
[('What', '0'), ('the airspeed', '2-3'), ('an unladen swallow', '5-6-7')]
(Note: the numbers in the extract tuples represent the token index.)
I have tried extracting it using the following code:
def extract_chunks(tagged_sent, chunk_type):
current_chunk = []
current_chunk_position = []
for idx, word_pos in enumerate(tagged_sent):
word, pos = word_pos
if '-'+chunk_type in pos: # Append the word to the current_chunk.
current_chunk.append((word))
current_chunk_position.append((idx))
else:
if current_chunk: # Flush the full chunk when out of an NP.
_chunk_str = ' '.join(current_chunk)
_chunk_pos_str = '-'.join(map(str, current_chunk_position))
yield _chunk_str, _chunk_pos_str
current_chunk = []
current_chunk_position = []
if current_chunk: # Flush the last chunk.
yield ' '.join(current_chunk), '-'.join(current_chunk_position)
tagged_sent = [('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('?', 'O')]
print (list(extract_chunks(tagged_sent, chunk_type='NP')))
But when I have adjacent chunk of the same type:
tagged_sent = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'), ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
print (list(extract_chunks(tagged_sent, chunk_type='NP')))
It outputs this:
[('The Mitsubishi Electric Company Managing Director', '0-1-2-3-4-5'), ('ramen', '7')]
Instead of the desired:
[('The Mitsubishi Electric Company', '0-1-2-3'), ('Managing Director', '4-5'), ('ramen', '7')]
How can this be resolved from the above code?
Other than how it's done from the code above, is there a better solution to extract the desired chunks of a specific chunk_type?
Try this, it will extract all types of chunks with the indices of their respective words.
def extract_chunks(tagged_sent, chunk_type='NP'):
out_sen = []
for idx, word_pos in enumerate(tagged_sent):
word,bio = word_pos
boundary,tag = bio.split("-") if "-" in bio else ('','O')
if tag != chunk_type:continue
if boundary == "B":
out_sen.append([word, str(idx)])
elif boundary == "I":
out_sen[-1][0] += " "+ word
out_sen[-1][-1] += "-"+ str(idx)
else:
out_sen.append([word, str(idx)])
return out_sen
Demo:
>>> tagged_sent = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'), ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
>>> output_sent = extract_chunks(tagged_sent)
>>> print map(tuple, output_sent)
[('The Mitsubishi Electric Company', '0-1-2-3'), ('Managing Director', '4-5'), ('ramen', '7')]
def extract_chunks(tagged_sent, chunk_type):
grp1, grp2, chunk_type = [], [], "-" + chunk_type
for ind, (s, tp) in enumerate(tagged_sent):
if tp.endswith(chunk_type):
if not tp.startswith("B"):
grp2.append(str(ind))
grp1.append(s)
else:
if grp1:
yield " ".join(grp1), "-".join(grp2)
grp1, grp2 = [s], [str(ind)]
yield " ".join(grp1), "-".join(grp2)
Output:
In [2]: l = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'),
...: ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
In [3]: list(extract_chunks(l, "NP"))
Out[3]:
[('The Mitsubishi Electric Company', '0-1-2-3'),
('Managing Director', '4-5'),
('ramen', '7')]
In [4]: l = [('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('?', 'O')]
In [5]: list(extract_chunks(l, "NP"))
Out[5]: [('What', '0'), ('the airspeed', '2-3'), ('an unladen swallow', '5-6-7')]
I would do it like this:
import re
def extract_chunks(tagged_sent, chunk_type):
# compiles the expression we want to match
regex = re.compile(chunk_type)
# filters matched items in a dictionary whose keys are the matched indexes
first_step = {index_:tag[0] for index_, tag in enumerate(tagged_sent) if regex.findall(tag[1])}
# builds list of lists following output format
second_step = []
for key_ in sorted(first_step.keys()):
if second_step and int(second_step [len(second_step )-1][1].split('-')[-1]) == key_ -1:
second_step[len(second_step)-1][0] += ' {0}'.format(first_step[key_])
second_step[len(second_step)-1][1] += '-{0}'.format(str(key_))
else:
second_step.append([first_step[key_], str(key_)])
# builds output in final format
return [tuple(item) for item in second_step]
You can adapt it to use generators instead of building the whole output in memory like I am doing and refactory it for better performance (I'm in a hurry so the code is far from optimal).
Hope it helps!

Categories