Find time shift of two signals using cross correlation - python

I have two signals which are related to each other and have been captured by two different measurement devices simultaneously.
Since the two measurements are not time synchronized there is a small time delay between them which I want to calculate. Additionally, I need to know which signal is the leading one.
The following can be assumed:
no or only very less noise present
speed of the algorithm is not an issue, only accuracy and robustness
signals are captured with an high sampling rate (>10 kHz) for several seconds
expected time delay is < 0.5s
I though of using-cross correlation for that purpose.
Any suggestions how to implement that in Python are very appreciated.
Please let me know if I should provide more information in order to find the most suitable algorithmn.

A popular approach: timeshift is the lag corresponding to the maximum cross-correlation coefficient. Here is how it works with an example:
import matplotlib.pyplot as plt
from scipy import signal
import numpy as np
def lag_finder(y1, y2, sr):
n = len(y1)
corr = signal.correlate(y2, y1, mode='same') / np.sqrt(signal.correlate(y1, y1, mode='same')[int(n/2)] * signal.correlate(y2, y2, mode='same')[int(n/2)])
delay_arr = np.linspace(-0.5*n/sr, 0.5*n/sr, n)
delay = delay_arr[np.argmax(corr)]
print('y2 is ' + str(delay) + ' behind y1')
plt.figure()
plt.plot(delay_arr, corr)
plt.title('Lag: ' + str(np.round(delay, 3)) + ' s')
plt.xlabel('Lag')
plt.ylabel('Correlation coeff')
plt.show()
# Sine sample with some noise and copy to y1 and y2 with a 1-second lag
sr = 1024
y = np.linspace(0, 2*np.pi, sr)
y = np.tile(np.sin(y), 5)
y += np.random.normal(0, 5, y.shape)
y1 = y[sr:4*sr]
y2 = y[:3*sr]
lag_finder(y1, y2, sr)
In the case of noisy signals, it is common to apply band-pass filters first. In the case of harmonic noise, they can be removed by identifying and removing frequency spikes present in the frequency spectrum.

Numpy has function correlate which suits your needs: https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html

To complement Reveille's answer above (I reproduce his algorithm), I would like to point out some ideas for preprocessing the input signals.
Since there seems to be no fit-for-all (duration in periods, resolution, offset, noise, signal type, ...) you may play with it.
In my example the application of a window function improves the detected phase shift (within resolution of the discretization).
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
r2d = 180.0/np.pi # conversion factor RAD-to-DEG
delta_phi_true = 50.0/r2d
def detect_phase_shift(t, x, y):
'''detect phase shift between two signals from cross correlation maximum'''
N = len(t)
L = t[-1] - t[0]
cc = signal.correlate(x, y, mode="same")
i_max = np.argmax(cc)
phi_shift = np.linspace(-0.5*L, 0.5*L , N)
delta_phi = phi_shift[i_max]
print("true delta phi = {} DEG".format(delta_phi_true*r2d))
print("detected delta phi = {} DEG".format(delta_phi*r2d))
print("error = {} DEG resolution for comparison dphi = {} DEG".format((delta_phi-delta_phi_true)*r2d, dphi*r2d))
print("ratio = {}".format(delta_phi/delta_phi_true))
return delta_phi
L = np.pi*10+2 # interval length [RAD], for generality not multiple period
N = 1001 # interval division, odd number is better (center is integer)
noise_intensity = 0.0
X = 0.5 # amplitude of first signal..
Y = 2.0 # ..and second signal
phi = np.linspace(0, L, N)
dphi = phi[1] - phi[0]
'''generate signals'''
nx = noise_intensity*np.random.randn(N)*np.sqrt(dphi)
ny = noise_intensity*np.random.randn(N)*np.sqrt(dphi)
x_raw = X*np.sin(phi) + nx
y_raw = Y*np.sin(phi+delta_phi_true) + ny
'''preprocessing signals'''
x = x_raw.copy()
y = y_raw.copy()
window = signal.windows.hann(N) # Hanning window
#x -= np.mean(x) # zero mean
#y -= np.mean(y) # zero mean
#x /= np.std(x) # scale
#y /= np.std(y) # scale
x *= window # reduce effect of finite length
y *= window # reduce effect of finite length
print(" -- using raw data -- ")
delta_phi_raw = detect_phase_shift(phi, x_raw, y_raw)
print(" -- using preprocessed data -- ")
delta_phi_preprocessed = detect_phase_shift(phi, x, y)
Without noise (to be deterministic) the output is
-- using raw data --
true delta phi = 50.0 DEG
detected delta phi = 47.864788975654 DEG
...
-- using preprocessed data --
true delta phi = 50.0 DEG
detected delta phi = 49.77938053468019 DEG
...

Numpy has a useful function, called correlation_lags for this, which uses the underlying correlate function mentioned by other answers to find the time lag. The example displayed at the bottom of that page is useful:
from scipy import signal
from numpy.random import default_rng
rng = default_rng()
x = rng.standard_normal(1000)
y = np.concatenate([rng.standard_normal(100), x])
correlation = signal.correlate(x, y, mode="full")
lags = signal.correlation_lags(x.size, y.size, mode="full")
lag = lags[np.argmax(correlation)]
Then lag would be -100

Related

scipy curve_fi returns initial parameters estimates

I am triyng to use scipy curve_fit function to fit a gaussian function to my data to estimate a theoretical power spectrum density. While doing so, the curve_fit function always return the initial parameters (p0=[1,1,1]) , thus telling me that the fitting didn't work.
I don't know where the issue is. I am using python 3.9 (spyder 5.1.5) from the anaconda distribution on windows 11.
here a Wetransfer link to the data file
https://wetransfer.com/downloads/6097ebe81ee0c29ee95a497128c1c2e420220704110130/86bf2d
Here is my code below. Can someone tell me what the issue is, and how can i solve it?
on the picture of the plot, the blue plot is my experimental PSD and the orange one is the result of the fit.
import numpy as np
import math
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import scipy.constants as cst
File = np.loadtxt('test5.dat')
X = File[:, 1]
Y = File[:, 2]
f_sample = 50000
time=[]
for i in range(1,len(X)+1):
t=i*(1/f_sample)
time= np.append(time,t)
N = X.shape[0] # number of observation
N1=int(N/2)
delta_t = time[2] - time[1]
T_mes = N * delta_t
freq = np.arange(1/T_mes, (N+1)/T_mes, 1/T_mes)
freq=freq[0:N1]
fNyq = f_sample/2 # Nyquist frequency
nb = 350
freq_block = []
# discrete fourier tansform
X_ft = delta_t*np.fft.fft(X, n=N)
X_ft=X_ft[0:N1]
plt.figure()
plt.plot(time, X)
plt.xlabel('t [s]')
plt.ylabel('x [micro m]')
# Experimental power spectrum on both raw and blocked data
PSD_X_exp = (np.abs(X_ft)**2/T_mes)
PSD_X_exp_b = []
STD_PSD_X_exp_b = []
for i in range(0, N1+2, nb):
freq_b = np.array(freq[i:i+nb]) # i-nb:i
psd_b = np.array(PSD_X_exp[i:i+nb])
freq_block = np.append(freq_block, (1/nb)*np.sum(freq_b))
PSD_X_exp_b = np.append(PSD_X_exp_b, (1/nb)*np.sum(psd_b))
STD_PSD_X_exp_b = np.append(STD_PSD_X_exp_b, PSD_X_exp_b/np.sqrt(nb))
plt.figure()
plt.loglog(freq, PSD_X_exp)
plt.legend(['Raw Experimental PSD'])
plt.xlabel('f [Hz]')
plt.ylabel('PSD')
plt.figure()
plt.loglog(freq_block, PSD_X_exp_b)
plt.legend(['Experimental PSD after blocking'])
plt.xlabel('f [Hz]')
plt.ylabel('PSD')
kB = cst.k # Boltzmann constant [m^2kg/s^2K]
T = 273.15 + 25 # Temperature [K]
r = (2.8 / 2) * 1e-6 # Particle radius [m]
v = 0.00002414 * 10 ** (247.8 / (-140 + T)) # Water viscosity [Pa*s]
gamma = np.pi * 6 * r * v # [m*Pa*s]
Do = kB*T/gamma # expected value for D
f3db_o = 50000 # expected value for f3db
fc_o = 300 # expected value pour fc
n = np.arange(-10,11)
def theo_spectrum_lorentzian_filter(x, D_, fc_, f3db_):
PSD_theo=[]
for i in range(0,len(x)):
# print(i)
psd_theo=np.sum((((D_*Do)/2*math.pi**2)/((fc_*fc_o)**2+(x[i]+n*f_sample)
** 2))*(1/(1+((x[i]+n*f_sample)/(f3db_*f3db_o))**2)))
PSD_theo= np.append(PSD_theo,psd_theo)
return PSD_theo
popt, pcov = curve_fit(theo_spectrum_lorentzian_filter, freq_block, PSD_X_exp_b, p0=[1, 1, 1], sigma=STD_PSD_X_exp_b, absolute_sigma=True, check_finite=True,bounds=(0.1, 10), method='trf', jac=None)
D_, fc_, f3db_ = popt
D1 = D_*Do
fc1 = fc_*fc_o
f3db1 = f3db_*f3db_o
print('Diffusion constant D = ', D1, ' Corner frequency fc= ',fc1, 'f3db(diode,eff)= ', f3db1)
I believe I've successfully fitted your data. Here's the approach I took.
First, I plotted your model (with popt=[1, 1, 1]) and the data you had. I noticed your data was significantly lower than the model. Then I started fiddling with the parameters. I wanted to push the model upwards. I did that by multiplying popt[0] by increasingly large values. I ended up with 1E13 as a ballpark value. Note that I have no idea if this is physically possible for your model. Then I jury-rigged your fitting function to multiply D_ by 1E13 and ran your code. I got this fit:
So I believe it's a problem of 1) inappropriate starting values and 2) inappropriate bounds. In your position, I would revise this model, check if there's any problems with units and so on.
Here's what I used to try to fit your model:
plt.figure()
plt.loglog(freq_block[:170], PSD_X_exp_b[:170], label='Exp')
plt.loglog(freq_block[:170],
theo_spectrum_lorentzian_filter(
freq_block[:170],
1E13*popt[0], popt[1], popt[2]),
label='model'
)
plt.xlabel('f [Hz]')
plt.ylabel('PSD')
plt.legend()
I limited the data to point 170 because there were some weird backwards values that made me uncomfortable. I would recheck them if I were you.
Here's the model code I used. I didn't change the curve_fit call (except to limit x to :170.
def theo_spectrum_lorentzian_filter(x, D_, fc_, f3db_):
PSD_theo=[]
D_ = 1E13*D_ # I only changed here
for i in range(0,len(x)):
psd_theo=np.sum((((D_*Do)/2*math.pi**2)/((fc_*fc_o)**2+(x[i]+n*f_sample)
** 2))*(1/(1+((x[i]+n*f_sample)/(f3db_*f3db_o))**2)))
PSD_theo= np.append(PSD_theo,psd_theo)
return PSD_theo

Scaling x-axis after IFFT-FFT

See the edit below for details.
I have a dataset, on which I need to perform and IFFT, cut the valueable part of it (by multiplying with a gaussian curve), then FFT back.
First is in angular frequency domain, so an IFFT leads to time domain. Then FFT-ing back should lead to angular frequency again, but I can't seem to find a solution how to get back the original domain. Of course it's easy on the y-values:
yf = np.fft.ifft(y)
#cut the valueable part there..
np.fft.fft(yf)
For the x-value transforms I'm using np.fft.fftfreq the following way:
# x is in ang. frequency domain, that's the reason for the 2*np.pi division
t = np.fft.fftfreq(len(x), d=(x[1]-x[0])/(2*np.pi))
However doing
x = np.fft.fftfreq(len(t), d=2*np.pi*(t[1]-t[0]))
completely not giving me back the original x values. Is that something I'm misunderstanding?
The question can be asked generalized, for example:
import numpy as np
x = np.arange(100)
xx = np.fft.fftfreq(len(x), d = x[1]-x[0])
# how to get back the original x from xx? Is it even possible?
I've tried to use a temporal variable where I store the original x values, but it's not too elegant. I'm looking for some kind of inverse of fftfreq, and in general the possible best solution for that problem.
Thank you.
EDIT:
I will provide the code at the end.
I have a dataset which has angular frequency on x axis and intensity on the y. I want to perfrom IFFT to change to time domain. Unfortunately the x values are not
evenly spaced, so a (linear) interpolation is needed first before IFFT. Then in time domain the transform looks like this:
The next step is to cut one of the symmetrical spikes with a gaussian curve, then FFT back to angular frequency domain (the same where we started). My problem is when I transfrom the x-axis for the IFFT (which I think is correct), I can't get back into the original angular frequency domain. Here is the code, which includes the generator for the dataset too.
import numpy as np
import matplotlib.pyplot as plt
import scipy
from scipy.interpolate import interp1d
C_LIGHT = 299.792
# for easier case, this is zero, so it can be ignored.
def _disp(x, GD=0, GDD=0, TOD=0, FOD=0, QOD=0):
return x*GD+(GDD/2)*x**2+(TOD/6)*x**3+(FOD/24)*x**4+(QOD/120)*x**5
# the generator to make sample datasets
def generator(start, stop, center, delay, GD=0, GDD=0, TOD=0, FOD=0, QOD=0, resolution=0.1, pulse_duration=15, chirp=0):
window = (np.sqrt(1+chirp**2)*8*np.log(2))/(pulse_duration**2)
lamend = (2*np.pi*C_LIGHT)/start
lamstart = (2*np.pi*C_LIGHT)/stop
lam = np.arange(lamstart, lamend+resolution, resolution)
omega = (2*np.pi*C_LIGHT)/lam
relom = omega-center
i_r = np.exp(-(relom)**2/(window))
i_s = np.exp(-(relom)**2/(window))
i = i_r + i_s + 2*np.sqrt(i_r*i_s)*np.cos(_disp(relom, GD=GD, GDD=GDD, TOD=TOD, FOD=FOD, QOD=QOD)+delay*omega)
#since the _disp polynomial is set to be zero, it's just cos(delay*omega)
return omega, i
def interpol(x,y):
''' Simple linear interpolation '''
xs = np.linspace(x[0], x[-1], len(x))
intp = interp1d(x, y, kind='linear', fill_value = 'extrapolate')
ys = intp(xs)
return xs, ys
def ifft_method(initSpectrumX, initSpectrumY, interpolate=True):
if len(initSpectrumY) > 0 and len(initSpectrumX) > 0:
Ydata = initSpectrumY
Xdata = initSpectrumX
else:
raise ValueError
N = len(Xdata)
if interpolate:
Xdata, Ydata = interpol(Xdata, Ydata)
# the (2*np.pi) division is because we have angular frequency, not frequency
xf = np.fft.fftfreq(N, d=(Xdata[1]-Xdata[0])/(2*np.pi)) * N * Xdata[-1]/(N-1)
yf = np.fft.ifft(Ydata)
else:
pass # some irrelevant code there
return xf, yf
def fft_method(initSpectrumX ,initSpectrumY):
if len(initSpectrumY) > 0 and len(initSpectrumX) > 0:
Ydata = initSpectrumY
Xdata = initSpectrumX
else:
raise ValueError
yf = np.fft.fft(Ydata)
xf = np.fft.fftfreq(len(Xdata), d=(Xdata[1]-Xdata[0])*2*np.pi)
# the problem is there, where I transform the x values.
xf = np.fft.ifftshift(xf)
return xf, yf
# the generated data
x, y = generator(1, 3, 2, delay = 1500, resolution = 0.1)
# plt.plot(x,y)
xx, yy = ifft_method(x,y)
#if the x values are correctly scaled, the two symmetrical spikes should appear exactly at delay value
# plt.plot(xx, np.abs(yy))
#do the cutting there, which is also irrelevant now
# the problem is there, in fft_method. The x values are not the same as before transforms.
xxx, yyy = fft_method(xx, yy)
plt.plot(xxx, np.abs(yyy))
#and it should look like this:
#xs = np.linspace(x[0], x[-1], len(x))
#plt.plot(xs, np.abs(yyy))
plt.grid()
plt.show()

Lowpass filter with a time-varying cutoff frequency, with Python

How to apply a lowpass filter, with cutoff frequency varying linearly (or with a more general curve than linear) from e.g. 10000hz to 200hz along time, with numpy/scipy and possibly no other library?
Example:
at 00:00,000, lowpass cutoff = 10000hz
at 00:05,000, lowpass cutoff = 5000hz
at 00:09,000, lowpass cutoff = 1000hz
then cutoff stays at 1000hz during 10 seconds, then cutoff decreases down to 200hz
Here is how to do a simple 100hz lowpass:
from scipy.io import wavfile
import numpy as np
from scipy.signal import butter, lfilter
sr, x = wavfile.read('test.wav')
b, a = butter(2, 100.0 / sr, btype='low') # Butterworth
y = lfilter(b, a, x)
wavfile.write('out.wav', sr, np.asarray(y, dtype=np.int16))
but how to make the cutoff vary?
Note: I've already read Applying time-variant filter in Python but the answer is quite complex (and it applies to many kinds of filter in general).
One comparatively easy method is to keep the filter fixed and modulate signal time instead. For example, if signal time runs 10x faster a 10KHz lowpass will act like a 1KHz lowpass in standard time.
To do this we need to solve a simple ODE
dy 1
-- = ----
dt f(y)
Here t is modulated time y real time and f the desired cutoff at time y.
Prototype implementation:
from __future__ import division
import numpy as np
from scipy import integrate, interpolate
from scipy.signal import butter, lfilter, spectrogram
slack_l, slack = 0.1, 1
cutoff = 50
L = 25
from scipy.io import wavfile
sr, x = wavfile.read('capriccio.wav')
x = x[:(L + slack) * sr, 0]
x = x
# sr = 44100
# x = np.random.normal(size=((L + slack) * sr,))
b, a = butter(2, 2 * cutoff / sr, btype='low') # Butterworth
# cutoff function
def f(t):
return (10000 - 1000 * np.clip(t, 0, 9) - 1000 * np.clip(t-19, 0, 0.8)) \
/ cutoff
# and its reciprocal
def fr(_, t):
return cutoff / (10000 - 1000 * t.clip(0, 9) - 1000 * (t-19).clip(0, 0.8))
# modulate time
# calculate upper end of td first
tdmax = integrate.quad(f, 0, L + slack_l, points=[9, 19, 19.8])[0]
span = (0, tdmax)
t = np.arange(x.size) / sr
tdinfo = integrate.solve_ivp(fr, span, np.zeros((1,)),
t_eval=np.arange(0, span[-1], 1 / sr),
vectorized=True)
td = tdinfo.y.ravel()
# modulate signal
xd = interpolate.interp1d(t, x)(td)
# and linearly filter
yd = lfilter(b, a, xd)
# modulate signal back to linear time
y = interpolate.interp1d(td, yd)(t[:-sr*slack])
# check
import pylab
xa, ya, z = spectrogram(y, sr)
pylab.pcolor(ya, xa, z, vmax=2**8, cmap='nipy_spectral')
pylab.savefig('tst.png')
wavfile.write('capriccio_vandalized.wav', sr, y.astype(np.int16))
Sample output:
Spectrogram of first 25 seconds of BWV 826 Capriccio filtered with a time varying lowpass implemented via time bending.
you can use scipy.fftpack.fftfreq and scipy.fftpack.rfft to set thresholds
fft = scipy.fftpack.fft(sound)
freqs = scipy.fftpack.fftfreq(sound.size, time_step)
for the time_step I did twice the sampling rate of the sound
fft[(freqs < 200)] = 0
this would set all set all frequencies less than 200 hz to zero
for the time varying cut off, I'd split the sound and apply the filters then. assuming the sound has a sampling rate of 44100, the 5000hz filter would start at sample 220500 (five seconds in)
10ksound = sound[:220500]
10kfreq = scipy.fftpack.fftreq(10ksound.size, time_step)
10kfft = scipy.fftpack.fft(10ksound)
10kfft[(10kfreqs < 10000)] = 0
then for the next filter:
5ksound = sound[220500:396900]
5kfreq = scipy.fftpack.fftreq(10ksound.size, time_step)
5kfft = scipy.fftpack.fft(10ksound)
5kfft[(5kfreqs < 5000)] = 0
etc
edit: to make it "sliding" or a gradual filter instead of piece wise, you could make the "pieces" much smaller and apply increasingly bigger frequency thresholds to the corresponding piece(5000 -> 5001 -> 5002)

Two dimensional FFT using python results in slightly shifted frequency

I know there have been several questions about using the Fast Fourier Transform (FFT) method in python, but unfortunately none of them could help me with my problem:
I want to use python to calculate the Fast Fourier Transform of a given two dimensional signal f, i.e. f(x,y). Pythons documentation helps a lot, solving a few issues, which the FFT brings with it, but i still end up with a slightly shifted frequency compared to the frequency i expect it to show. Here is my python code:
from scipy.fftpack import fft, fftfreq, fftshift
import matplotlib.pyplot as plt
import numpy as np
import math
fq = 3.0 # frequency of signal to be sampled
N = 100.0 # Number of sample points within interval, on which signal is considered
x = np.linspace(0, 2.0 * np.pi, N) # creating equally spaced vector from 0 to 2pi, with spacing 2pi/N
y = x
xx, yy = np.meshgrid(x, y) # create 2D meshgrid
fnc = np.sin(2 * np.pi * fq * xx) # create a signal, which is simply a sine function with frequency fq = 3.0, modulating the x(!) direction
ft = np.fft.fft2(fnc) # calculating the fft coefficients
dx = x[1] - x[0] # spacing in x (and also y) direction (real space)
sampleFrequency = 2.0 * np.pi / dx
nyquisitFrequency = sampleFrequency / 2.0
freq_x = np.fft.fftfreq(ft.shape[0], d = dx) # return the DFT sample frequencies
freq_y = np.fft.fftfreq(ft.shape[1], d = dx)
freq_x = np.fft.fftshift(freq_x) # order sample frequencies, such that 0-th frequency is at center of spectrum
freq_y = np.fft.fftshift(freq_y)
half = len(ft) / 2 + 1 # calculate half of spectrum length, in order to only show positive frequencies
plt.imshow(
2 * abs(ft[:half,:half]) / half,
aspect = 'auto',
extent = (0, freq_x.max(), 0, freq_y.max()),
origin = 'lower',
interpolation = 'nearest',
)
plt.grid()
plt.colorbar()
plt.show()
And what i get out of this when running it, is:
Now you see that the frequency in x direction is not exactly at fq = 3, but slightly shifted to the left. Why is this?
I would assume that is has to do with the fact, that FFT is an algorithm using symmetry arguments and
half = len(ft) / 2 + 1
is used to show the frequencies at the proper place. But I don't quite understand what the exact problem is and how to fix it.
Edit: I have also tried using a higher sampling frequency (N = 10000.0), which did not solve the issue, but instead shifted the frequency slightly too far to the right. So i am pretty sure that the problem is not the sampling frequency.
Note: I'm aware of the fact, that the leakage effect leads to unphysical amplitudes here, but in this post I am primarily interested in the correct frequencies.
I found a number of issues
you use 2 * np.pi twice, you should choose one of either linspace or the arg to sine as radians if you want a nice integer number of cycles
additionally np.linspace defaults to endpoint=True, giving you an extra point for 101 instead of 100
fq = 3.0 # frequency of signal to be sampled
N = 100 # Number of sample points within interval, on which signal is considered
x = np.linspace(0, 1, N, endpoint=False) # creating equally spaced vector from 0 to 2pi, with spacing 2pi/N
y = x
xx, yy = np.meshgrid(x, y) # create 2D meshgrid
fnc = np.sin(2 * np.pi * fq * xx) # create a signal, which is simply a sine function with frequency fq = 3.0, modulating the x(!) direction
you can check these issues:
len(x)
Out[228]: 100
plt.plot(fnc[0])
fixing the linspace endpoint now means you have an even number of fft bins so you drop the + 1 in the half calc
matshow() appears to have better defaults, your extent = (0, freq_x.max(), 0, freq_y.max()), in imshow appears to fubar the fft bin numbering
from scipy.fftpack import fft, fftfreq, fftshift
import matplotlib.pyplot as plt
import numpy as np
import math
fq = 3.0 # frequency of signal to be sampled
N = 100 # Number of sample points within interval, on which signal is considered
x = np.linspace(0, 1, N, endpoint=False) # creating equally spaced vector from 0 to 2pi, with spacing 2pi/N
y = x
xx, yy = np.meshgrid(x, y) # create 2D meshgrid
fnc = np.sin(2 * np.pi * fq * xx) # create a signal, which is simply a sine function with frequency fq = 3.0, modulating the x(!) direction
plt.plot(fnc[0])
ft = np.fft.fft2(fnc) # calculating the fft coefficients
#dx = x[1] - x[0] # spacing in x (and also y) direction (real space)
#sampleFrequency = 2.0 * np.pi / dx
#nyquisitFrequency = sampleFrequency / 2.0
#
#freq_x = np.fft.fftfreq(ft.shape[0], d=dx) # return the DFT sample frequencies
#freq_y = np.fft.fftfreq(ft.shape[1], d=dx)
#
#freq_x = np.fft.fftshift(freq_x) # order sample frequencies, such that 0-th frequency is at center of spectrum
#freq_y = np.fft.fftshift(freq_y)
half = len(ft) // 2 # calculate half of spectrum length, in order to only show positive frequencies
plt.matshow(
2 * abs(ft[:half, :half]) / half,
aspect='auto',
origin='lower'
)
plt.grid()
plt.colorbar()
plt.show()
zoomed the plot:

Diffusion simulation

I am trying to simulate a diffusion process and have the following code which simulates the diffusion equation:
dx = 0.1
dt = 0.1
t = np.arange(0, 10, dt)
x = np.arange(0, 10, dx)
D = 1/20
k = 1
# We have an empty array
Cxt = np.tile(np.nan, (len(t), len(x)))
# Definition of concentration profile at t = 0.
Cxt[0] = np.sin(k*2*np.pi*x/10)+1
for j in range(len(t) - 1):
# Second derivative to x: C_xx
C_xx = (np.roll(Cxt[j], -1) + np.roll(Cxt[j], 1) - 2*Cxt[j]) / dx**2
# Concentrationprofile in the next time step
Cxt[j+1] = Cxt[j] + dt * D * C_xx
# Plot the concentration profiles in qt
%matplotlib qt
plt.waitforbuttonpress()
for i in range(len(t)):
ti = t[i]
Ci = Cxt[i]
plt.cla()
plt.plot(x, Ci, label='t={}'.format(ti))
plt.xlabel('x')
plt.ylabel('C(x)')
plt.axis([0, 10, 0, 2])
plt.title('t={0:.2f}'.format(ti))
plt.show()
plt.pause(0.01)
%matplotlib inline
I want to see how fast the maximum of the sine disappears. To do this I want to plot the amplitude (distance between maximum and average) as function of the time, but how do I do this?
How do I know at what time the amplitude is a factor e smaller than the beginning?
One approach would be to fit a generic sine function f(x)=A*sin(k*x+phi)+c to the result data at each timestep and take its amplitude A as your result. This can be achieved as follows:
from scipy.optimize import curve_fit
fit_function=lambda x,A,k,phi,c:A*np.sin(k*x+phi)+c
timestep=50
amplitude=curve_fit(fit_function,x,Cxt[timestep,:],p0=[1,k*2*np.pi/10,0,1])[0][0]
I picked the starting values p0 to match your initialization. Of course you will want to wrap this in some way to answer whatever question you are asking, i.e. search for the value of timestep, where amplitude is below 1/e or something.
Edit: Just taking the difference between maximum and mean for your data can be achieved as
Cxt.max(axis=1)-Cxt.mean(axis=1)
This will return a 1D-array indexed by the time.

Categories