AttributeError: 'bool' object has no attribute 'ndim' - python

from quantopian.pipeline import Pipeline
from quantopian.algorithm import attach_pipeline, pipeline_output
from quantopian.pipeline.data.builtin import USEquityPricing
from quantopian.pipeline.factors import SimpleMovingAverage
from quantopian.pipeline.filters.morningstar import Q1500US
from quantopian.pipeline.factors import AnnualizedVolatility
from quantopian.pipeline.factors.morningstar import MarketCap
from quantopian.pipeline import factors, filters, classifiers
Market_Cap=(MarketCap > 1000000000)
def lowvolport():
return filters.make_us_equity_universe(
target_size=50,
rankby=factors.AnnualizedVolatility(window_length=90),
mask=Market_Cap,
)
def initialize(context):
# Schedule our rebalance function to run at the start of each week.
schedule_function(my_rebalance, date_rules.week_start(), time_rules.market_open(hours=1))
# Record variables at the end of each day.
schedule_function(my_record_vars, date_rules.every_day(), time_rules.market_close())
# Create our pipeline and attach it to our algorithm.
my_pipe = make_pipeline()
attach_pipeline(my_pipe, 'my_pipeline')
def make_pipeline():
"""
Create our pipeline.
"""
# Base universe set to the Q1500US.
base_universe = Q1500US()
Market_Cap = (MarketCap > 1000000000)
# Filter to select securities to long.
volatility_bottom = AnnualizedVolatility(inputs=[USEquityPricing.close], window_length=90, mask=base_universe)
volatility_bottom_50=volatility_bottom.bottom(50)
# Filter for all securities that we want to trade.
securities_to_trade = (Market_Cap & volatility_bottom_50)
return Pipeline(
columns={
'Market_Cap': Market_Cap
},
screen=(securities_to_trade),
)
def my_compute_weights(context):
"""
Compute ordering weights.
"""
# Compute even target weights for our long positions and short positions.
long_weight = 0.5 / len(context.longs)
short_weight = -0.5 / len(context.shorts)
return long_weight, short_weight
def before_trading_start(context, data):
# Gets our pipeline output every day.
context.output = pipeline_output('my_pipeline')
# Go long in securities for which the 'longs' value is True.
context.longs = context.output[context.output['longs']].index.tolist()
# Go short in securities for which the 'shorts' value is True.
context.shorts = context.output[context.output['shorts']].index.tolist()
context.long_weight, context.short_weight = my_compute_weights(context)
def my_rebalance(context, data):
"""
Rebalance weekly.
"""
for security in context.portfolio.positions:
if security not in context.longs and security not in context.shorts and data.can_trade(security):
order_target_percent(security, 0)
for security in context.longs:
if data.can_trade(security):
order_target_percent(security, context.long_weight)
for security in context.shorts:
if data.can_trade(security):
order_target_percent(security, context.short_weight)
def my_record_vars(context, data):
"""
Record variables at the end of each day.
"""
longs = shorts = 0
for position in context.portfolio.positions.itervalues():
if position.amount > 0:
longs += 1
elif position.amount < 0:
shorts += 1
# Record our variables.
record(leverage=context.account.leverage, long_count=longs, short_count=shorts)
Hi everyone, I'm new to python with some Matlab experience. The code is what I recently did in Quantopian. The error message is
AttributeError: 'bool' object has no attribute 'ndim'
There was a runtime error on line 27.
the 27th line is
my_pipe = make_pipeline()
The above is my first question.
My second question is that, based on the existing algorithm, how can I perform VAR model over every three months using the formula
Yt = a0 + a1Yt-1 + ..... + apYt-p + b1Xt-1 + ..... + bpXt-p + ut
with Yt being the return over 90 days and Xt-1,...,Xt-p being lags of volatility?
Thank in advance! Please let me know if any details need to be specified.

You are missing parenthesis on line 38 when initializing the MarketCap factor:
Market_Cap = (MarketCap() > 1000000000)
After that you will get a KeyError in line 69 because you haven't added 'longs' to your pipeline's output (same for 'shorts').

Related

Pyomo energy storage system dispatch optimization

I'm trying to create a model optimization for a energy storage system using pyomo. Using the demand in kWh from an household and the electricity prices, I would like to minimize the cost charging and discharging the battery at the right time. I already have a working model for 1 year of data and the model is able to find an optimal solution (see code below). However, when I try find a model for only three months (let's say from October to December), pyomo returns with a termination condition "unbound" but I can't figure out why.
Model for 1 year of data:
#Battery parameters
battery_capacity = 252
total_energy = 13.1
usable_energy = 12.4
nominal_voltage = 51.8
ratio = total_energy/usable_energy
power = usable_energy / ratio
nominal_current = usable_energy / nominal_voltage * 1000
recharging_hours = battery_capacity/nominal_current
battery_level_threshold = 0
model = pyo.ConcreteModel()
#Set time period
model.T = pyo.Set(initialize=pyo.RangeSet(len(df_2021)),ordered=True)
#PARAMETERS:
model.b_efficiency = pyo.Param(initialize=0.9)
model.b_min_cap = pyo.Param(initialize=0)
model.b_max_cap = pyo.Param(initialize=12.4)
model.b_charge_power = pyo.Param(initialize=power)
model.b_discharge_power = pyo.Param(initialize=power)
model.spot_prices = pyo.Param(model.T,initialize=dict(enumerate(df_2021["Price/kWh"],1)),within=pyo.Any)
model.demand = pyo.Param(model.T, initialize=dict(enumerate(df_2021["Demand"],1)),within=pyo.Any)
#Variables : also the variable has to be indexed with the time T
model.b_soc = pyo.Var(model.T, domain = pyo.NonNegativeReals, bounds = (model.b_min_cap, model.b_max_cap))
model.b_discharge = pyo.Var(model.T, domain = pyo.NonNegativeReals)
model.b_charge = pyo.Var(model.T, domain = pyo.NonNegativeReals)
model.elect_purchased = pyo.Var(model.T, domain = pyo.NonNegativeReals)
#CONSTRAINTS
#Purchase constraint
def purchase_constraint(model,t):
return model.elect_purchased[t] >= model.demand[t] - model.b_discharge[t] + model.b_charge[t]
#State of charge constraint
def soc_constraint(model,t):
if t == model.T.first():
return model.b_soc[t] == model.b_max_cap / 2 #- model.b_discharge[t] + model.b_charge[t]
else:
return model.b_soc[t] == model.b_soc[t-1] - model.b_discharge[t-1] + model.b_charge[t-1]
#Discharge and charge constraints
def discharge_constraint_1(model,t):
""" Maximum discharge rate within a single hour """
return model.b_discharge[t] <= model.b_discharge_power
def discharge_constraint_2(model,t):<br/>
""" Sets the maximum energy available to be discharged as the SOC - minimum SOC """
return model.b_discharge[t] <= model.b_soc[t] - model.b_min_cap
def charge_constraint_1(model,t):
""" Maximum charge rate within a single hour """
return model.b_charge[t] <= model.b_charge_power
def charge_constraint_2(model,t):<br/>
""" Sets the maximum energy available to be cahrge as the SOC max """
return model.b_charge[t] <= model.b_max_cap - model.b_soc[t]
model.purchase_c = pyo.Constraint(model.T, rule = purchase_constraint)
model.soc_c = pyo.Constraint(model.T, rule = soc_constraint)<br/>
model.discharge_c1 = pyo.Constraint(model.T,rule = discharge_constraint_1)
model.discharge_c2 = pyo.Constraint(model.T,rule = discharge_constraint_2)
model.charge_c1 = pyo.Constraint(model.T,rule = charge_constraint_1)
model.charge_c2 = pyo.Constraint(model.T,rule = charge_constraint_2)
#OBJECTIVE
expr = sum(model.elect_purchased[t] * model.spot_prices[t] for t in model.T)
model.objective = pyo.Objective(rule = expr, sense = pyo.minimize)
opt = pyo.SolverFactory('cbc',executable='/usr/bin/cbc')
results = opt.solve(model)
results.write()
Result 1 year data
The optimal solution is found
However, when I change the dataset, using the SAME model structure and constraints, pyomo doesn't find a solution.
Model for 3 months:
#Battery parameters
battery_capacity = 252
total_energy = 13.1
usable_energy = 12.4
nominal_voltage = 51.8
ratio = total_energy/usable_energy
power = usable_energy / ratio
nominal_current = usable_energy / nominal_voltage * 1000
recharging_hours = battery_capacity/nominal_current
battery_level_threshold = 0
model = pyo.ConcreteModel()
#Set time period
model.T = pyo.Set(initialize=pyo.RangeSet(len(df_2021)),ordered=True)
#PARAMETERS:
model.b_efficiency = pyo.Param(initialize=0.9)
model.b_min_cap = pyo.Param(initialize=0)
model.b_max_cap = pyo.Param(initialize=12.4)
model.b_charge_power = pyo.Param(initialize=power)
model.b_discharge_power = pyo.Param(initialize=power)
model.spot_prices = pyo.Param(model.T,initialize=dict(enumerate(df_2021["Price/kWh"],1)),within=pyo.Any)
model.demand = pyo.Param(model.T, initialize=dict(enumerate(df_2021["Demand"],1)),within=pyo.Any)
#Variables : also the variable has to be indexed with the time T
model.b_soc = pyo.Var(model.T, domain = pyo.NonNegativeReals, bounds = (model.b_min_cap, model.b_max_cap))
model.b_discharge = pyo.Var(model.T, domain = pyo.NonNegativeReals)
model.b_charge = pyo.Var(model.T, domain = pyo.NonNegativeReals)
model.elect_purchased = pyo.Var(model.T, domain = pyo.NonNegativeReals)
#CONSTRAINTS
#Purchase constraint
def purchase_constraint(model,t):
return model.elect_purchased[t] >= model.demand[t] - model.b_discharge[t] + model.b_charge[t]
#State of charge constraint
def soc_constraint(model,t):
if t == model.T.first():
return model.b_soc[t] == model.b_max_cap / 2 #- model.b_discharge[t] + model.b_charge[t]
else:
return model.b_soc[t] == model.b_soc[t-1] - model.b_discharge[t-1] + model.b_charge[t-1]
#Discharge and charge constraints
def discharge_constraint_1(model,t):
""" Maximum discharge rate within a single hour """
return model.b_discharge[t] <= model.b_discharge_power
def discharge_constraint_2(model,t):<br/>
""" Sets the maximum energy available to be discharged as the SOC - minimum SOC """
return model.b_discharge[t] <= model.b_soc[t] - model.b_min_cap
def charge_constraint_1(model,t):
""" Maximum charge rate within a single hour """
return model.b_charge[t] <= model.b_charge_power
def charge_constraint_2(model,t):<br/>
""" Sets the maximum energy available to be cahrge as the SOC max """
return model.b_charge[t] <= model.b_max_cap - model.b_soc[t]
model.purchase_c = pyo.Constraint(model.T, rule = purchase_constraint)
model.soc_c = pyo.Constraint(model.T, rule = soc_constraint)<br/>
model.discharge_c1 = pyo.Constraint(model.T,rule = discharge_constraint_1)
model.discharge_c2 = pyo.Constraint(model.T,rule = discharge_constraint_2)
model.charge_c1 = pyo.Constraint(model.T,rule = charge_constraint_1)
model.charge_c2 = pyo.Constraint(model.T,rule = charge_constraint_2)
#OBJECTIVE
expr = sum(model.elect_purchased[t] * model.spot_prices[t] for t in model.T)
model.objective = pyo.Objective(rule = expr, sense = pyo.minimize)
opt = pyo.SolverFactory('cbc',executable='/usr/bin/cbc')
results = opt.solv
Pyomo returns:
WARNING: Loading a SolverResults object with a warning status into
model.name="unknown";
- termination condition: unbounded
- message from solver: <undefined>
# ==========================================================
# = Solver Results =
# ==========================================================
# ----------------------------------------------------------
# Problem Information
# ----------------------------------------------------------
Problem:
- Name: unknown
Lower bound: None
Upper bound: inf
Number of objectives: 1
Number of constraints: 16993
Number of variables: 11329
Number of nonzeros: 2832
Sense: minimize
# ----------------------------------------------------------
# Solver Information
# ----------------------------------------------------------
Solver:
- Status: warning
User time: -1.0
System time: 0.45
Wallclock time: 0.58
Termination condition: unbounded
Termination message: Model was proven to be unbounded.
Statistics:
Branch and bound:
Number of bounded subproblems: 0
Number of created subproblems: 0
Black box:
Number of iterations: 0
Error rc: 0
Time: 0.6151924133300781
Since the only change between the two runs is the length of the dataframe, I don't really know where to look for the error.
Given that the model works on some data, but not on an alternate data source, we can obviously focus a bit on the data set (which isn't shown).
We have a huge clue in the error report that the problem is unbounded. This means that there is nothing to prevent the objective function from running away to infinity, or negative infinity in the case of a minimization problem. So, let's look at your objective function. You are:
sum(demand[t] * price[t] for t in T)
The domain of your demand variable is set to non-negative real numbers (good) and price[t] is a parameter read in from data, and you are minimizing. So the only way this could run away to negative infinity is if there are one (or more) negative prices in your data, which the solver would then act on and demand would be unbounded.
So, comb your data set. if you are using pandas, just use a logical search for rows where price is < 0, you'll likely find at least one. Then you'll have to decide if that is a typo or if it is realistic to have a negative price (which could happen in some systems), and if it is legit, you will have to impose some other constraint to limit the model in that situation.

Using user input as variables in Python

I am trying to implement a "user-friendly" portfolio optimization program in Python.
Since I am still a beginner I did not quite manage to realize it.
The only thing the program should use as input are the stock codes.
I tried to create a mwe below:
import numpy as np
import yfinance as yf
import pandas as pd
def daily_returns(price):
price = price.to_numpy()
shift_1 = price[1:]
shift_2 = price[:-1]
return (shift_1 - shift_2)/shift_1
def annual_returns(price):
price = price.to_numpy()
start = price[0]
end = price[len(price)-1]
return (end-start)/start
def adjusting(price):
adj = len(price)
diff = adj - adjvalue
if diff != 0:
price_new = price[:-diff]
else: price_new = price
return price_new
#Minimal Reproducible Example
#getting user input
names = input('Stock codes:')
names = names.split()
a = len(names)
msft = yf.Ticker(names[0])
aapl = yf.Ticker(names[1])
#import data
hist_msft = msft.history(interval='1d',start='2020-01-01',end='2020-12-31')
hist_msft = pd.DataFrame(hist_msft,columns=['Close'])
#hist_msft = hist_msft.to_numpy()
hist_aapl = aapl.history(interval='1d',start='2020-01-01',end='2020-12-31')
hist_aapl = pd.DataFrame(hist_aapl,columns=['Close'])
#hist_aapl = hist_aapl.to_numpy()
#daily returns
aapl_daily_returns = daily_returns(hist_aapl)
aapl_daily_returns = np.ravel(aapl_daily_returns)
msft_daily_returns = daily_returns(hist_msft)
msft_daily_returns = np.ravel(msft_daily_returns)
#adjusting for different trading periods
adjvalue = min(len(aapl_daily_returns),len(msft_daily_returns))
aapl_adj = adjusting(aapl_daily_returns)
msft_adj = adjusting(msft_daily_returns)
#annual returns
aapl_ann_returns = annual_returns(hist_aapl)
msft_ann_returns = annual_returns(hist_msft)
#inputs for optimization
cov_mat = np.cov([aapl_adj,msft_adj])*252
ann_returns = np.concatenate((aapl_ann_returns,msft_ann_returns))
Now I just want the code to work with a various, unknown number of inputs. I tried reading a lot about global variables or tried to figure it out with dictionaries but couldn't really achieve any progress.
I think using the for loop can solve your problem!
...
names = input('Stock codes:')
names = names.split()
for name in names:
#analyze here
#I don't know anything about stocks so I wont write anything here
...

Getting Error in runHeartBreathRateKraskov.py code IndentationError: unexpected indent?

I am running below code to taking for runHeartBreathRateKraskov, I am facing the issue and below error.
Want to run below code to calculate Transfer Entropy in runHeartBreathRateKraskov program. I am new and not so much knowledge about Entropy transfer and Mutual Information. I also attached my data set for Information.
from jpype import *
^
IndentationError: unexpected indent
# Run e.g. python runHeartBreathRateKraskov.py 2 2 1,2,3,4,5,6,7,8,9,10
from jpype import *
import sys
import os
import random
import math
import string
import numpy
# Import our readFloatsFile utility in the above directory:
sys.path.append(os.path.relpath(".."))
import readFloatsFile
# Change location of jar to match yours:
#jarLocation = "../../../infodynamics.jar"
jarLocation = "/home/humair/Documents/Transfer Entropy/infodynamics-dist-1.5/infodynamics.jar"
# Start the JVM (add the "-Xmx" option with say 1024M if you get crashes due to not enough memory space)
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path=" + jarLocation)
# Read in the command line arguments and assign default if required.
# first argument in argv is the filename, so program arguments start from index 1.
if (len(sys.argv) < 2):
kHistory = 1;
else:
kHistory = int(sys.argv[1]);
if (len(sys.argv) < 3):
lHistory = 1;
else:
lHistory = int(sys.argv[2]);
if (len(sys.argv) < 4):
knns = [4];
else:
knnsStrings = sys.argv[3].split(",");
knns = [int(i) for i in knnsStrings]
if (len(sys.argv) < 5):
numSurrogates = 0;
else:
numSurrogates = int(sys.argv[4]);
# Read in the data
datafile = '/home/humair/Documents/Transfer Entropy/SFI-heartRate_breathVol_bloodOx.txt'
rawData = readFloatsFile.readFloatsFile(datafile)
# As numpy array:
data = numpy.array(rawData)
# Heart rate is first column, and we restrict to the samples that Schreiber mentions (2350:3550)
heart = data[2349:3550,0]; # Extracts what Matlab does with 2350:3550 argument there.
# Chest vol is second column
chestVol = data[2349:3550,1];
# bloodOx = data[2349:3550,2];
timeSteps = len(heart);
print("TE for heart rate <-> breath rate for Kraskov estimation with %d samples:" % timeSteps);
# Using a KSG estimator for TE is the least biased way to run this:
teCalcClass = JPackage("infodynamics.measures.continuous.kraskov").TransferEntropyCalculatorKraskov
teCalc = teCalcClass();
teHeartToBreath = [];
teBreathToHeart = [];
for knnIndex in range(len(knns)):
knn = knns[knnIndex];
# Compute a TE value for knn nearest neighbours
# Perform calculation for heart -> breath (lag 1)
teCalc.initialise(kHistory,1,lHistory,1,1);
teCalc.setProperty("k", str(knn));
teCalc.setObservations(JArray(JDouble, 1)(heart),
JArray(JDouble, 1)(chestVol));
teHeartToBreath.append( teCalc.computeAverageLocalOfObservations() );
if (numSurrogates > 0):
teHeartToBreathNullDist = teCalc.computeSignificance(numSurrogates);
teHeartToBreathNullMean = teHeartToBreathNullDist.getMeanOfDistribution();
teHeartToBreathNullStd = teHeartToBreathNullDist.getStdOfDistribution();
# Perform calculation for breath -> heart (lag 1)
teCalc.initialise(kHistory,1,lHistory,1,1);
teCalc.setProperty("k", str(knn));
teCalc.setObservations(JArray(JDouble, 1)(chestVol),
JArray(JDouble, 1)(heart));
teBreathToHeart.append( teCalc.computeAverageLocalOfObservations() );
if (numSurrogates > 0):
teBreathToHeartNullDist = teCalc.computeSignificance(numSurrogates);
teBreathToHeartNullMean = teBreathToHeartNullDist.getMeanOfDistribution();
teBreathToHeartNullStd = teBreathToHeartNullDist.getStdOfDistribution();
print("TE(k=%d,l=%d,knn=%d): h->b = %.3f" % (kHistory, lHistory, knn, teHeartToBreath[knnIndex])), # , for no newline
if (numSurrogates > 0):
print(" (null = %.3f +/- %.3f)" % (teHeartToBreathNullMean, teHeartToBreathNullStd)),
print(", b->h = %.3f nats" % teBreathToHeart[knnIndex]),
if (numSurrogates > 0):
print("(null = %.3f +/- %.3f)" % (teBreathToHeartNullMean, teBreathToHeartNullStd)),
print
# Exercise: plot the results
Dataset is:
The first column is heart rate, the second is chest volume, and the third is blood oxygen concentration.
76.53 8320 7771
76.53 8117 7774
76.15 7620 7788
75.39 6413 7787
75.51 7518 7767
76.67 1247 7773
78.55 -3525 7784
79.96 2388 7764
79.71 8296 7775
78.30 7190 7784
77.02 6024 7777
76.62 5825 7784
76.53 5154 7809
76.65 7464 7805
76.95 5345 7806
78.46 -993 7813

Function returning same values for supposedly different inputs

I'm using pyalgotrade to create a trading strategy. I'm going through a list of tickers(testlist) and adding them to a dictionary(list_large{}) alongside their score which I'm getting using a get_score function. My latest problem is that each ticker in the dictionary(list_large{}) is getting the same score. Any idea why?
Code:
from pyalgotrade import strategy
from pyalgotrade.tools import yahoofinance
import numpy as np
import pandas as pd
from collections import OrderedDict
from pyalgotrade.technical import ma
from talib import MA_Type
import talib
smaPeriod = 10
testlist = ['aapl','ddd','gg','z']
class MyStrategy(strategy.BacktestingStrategy):
def __init__(self, feed, instrument):
super(MyStrategy, self).__init__(feed, 1000)
self.__position = []
self.__instrument = instrument
self.setUseAdjustedValues(True)
self.__prices = feed[instrument].getPriceDataSeries()
self.__sma = ma.SMA(feed[instrument].getPriceDataSeries(), smaPeriod)
def get_score(self,slope):
MA_Score = self.__sma[-1] * slope
return MA_Score
def onBars(self, bars):
global bar
bar = bars[self.__instrument]
slope = 8
for instrument in bars.getInstruments():
list_large = {}
for tickers in testlist: #replace with real list when ready
list_large.update({tickers : self.get_score(slope)})
organized_list = OrderedDict(sorted(list_large.items(), key=lambda t: -t[1]))#organize the list from highest to lowest score
print list_large
def run_strategy(inst):
# Load the yahoo feed from the CSV file
feed = yahoofinance.build_feed([inst],2015,2016, ".") # feed = yahoofinance.build_feed([inst],2015,2016, ".")
# Evaluate the strategy with the feed.
myStrategy = MyStrategy(feed, inst)
myStrategy.run()
print "Final portfolio value: $%.2f" % myStrategy.getBroker().getEquity()
def main():
instruments = ['ddd','msft']
for inst in instruments:
run_strategy(inst)
if __name__ == '__main__':
main()
Check this code of the onBars() function:
slope = 8 # <---- value of slope = 8
for instrument in bars.getInstruments():
list_large = {}
for tickers in testlist: #replace with real list when ready
list_large.update({tickers : self.get_score(slope)})
# Updating dict of each ticker based on ^
Each time self.get_score(slope) is called, it returns the same value and hence, all the value of tickers hold the same value in dict
I do not know how you want to deal with slope and how you want to update it's value. But this logic can be simplified without using .update as:
list_large = {}
for tickers in testlist:
list_large[tickers] = self.get_score(slope)
# ^ Update value of `tickers` key

How can i avoid the getting this error in pyomo "Error retrieving component Pd[1]: The component has not been constructed."

I am new to pyomo. I am trying to run a simple maximization problem, but i keep getting this error message: Error retrieving component Pd[1]: The component has not been constructed. . Only the last 5 constraints give me this problem, the first three constraints work fine.
I'm using this command on the IPython console to run it !pyomo --solver-manager=neos --solver=cbc battpyomo.py battpyomo.dat
On the data file, I only define the set T and parameter p.
set T :=
1
2
3
4
5
6
7
8
9;
param: p :=
1 51.12
2 48.79
3 39.56
4 36.27
5 36.16
6 34.90
7 33.33
8 21.16
9 24.42;
Here's the code for battbyomo.py:
from pyomo.environ import *
model = AbstractModel()
########Sets#########
#Hours
model.T = Set()
#########Parameters##########
#Price
model.p = Param(model.T,within=PositiveReals)
#Variable OM cost Discharge
model.VOMd = Param(initialize=15)
#Varaible OM cost Charge
model.VOMc = Param(initialize=10)
#State of Charge min
model.SOCmin = Param(initialize=5)
#State of charge max
model.SOCmax = Param(initialize=25)
#ESS efficiency
model.m = Param(initialize=0.99)
#Max discharge rate
model.Pdmax = Param(initialize=20)
#Max charge rate
model.Pcmax = Param(initialize=20)
#Initial State of Charge
model.SOCini = Param(initialize=25)
###########Variables##########
#Power discharged
model.Pd = Var(model.T, within=NonNegativeIntegers)
#Power charged
model.Pc= Var(model.T, within=NonNegativeIntegers)
#Charging Status
model.Uc = Var(model.T, within=NonNegativeIntegers)
#Discharging status
model.Ud = Var(model.T, within=NonNegativeIntegers)
#State of Charge
model.SOC = Var(model.T, within=NonNegativeIntegers)
#######Objective##########
def profit_rule(model):
return sum(model.Pd[i]*model.p[i]-model.Pd[i]*model.VOMd-model.Pc[i]*model.p[i]-model.Pc[i]*model.VOMc for i in model.T)
model.profit = Objective(rule=profit_rule, sense = maximize)
#######Constraints##########
def status_rule(model,i):
return (model.Ud[i] + model.Uc[i] <= 1)
model.status = Constraint(model.T,rule=status_rule)
def Cmax_rule(model,i):
return model.Pc[i] <= model.Pcmax*model.Uc[i]
model.Cmax = Constraint(model.T,rule=Cmax_rule)
def Dmax_rule(model,i):
return model.Pd[i] <= model.Pdmax*model.Ud[i]
model.Dmax = Constraint(model.T,rule=Dmax_rule)
def Dlim_rule(module,i):
return model.Pd[i] <= model.SOC[i] - model.SOCmin
model.Dlim = Constraint(model.T,rule=Dlim_rule)
def Clim_rule(module,i):
return model.Pc[i] <= model.SOCmax-model.SOC[i]
model.Clim = Constraint(model.T,rule=Clim_rule)
def Smin_rule(module,i):
return model.SOC[i] >= model.SOCmin
model.Smin = Constraint(model.T,rule=Smin_rule)
def Smax_rule(module,i):
return model.SOC[i] <= model.SOCmax
model.Smax = Constraint(model.T,rule=Smax_rule)
def E_rule(module,i):
if i == 1:
return model.SOC[i] == model.SOCini + model.Pc[i]*model.m -model.Pd[i]
else:
return model.SOC[i] == model.SOC[i-1] + model.Pc[i]*model.m - model.Pd[i]
model.E = Constraint(model.T,rule=E_rule)
In some of the constraints listed above, the argument in the rule is "module", when "model" is used in the expression e.g.,
def Dlim_rule(module,i):
return model.Pd[i] <= model.SOC[i] - model.SOCmin
model.Dlim = Constraint(model.T,rule=Dlim_rule)
The definition of the rule and the constraint should be,
def Dlim_rule(model,i):
return model.Pd[i] <= model.SOC[i] - model.SOCmin
model.Dlim = Constraint(model.T,rule=Dlim_rule)
Incidentally, the first argument (for the model object) can be called anything you like. However, the name of the argument must match the use of the model within the rule. For example, this is also valid,
def Dlim_rule(m,i):
return m.Pd[i] <= m.SOC[i] - m.SOCmin
model.Dlim = Constraint(model.T,rule=Dlim_rule)
You shouldn't need the very first "import pyomo" line. The only import line you should need is the "from pyomo.environ import *". If this doesn't solve your problem then you should post the data file you're using (or a simplified version of it). Seems like the data isn't being loaded into the Pyomo model correctly.

Categories