Python dictionary manipulating items(getting min and max) - python

Edit: I removed my explanation part since it was wrong but I still could not be able to convert it.
I was studying list and dictionaries in python and I came accross this code.
x = min(minValue, key=lambda b: min([a( \
myFunction(5,b),c) for c in something]))
What is the logical equivalent of this ? It seems simple but I do not get same thing when I try to write it with a different code. . How can write this differently without whole key and lambda thing
Seems like my explanation was wrong. Here is the updated code I try.
for b in minValue:
for c in something:
minimum=min(myFunction(5,b),c)
result=min(minimum)
return result
Note: By logical equivalent I do not mean the provided code should calculate this exactly like the code I gave but it should have the same output.

I' not sure but it can be something like this
def example(minValue):
data = []
for b in minValue:
values = []
for c in something:
values.append( a(myFunction(5,b),c) )
result = min(values)
# keep `result` and `b` which gives this `result`
data.append( [result, b] )
# find minimal `result` and `b` which gives this `result`
x = min(data) # x = [result, b]
# return `b`
return x[1]
#---
x = example(minValue)
EDIT: there can be problem with min(data) because min will be comparing result and b and oryginal version compare only result. It may need version without min() but with:
if result < min_result:
min_result = result
min_b = b
EDIT:
def key(val):
min_c = something[0]
min_result = a(myFunction(5,val),min_c)
for c in something[1:]:
result = a(myFunction(5,val),c)
if result < min_result:
min_result = result
#min_c = c
return min_result
def example(minValue):
min_b = minValue[0]
min_result = key(min_b)
for b in minValue[1:]:
result = key(b)
if result < min_result:
min_result = result
min_b = b
return min_b
#---
x = example(minValue)

Related

Cost function equation parsing

I'm trying to solve this assignment:
For the cost function​ below, where C is the cost of producing x units of a​ product, find the​ marginal-cost function. What is the marginal cost at the given value of​ x? C(x)=0.05x^3+0.8x^2+40x+100; x=500
How could I parse the bolded values, the formula, from this string? Something where this could be repeated with similar strings.
Here is my solution, it breaks down the equation into objects that need to be summed up and then evaluates each of them on its own:
def clean(string):
# Removes unnecesarry parts of input
return string.rstrip(';').split('=')[1]
def parse(string):
parts = string.split('+')
objs = []
for part in parts:
mult_pow = part.split('x')
if len(mult_pow) == 2:
# Both multiplier and power present
obj = (
float(mult_pow[0]),
float(mult_pow[1].lstrip('^')) if mult_pow[1] else 1.0
)
else:
if '^' in mult_pow[0]:
# Only power present
obj = (
1.0,
float(mult_pow[0].lstrip('^'))
)
else:
# Only multiplier present
obj = (
float(mult_pow[0]),
0
)
objs.append(obj)
return objs
def evaluate(parsed_objects, x):
result = 0
for obj in parsed_objects:
result += obj[0] * x**obj[1]
return result
def solve(equation, x):
cleaned_str = clean(equation)
parsed_objects = parse(cleaned_str)
result = evaluate(parsed_objects, x)
return result
x = 500
input_str = 'C(x)=0.05x^3+0.8x^2+40x+100;'
result = solve(input_str, x)
print(result)
Output:
6470100.0

How to check if 2 different values are from the same list and obtaining the list name

** I modified the entire question **
I have an example list specified below and i want to find if 2 values are from the same list and i wanna know which list both the value comes from.
list1 = ['a','b','c','d','e']
list2 = ['f','g','h','i','j']
c = 'b'
d = 'e'
i used for loop to check whether the values exist in the list however not sure how to obtain which list the value actually is from.
for x,y in zip(list1,list2):
if c and d in x or y:
print(True)
Please advise if there is any work around.
First u might want to inspect the distribution of values and sizes where you can improve the result with the least effort like this:
df_inspect = df.copy()
df_inspect["size.value"] = ["size.value"].map(lambda x: ''.join(y.upper() for y in x if x.isalpha() if y != ' '))
df_inspect = df_inspect.groupby(["size.value"]).count().sort_values(ascending=False)
Then create a solution for the most occuring size category, here "Wide"
long = "adasda, 9.5 W US"
short = "9.5 Wide"
def get_intersection(s1, s2):
res = ''
l_s1 = len(s1)
for i in range(l_s1):
for j in range(i + 1, l_s1):
t = s1[i:j]
if t in s2 and len(t) > len(res):
res = t
return res
print(len(get_intersection(long, short)) / len(short) >= 0.6)
Then apply the solution to the dataframe
df["defective_attributes"] = df.apply(lambda x: len(get_intersection(x["item_name.value"], x["size.value"])) / len(x["size.value"]) >= 0.6)
Basically, get_intersection search for the longest intersection between the itemname and the size. Then takes the length of the intersection and says, its not defective if at least 60% of the size_value are also in the item_name.

randomly choosing a function from a list then apply conditions to the result

In the code below, a, b, and c are pre-defined functions that are a part of much bigger code. The code is always returning the elif part even if the choice is enemy_def. I have tried printing each one but nothing happens.
a = enemy_hit
b = enemy_def
c = enemy_sphit
d = [a,b,c]
enemyresponse = random.choice(d)()
#print(enemyresponse)
if enemyresponse == b :
thing.health = thing.health - 0.25
#print(enemyresponse)
elif enemyresponse != b :
#print(enemyresponse)
thing.health = thing.health - 1
enemy_reponse will never be equal to b*, because enemy_reponse is the return value of the function, not the function itself. Note how you call the function immediately after randomly choosing it:
random.choice(d)()
# ^Called it
Save the function that was chosen in a variable called chosen_function (or something similar), then check against that.
You probably meant something like this (untested):
a = enemy_hit
b = enemy_def
c = enemy_sphit
d = [a,b,c]
# Randomly get function from list
chosen_function = random.choice(d)
# Call it to get the return value
func_return = chosen_function()
print(func_return)
if chosen_function == b:
thing.health = thing.health - 0.25
else:
thing.health = thing.health - 1
*Unless b returns itself, which seems unlikely.

Why data = copy.deepcopy(G) matters in Karger min cut algorithm?

Here is the code to compute the min cut posted here karger min cut algorithm in python 2.7. Without data = copy.deepcopy(G), the efficiency to find the min cut is not good. Can anybody explain why? Thanks.
import random, copy
data = open("***.txt","r")
G = {}
for line in data:
lst = [int(s) for s in line.split()]
G[lst[0]] = lst[1:]
def choose_random_key(G):
v1 = random.choice(list(G.keys()))
v2 = random.choice(list(G[v1]))
return v1, v2
def karger(G):
length = []
while len(G) > 2:
v1, v2 = choose_random_key(G)
G[v1].extend(G[v2])
for x in G[v2]:
G[x].remove(v2)
G[x].append(v1)
while v1 in G[v1]:
G[v1].remove(v1)
del G[v2]
for key in G.keys():
length.append(len(G[key]))
return length[0]
def operation(n):
i = 0
count = 10000
while i < n:
data = copy.deepcopy(G)
min_cut = karger(data)
if min_cut < count:
count = min_cut
i = i + 1
return count
print(operation(100))
data = G and karger(data) doesn't duplicate dictionary and karger(data) would use original G dictionary. But karger changes values in data so automatically it would change values in original dictionary. So next executions of karger(data) would use dictionary with different values.
Remove deepcopy and add print(data) before karger(data) and you see different values in data.

Python -- using regex on a class instance

I have a class that was taking in lists of 1's and 0's and performing GF(2) finite field arithmetic operations. It used to work until I tried to make it take the input in polynomial format. As for how the finite arithmetic will be done after fixing the regex issue, I was thinking about overloading the operators.
The actual code in parsePolyToListInput(input) works when outside the class. The problem seems to be in the regex, which errors that it will only take in a string (this makes sense), but does not seem to initialize with self.expr as a parameter (that's a problem). The #staticmethod just before the initialization was an attempt to salvage the unbound error as it the polynomial was passed in, but this is apparently completely wrong. Just to save you time if you decide to look at any of the arithmetic operations, modular inverse does not work (seems to be due to the formatting issue after every iteration of that while loop for division in the function and what the return type is):
import re
class gf2poly:
#binary arithemtic on polynomials
##staticmethod
def __init__(self,expr):
self.expr = expr
#self.expr = [int(i) for i in expr]
self.expr = gf2poly.parsePolyToListInput(self.expr)
def convert(self): #to clarify the input if necessary
convertToString = str(self.expr)
print "expression is %s"%(convertToString)
def id(self): #returns modulus 2 (1,0,0,1,1,....) for input lists
return [int(self.expr[i])%2 for i in range(len(self.expr))]
def listToInt(self): #converts list to integer for later use
result = gf2poly.id(self)
return int(''.join(map(str,result)))
def prepBinary(a,b): #converts to base 2 and orders min and max for use
a = gf2poly.listToInt(a); b = gf2poly.listToInt(b)
bina = int(str(a),2); binb = int(str(b),2)
a = min(bina,binb); b = max(bina,binb);
return a,b
#staticmethod
def outFormat(raw):
raw = str(raw[::-1]); g = [] #reverse binary string for enumeration
[g.append(i) for i,c in enumerate(raw) if c == '1']
processed = "x**"+' + x**'.join(map(str, g[::-1]))
if len(g) == 0: return 0 #return 0 if list empty
return processed #returns result in gf(2) polynomial form
def parsePolyToListInput(poly):
c = [int(i.group(0)) for i in re.finditer(r'\d+', poly)] #re.finditer returns an iterator
#m = max(c)
return [1 if x in c else 0 for x in xrange(max(c), -1, -1)]
#return d
def add(self,other): #accepts 2 lists as parameters
a = gf2poly.listToInt(self); b = gf2poly.listToInt(other)
bina = int(str(a),2); binb = int(str(b),2)
m = bina^binb; z = "{0:b}".format(m)
return z #returns binary string
def subtract(self,other): #basically same as add() but built differently
result = [self.expr[i] ^ other.expr[i] for i in range(len(max(self.expr,other.expr)))]
return int(''.join(map(str,result)))
def multiply(a,b): #a,b are lists like (1,0,1,0,0,1,....)
a,b = gf2poly.prepBinary(a,b)
g = []; bitsa = "{0:b}".format(a)
[g.append((b<<i)*int(bit)) for i,bit in enumerate(bitsa)]
m = reduce(lambda x,y: x^y,g); z = "{0:b}".format(m)
return z #returns product of 2 polynomials in gf2
def divide(a,b): #a,b are lists like (1,0,1,0,0,1,....)
a,b = gf2poly.prepBinary(a,b)
bitsa = "{0:b}".format(a); bitsb = "{0:b}".format(b)
difflen = len(str(bitsb)) - len(str(bitsa))
c = a<<difflen; q=0
while difflen >= 0 and b != 0: #a is divisor, b is dividend, b/a
q+=1<<difflen; b = b^c # b/a because of sorting in prep
lendif = abs(len(str(bin(b))) - len(str(bin(c))))
c = c>>lendif; difflen -= lendif
r = "{0:b}".format(b); q = "{0:b}".format(q)
return r,q #returns r remainder and q quotient in gf2 division
def remainder(a,b): #separate function for clarity when calling
r = gf2poly.divide(a,b)[0]; r = int(str(r),2)
return "{0:b}".format(r)
def quotient(a,b): #separate function for clarity when calling
q = gf2poly.divide(a,b)[1]; q = int(str(q),2)
return "{0:b}".format(q)
def extendedEuclideanGF2(a,b): # extended euclidean. a,b are GF(2) polynomials in list form
inita,initb=a,b; x,prevx=0,1; y,prevy = 1,0
while sum(b) != 0:
q = gf2poly.quotient(a,b);
q = list(q); q = [int(x) for x in q]
#q = list(q);
#q = tuple([int(i) for i in q])
q = gf2poly(q)
a,b = b,gf2poly.remainder(a,b);
#a = map(list, a);
#b = [list(x) for x in a];
#a = [int(x) for x in a]; b = [int(x) for x in b];
b = list(b); b = [int(x) for x in b]
#b = list(b);
#b = tuple([int(i) for i in b])
b = gf2poly(b)
#x,prevx = (prevx-q*x, x);
#y,prevy=(prevy-q*y, y)
print "types ",type(q),type(a),type(b)
#q=a//b; a,b = b,a%b; x,prevx = (prevx-q*x, x); y,prevy=(prevy-q*y, y)
#print("%d * %d + %d * %d = %d" % (inita,prevx,initb,prevy,a))
return a,prevx,prevy # returns gcd of (a,b), and factors s and t
def modular_inverse(a,mod): # where a,mod are GF(2) polynomials in list form
gcd,s,t = gf2poly.extendedEuclideanGF2(a,mod); mi = gf2poly.remainder(s,mod)
#gcd,s,t = ext_euc_alg_i(a,mod); mi = s%mod
if gcd !=1: return False
#print ("%d * %d mod %d = 1"%(a,mi,mod))
return mi # returns modular inverse of a,mod
I usually test it with this input:
a = x**14 + x**1 + x**0
p1 = gf2poly(a)
b = x**6 + x**2 + x**1
p2 = gf2poly(b)
The first thing you might notice about my code is that it's not very good. There are 2 reasons for that:
1) I wrote it so that the 1st version could do work in the finite field GF(2), and output in polynomial format. Then the next versions were supposed to be able to take polynomial inputs, and also perform the crucial 'modular inverse' function which is not working as planned (this means it's actually not working at all).
2) I'm teaching myself Python (I'm actually teaching myself programming overall), so any constructive criticism from pro Python programmers is welcome as I'm trying to break myself of beginner habits as quickly as possible.
EDIT:
Maybe some more of the code I've been testing with will help clarify what works and what doesn't:
t1 = [1,1,1]; t2 = [1,0,1]; t3 = [1,1]; t4 = [1, 0, 1, 1, 1, 1, 1]
t5 = [1,1,1,1]; t6 = [1,1,0,1]; t7 = [1,0,1,1,0]
f1 = gf2poly(t1); f2 = gf2poly(t2); f3 = gf2poly(t3); f4 = gf2poly(t4)
f5 = gf2poly(t5);f6 = gf2poly(t6);f7 = gf2poly(t7)
##print "subtract: ",a.subtract(b)
##print "add: ",a.add(b)
##print "multiply: ",gf2poly.multiply(f1,f3)
##print "multiply: ",gf2poly.multiply(f1,f2)
##print "multiply: ",gf2poly.multiply(f3,f4)
##print "degree a: ",a.degree()
##print "degree c: ",c.degree()
##print "divide: ",gf2poly.divide(f1,b)
##print "divide: ",gf2poly.divide(f4,a)
##print "divide: ",gf2poly.divide(f4,f2)
##print "divide: ",gf2poly.divide(f2,a)
##print "***********************************"
##print "quotient: ",gf2poly.quotient(f2,f5)
##print "remainder: ",gf2poly.remainder(f2,f5)
##testq = gf2poly.quotient(f4,f2)
##testr = gf2poly.remainder(f4,f2)
##print "quotient: ",testq,type(testq)
##print "remainder: ",testr,type(testr)
##print "***********************************"
##print "outFormat testp: ",gf2poly.outFormat(testq)
##print "outFormat testr: ",gf2poly.outFormat(testr)
##print "***********************************"
#print "gf2poly.modular_inverse(): ",gf2poly.modular_inverse(f2,f3)
print "p1 ",p1 #,type(f2),type(f3)
#print "parsePolyToListInput ",gf2poly.parsePolyToListInput(a)
Part of your problem is that you haven't declared self as an argument for parsePolyToListInput. When you call a method, the instance you call it on is implicitly bound as the first argument. Naming the first argument self is a convention, not a strict requirement - the instance is being bound to poly, which you then try to run a regexp over.
It looks me like there's some confusion in your design here about what's behavior of individual instances of the class and what's class-level or module-level behavior. In Python, it's perfectly acceptable to leave something that doesn't take an instance of a class as a parameter defined as a module-level function rather than shoehorning it in awkwardly. parsePolyToListInput might be one such function.
Your add implementation, similarly, has a comment saying it "accepts 2 lists as parameters". In fact, it's going to get a gf2poly instance as its first argument - this is probably right if you're planning to do operator overloading, but it means the second argument should also be a gf2poly instance as well.
EDIT:
Yeah, your example code shows a breakdown between class behavior and instance behavior. Either your multiply call should look something like this:
print "multiply: ",f1.multiply(f3)
Or multiply shouldn't be a method at all:
gfpoly.py:
def multiply(f1, f2):
a,b = prepBinary(a,b)
g = []; bitsa = "{0:b}".format(a)
[g.append((b<<i)*int(bit)) for i,bit in enumerate(bitsa)]
m = reduce(lambda x,y: x^y,g); z = "{0:b}".format(m)
return z #returns product of 2 polynomials in gf2
That latter approach is, for instance, how the standard math library does things.
The advantage of defining a multiplication method is that you could name it appropriately (http://docs.python.org/2/reference/datamodel.html#special-method-names) and use it with the * operator:
print "multiply: ",f1 *f3

Categories