Convert utf-8 string to bytes and back in Python 2.7 - python

I have a program which takes a string, makes a list with its byte representation, and then converts the list back to a string. This is really easy if the string contains only ASCII characters:
def messagetobitlist(message):
bitlist = []
for i in message:
for x in (format(ord(i), '08b')):
bitlist.append(int(x))
return bitlist
And then I simply convert it back with unichr (or also chr would work).
I want however to expand the code and make it capable of accepting string with accents and foreign characters. To do this I though of encoding it in UTF-8 and creating the bitlist, but when I try to convert it back it doesn't work, since the characters are represented with a different number of bytes and the code is not capable of distinguishing beforehand if it has to read just one byte or more. I tried to encode every character with 4 bytes (since it is the maximum of UTF-8), but this really does seem a waste of space and it doesn't work anyway.
Is there a solution to have a function that does this while still being somewhat space-conservative?
EDIT: Whoops, wrote Python 3 instead of Python 2.7

Related

Python3 counting UTF-16 code points in a string

I am trying to figure out how to either convert UTF-16 offsets to UTF-8 offsets, or somehow be able to count the # of UTF-16 code points in a string. (I think in order to do the former, you have to do the latter anyways.)
Sanity check: I am correct that the len() function, when operated on a python string returns the number of code points in it in UTF-8?
I need to do this because the LSP protocol requires the offsets to be in UTF-16, and I am trying to build something with LSP in mind.
I can't seem to find how to do this, the only python LSP server I know of doesn't even handle this conversion itself.
Python has two datatypes which can be used for characters, neither of which natively represents UTF-16 code units.
In Python-3, strings are represented as str objects, which are conceptually vectors of unicode codepoints. So the length of a str is the number of Unicode characters it contains, and len("๐€") is 1, just as with any other single character. That's independent of the fact that "๐€" requires two UTF-16 code units (or four UTF-8 code units).
Python-3 also has a bytes object, which is a vector of bytes (as its name suggests). You can encode a str into a sequence of bytes using the encode method, specifying some encoding. So if you want to produce the stream of bytes representing the character "๐€" in UTF-16LE, you would invoke "๐€".encode('utf-16-le').
Specifying le (for little-endian) is important because encode produces a stream of bytes, not UTF-16 code units, and each code unit requires two bytes since it's a 16-bit number. If you don't specify a byte order, as in encode('utf-16'), you'll find a two-byte UFtF-16 Byte Order Mark at the beginning of the encoded stream.
Since the UTF-16 encoding requires exactly two bytes for each UTF-16 code unit, you can get the UTF-16 length of a unicode string by dividing the length of the encoded bytes object by two: s.encode('utf-16-le')//2.
But that's a pretty clunky way to convert between UTF-16 offsets and character indexes. Instead, you can just use the fact that characters representable with a single UTF-16 code unit are precisely the characters with codepoints less than 65536 (216):
def utf16len(c):
"""Returns the length of the single character 'c'
in UTF-16 code units."""
return 1 if ord(c) < 65536 else 2
For counting the bytes, including BOM, len(str.encode("utf-16")) would work. You can use utf-16-le for bytes without BOM.
Example:
>>> len("abcd".encode("utf-16"))
10
>>> len("abcd".encode("utf-16-le"))
8
As for your question: No, len(str) in Python checks the number of decoded characters. If a character takes 4 UTF-8 code points, it still counts as 1.

Python: Correct Way to refer to index of unicode string

Not sure if this is exactly the problem, but I'm trying to insert a tag on the first letter of a unicode string and it seems that this is not working. Could these be because unicode indices work differently than those of regular strings?
Right now my code is this:
for index, paragraph in enumerate(intro[2:-2]):
intro[index] = bold_letters(paragraph, 1)
def bold_letters(string, index):
return "<b>"+string[0]+"</b>"+string[index:]
And I'm getting output like this:
<b>?</b>?ืจืš ื”ืื—ื“ ื•ื™ืฉืชื‘ื— ื”ื‘ื•ืจื ื‘ื—ื›ืžืชื• ื•ืจืฆื•ื ื• ื›ืœ ืฆื‘ื ื”ืฉืžื™ื ืืจืฅ ื•ื™ืžื™ื ืืœื” ื•ืืœื•ื ื™ื.
It seems the unicode gets messed up when I try to insert the HTML tag. I tried messing with the insert position but didn't make any progress.
Example desired output (hebrew goes right to left):
>>>first_letter_bold("ื”ืงื“ืžื”")
"ื”ืงื“ืž<\b>ื”<b>"
BTW, this is for Python 2
You are right, indices work over each byte when you are dealing with raw bytes i.e String in Python(2.x).
To work seamlessly with Unicode data, you need to first let Python(2.x) know that you are dealing with Unicode, then do the string manipulation. You can finally convert it back to raw bytes to keep the behavior abstracted i.e you get String and you return String.
Ideally you should convert all the data from UTF8 raw encoding to Unicode object (I am assuming your source encoding is Unicode UTF8 because that is the standard used by most applications these days) at the very beginning of your code and convert back to raw bytes at the fag end of code like saving to DB, responding to client etc. Some frameworks might handle that for you so that you don't have to worry.
def bold_letters(string, index):
string = string.decode('utf8')
string "<b>"+string[0]+"</b>"+string[index:]
return string.encode('utf8')
This will also work for ASCII because UTF8 is a super-set of ASCII. You can understand how Unicode works and in Python specifically better by reading http://nedbatchelder.com/text/unipain.html
Python 3.x String is a Unicode object so you don't have to explicitly do anything.
You should use Unicode strings. Byte strings in UTF-8 use a variable number of bytes per character. Unicode use one (at least those in the BMP on Python 2...the first 65536 characters):
#coding:utf8
s = u"ื”ืงื“ืžื”"
t = u'<b>'+s[0]+u'</b>'+s[1:]
print(t)
with open('out.htm','w',encoding='utf-8-sig') as f:
f.write(t)
Output:
<b>ื”</b>ืงื“ืžื”
But my Chrome browser displays out.htm as:

Python: Converting special characters into operable integers?

I am currently working on a really simple encryption project algorithm to show basic understanding of how encryption works, and my encryption algorithm basically just uses the 'ord()' function for converting standard ASCII characters into integers that the algorithm can work on.
The problem I have run into is that I also need my program to be capable of encrypting, for example, the contents of a Windows executable (EXE) file. To do so, I need to convert all sorts of special characters (Not ASCII) into integers that I can operate off of.
I don't know a whole lot about encoding, but from what I understand, 'ord()' only works because there is a ASCII character map that has a corresponding number for each character. I couldn't seem to figure how to convert the special characters of an EXE file straight to integers, so I tried converting to bytes which seems a little more universal to me (please correct me if I am wrong).
At this point, I am just looking for a solution to be able to read an EXE file, and convert each character into a number specific to that character (for encryption/ decryption purposes).
You are confusing the meaning assigned to bytes (like the ASCII standard) with the bytes themselves. ord() just gives you the numerical value for a given byte. That Python interprets those bytes and shows you ASCII codepoints is neither here nor there.
In other words, ord() doesn't have to consult an ASCII table and can handle any byte value. All it has to do is take the already known byte value and give you a Python int object for it.
Read your data as binary (open the file with b added to the file mode), and use ord(). In Python 2, that'll result in str objects, and each character in such an object is really a byte value in the range 0 - 255.
Note that if you are using Python 3, reading from a file in binary mode results in a bytes object that makes it clearer still that these are integer values in a range:
>>> b'abc'
b'abc'
>>> b'abc'[0]
97
Indexing to an individual point in a bytes object produces the integer value and no call to ord() is required.

Decode base64 string in python 3 (with lxml or not)

I know this looks embarrassingly easy, and I guess the problem is that I just don't have a clear understanding of all this bytes-str-unicode (and encoding-decoding, speaking frankly) stuff yet.
I've been trying to get my working code to run on Python 3. The part I'm stuck with is when I parse an XML with lxml and decode a base64 string that is in that XML.
The code now works in the following manner:
I retrieve the binary data with an XPath query '.../binary/text()'. This produces a one-element list containing a lxml.etree._ElementUnicodeResult object. Then, with python 2, I was able to do:
decoded = source.decode('base64')
and finally
output = numpy.frombuffer(decoded)
However, on python 3 I get an error message saying
AttributeError: 'lxml.etree._ElementUnicodeResult' object has no attribute 'decode'
This is not so surprising, because lxml.etree._ElementUnicodeResult is a subclass of str.
Another way would be to get a real str with the same data in it with
binary = tree.xpath('//binary')[0]
binary_string = binary.text
That would be essentially the same. So what do I do to decode it from base64? I've looked at the base64 module, but it takes a bytes object as an argument, and I can't think of the way to present str as bytes, because if I try to construct a bytes object, Python will try to encode the string, which I don't need.
Googling further, I came across the binascii module (which is invoked indirectly from base64 anyway, if I'm not mistaken), but calling binascii.b2a_base64() on my string produces
TypeError: 'str' does not support the buffer interface
P.S. I've even found an answered question on how to decode a hex string in Python 3, but this is done with a dedicated method bytes.fromhex() so I don't see how it would be helpful.
Could someone please tell me what I'm missing? I'm afraid most of the post is irrelevant and only aggravates my shame, but at least you guys know what I tried.
OK, I think I'm going to summarize my current understanding of things (feel free to correct me). Hopefully it will help someone else out there as confused as I've been.
The credit totally goes to thebjorn and delnan, of course.
So, starting with the most common things:
there's Unicode, and it's a global standard that assigns codes (or code points) to all the exotic characters you can imagine. Those codes are just integer numbers. As of Unicode 6.1 there are 109,975 graphic characters, says Wikipedia.
Then there are encodings that define how to designate Unicode characters with byte codes. One byte isn't enough to designate an arbitrary Unicode char. Although, if you only take a small subset of them (English alphabet, digits, punctuation, some control characters), you can do with one byte per character (or even 7 bits; see ASCII).
To pass a Unicode string anywhere, one needs to encode it in bytes, then it can be decoded on the other end.
In Python 2, str is actually bytes, and unicode is Unicode, but Python 2 will do implicit encoding/decoding for you when needed. It will try to use ASCII encoding.
In Python 3, str is always a Unicode string, and bytes is a new data type for actual bytes. No implicit conversion is ever done by Python 3, you always need to do it yourself and specify the encoding. That means that your program won't work until you understand what's going on, which totally happened to me.
Now, that being more or less clear, let's move on to base64 encoding, which is also an encoding of sorts, but has a slightly different meaning.
Suppose you have some binary data (i.e. bytes) that may mean anything (in my case it's a bunch of floats). Now you want to represent this binary array with a string. That's what base64 encoding means: you have your bytes represented as an ASCII string.
Base64 means 6 bit, so in a base64-encoded string a single character stands for 6 bits of your data. That is why base64-encoded strings need to have the length that is a multiple of 4: otherwise the number of bytes encoded will be not integer.
Finally, to decode from base64 you need an ASCII string. A Unicode string won't do, there can only be characters from the base64 alphabet. Base64 module does the job in Python. The base64.b64decode() function takes a byte string as the argument. In Python 2 it means: str. In Python 3 it means: bytes. So if you have a str, such as
>>> s = 'U3RhY2sgT3ZlcmZsb3c='
In Python 2 you could just do
>>> s.decode('base64')
because s is already in ASCII.
In Python 3, you need to encode it in ASCII first, so you'll have to do:
>>> base64.b64decode(s.encode('ascii'))
And by the way, this will return a bytes object, so it's really up to you how to treat those bytes then. Maybe it's my floats, but maybe you should try to decode it as ASCII :)
In Python 2 however it will be just a str. Anyway, have a look at struct for the tools to unpack your data from those bytes.
So if you need the code to work on both Python 2 and 3, go with the last one. To make sure you have Unicode in the end (if you are decoding text from base64), you'll have to decode it:
>>> base64.b64decode(s.encode('ascii')).decode('ascii')
On Python 2, encode('ascii') won't effectively do anything because it's applied to str. So it will do an implicit conversion to Unicode first, and then do what you want (convert it back to ASCII). decode('ascii') will return a unicode object on Python 2.
I don't have Python 3 installed, but it sounds like you need to convert the Unicode returned from lxml to bytes, perhaps by calling .encode('ascii') ?

Python: Convert Unicode-Hex-String to Unicode

I have a hex-string made from a unicode string with that function:
def toHex(s):
res = ""
for c in s:
res += "%02X" % ord(c) #at least 2 hex digits, can be more
return res
hex_str = toHex(u"...")
This returns a string like this one:
"80547CFB4EBA5DF15B585728"
That's a sequence of 6 chinese symbols.
But
u"Knรถdel"
converts to
"4B6EF664656C"
What I need now is a function to convert this back to the original unicode. The chinese symbols seem to have a 2-byte representation while the second example has 1-byte representations for all characters. So I can't just use unichr() for each 1- or 2-byte block.
I've already tried
binascii.unhexlify(hex_str)
but this seems to convert byte-by-byte and returns a string, not unicode. I've also tried
binascii.unhexlify(hex_str).decode(...)
with different formats. Never got the original unicode string.
Thank you a lot in advance!
This seems to work just fine:
binascii.unhexlify(binascii.hexlify(u"Knรถdel".encode('utf-8'))).decode('utf-8')
Comes back to the original object. You can do the same for the chinese text if it's encoded properly, however ord(x) already destroys the text you started from. You'll need to encode it first and only then treat like a string of bytes.
Can't be done. Using %02X loses too much information. You should be using something like UTF-8 first and converting that, instead of inventing a broken encoding.
>>> u"Knรถdel".encode('utf-8').encode('hex')
'4b6ec3b664656c'
When I was working with Unicode in a VB app a while ago the first 1 or 2 digits would be removed if they were a "0". Meaning "&H00A2" would automatically be converted to "&HA2", I just created a small function to check the length of the string and if it was less than 4 chars add the missing 0's. I'm not sure if this is what's happening to you, but I thought I would give bit of information as something to be aware of.

Categories