Multiplication table format - python

I've created a simple script that will make a multiplication table and output it. It works and is pretty cool but I would like to know if there's a way I could fix it for when it goes higher then 10. After 10 (on the row) it will be a whitespace off of the rest of the table, how can I fix this little format issue?
if __name__ == '__main__':
for row in range(1, 20+1):
table = ''
for column in range(1, 20+1):
table += '{:4} '.format(row * column)
print(table.strip())
Example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

You can left adjust string with spaces with {:<6}
for row in range(1, 20+1):
table = ''
for column in range(1, 20+1):
table += '{:<6} '.format(row * column)
print table.strip()
Output
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

So a simple way of doing this is using generators (I find it more readable right justified):
>>> n = 10
>>> print('\n'.join(''.join(format(i*j, ' >4') for i in range(1, n+1)) for j in range(1, n+1)))
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100
If you need to work out the maximum width dynamically then you can use math.log10():
>>> import math
>>> n = 9
>>> w = int(math.log10(n**2))+1
>>> print('\n'.join(' '.join(format(i*j, ' >'+str(w)) for i in range(1, n+1)) for j in range(1, n+1)))
1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

Your code example is not working due to the last "strip", which is removing whitespace through the left and shifting your results.
Just removing the strip:
if __name__ == '__main__':
for row in range(1, 20+1):
table = ''
for column in range(1, 20+1):
table += '{:4} '.format(row * column)
print(table)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Another possible approach would be to use list comprehensions as follows:
for row in [['{:4}'.format(row * col) for col in range(1, 21)] for row in range(1, 21)]:
print ''.join(row)
This would give you the following output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340
18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360
19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Related

How to read binary file and convert it to text in Python

I have a time series from 1946-2020 for the discharges of gauge. The file is binary and if I open it in a text editor, or even in a hex-editor, I see values which do not make sense. I have searched a lot and found some code but I don't see any time series and values.
I can imagine that the time series is looking like that:
These values are also correct and are in the data.
t Q
17.11.1972 8,66
04.02.2020 28,2
I copied the beginning part of the file:
##4.00
à?š™™™™™é?ÍÌÌÌÌÌì?ffffffî?¸…ëQ¸î?\Âõ(\ï?®Gáz®ï?×£p=
×ï?V-²ïï?§èH.ÿï?Sš ä ÍÌL= ÿÿÍÌL= _ B €#
## NASIM26760601m³/sffûB°FAˆ¢A ¥¼x?  §=,ðñ=ÿ9jŒA´¯DA;Âò#¿‡Ø½ =|?0¥‡=?1=ÿ]”:A þA ¨ï¿eV4#)¡? i3|?`d‹=ek=ÿ‘_î#5Ý#¼˜DA
©]? cÂ{?Œ%¿=+>ÿÚÍ# %µ#À#•9AN? ýô{?h«=×Í­=ÿð½¢#»MAòöî# ¤¼x?¸~=Xä—=ÿ9jŒA
+BAïÕ#yBѾ ‚Äw?èrÈ=¯k“=ÿ]”:A¼/±#>. #„×9AG€
I copied the last part of the file, because I know there must be the time-discharge of 2020. Maybe it is in the end of the file.
×ï?V-²ïï?+‡ÙÎ÷ï? ÍÌL= ÿÿÍÌL= _ B €#
##
in the following screenshot you see the data , when I open it in Notepad++.
here is my python code and output
with open("time-serie_1946 bis 2020.hqr", "rb") as file:
data = file.read()
with open("out.txt", "w") as f:
f.write(" ".join(map(str,data)))
f.write("\n")
the beginning of output:
6 64 64 52 46 48 48 10 0 0 0 0 0 0 0 224 63 154 153 153 153 153 153 233 63 205 204 204 204 204 204 236 63 102 102 102 102 102 102 238 63 184 30 133 235 81 184 238 63 92 143 194 245 40 92 239 63 174 71 225 122 20 174 239 63 215 163 112 61 10 215 239 63 86 14 45 178 157 239 239 63 30 167 232 72 46 255 239 63 83 78 101 117 98 101 114 101 99 104 110 117 110 103 32 98 105 115 32 50 48 50 48 32 109 105 116 32 117 110 98 101 115 116 228 116 105 103 116 101 110 32 72 81 32 118 111 110 32 49 57 52 54 45 49 57 55 50 32 40 65 110 102 114 97 103 101 32 83 99 104 117 104 109 97 99 104 101 114 44 32 84 82 41 154 7 0 0 228 7 0 0 0 0 0 0
How can I decode it to get the time series?

How to turn a dictionary into a dataframe with all the keys in a column

def weights():
saved = {}
for i in range(len(bread_pairs["key_id"])):
drawing = np.array(bread_pairs['bitmap'][i], dtype=np.uint8)
new_test_cnn = drawing.reshape(1, 28, 28, 1).astype('float32')
new_cnn_predict = model.predict(new_test_cnn, batch_size=32, verbose=0)
w = model.layers[8].get_weights()
w = list(w[0].flatten())
saved[bread_pairs["key_id"][i]] = w
return saved
I have this function that is creating a dictionary of key_ids and mapping them to an associated list of values of length 200. So for example my dictionary looks something like saved = {key_id_1: [1,2,3...200], key_id_2: [1,2,...,200], ....}
I would like to turn this dictionary into a dataframe with a column of key_ids and each element in the associated list of 200 becomes its own column. So there is a total of 201 columns where the first column is the first key_id and then the second column is the first element of the list, the third column is the second element of the list etc. And then the second row first column is the second key_id and then the second row second column is the first element of the key_id's second list and so on. Is there a way to convert this dictionary to a df? I have 10000 key_ids do the dimensions would be 10000x201. Thanks!
Load the dict into a DataFrame using pandas.DataFrame.from_dict with the orient parameter, and reset the index with .reset_index()
This will create the DataFrame as requested, however, I recommend leaving the keys as the index, which should make it easier to perform calculations and address specific rows.
If the columns should be named 0...201, then use df.columns = list(range(202)), or use pandas.DataFrame.rename to rename specific columns.
import pandas as pd
# test data
saved = {'key_id_1': list(range(201)), 'key_id_2': list(range(201))}
# create the DataFrame
df = pd.DataFrame.from_dict(saved, orient='index')
# reset the index
df = df.reset_index()
# display(df)
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
0 key_id_1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
1 key_id_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
Alternative Implementation
Create the DataFrame with pandas.DataFrame, transpose the DataFrame with pandas.DataFrame.T, and then reset with .reset_index().
df = pd.DataFrame(saved)
df = df.T.reset_index()

Matplotlib ScalarMappable returning only black color

I am using matplotlib to create many plots. The plots involve making many FancyBboxPatches and setting the color for each patch using a ScalarMappable. Each plot corresponds to a "time step" from a physical process. I have made the following minimal working example to illustrate what I am trying to do and the problem I am having.
Suppose there is a file data.txt. If a line has one entry, that value is the time step. If a line has three entries, then the first entry is the x value, the second entry is the y value, and the third entry is the value that will use the ScalarMappable. Here is an example of data.txt:
1
0 0 0.1
0 1 1
0 2 2
0 3 3
0 4 4
1 0 10
1 1 11
1 2 12
1 3 13
1 4 14
2 0 20
2 1 21
2 2 22
2 3 23
2 4 24
3 0 30
3 1 31
3 2 32
3 3 33
3 4 34
2
1 0 10
1 1 11
1 2 12
1 3 13
1 4 14
2 0 110
2 1 111
2 2 112
2 3 113
2 4 114
3 0 120
3 1 121
3 2 122
3 3 123
3 4 124
4 0 130
4 1 131
4 2 132
4 3 133
4 4 134
3
2 0 110
2 1 111
2 2 112
2 3 113
2 4 114
3 0 1110
3 1 1111
3 2 1112
3 3 1113
3 4 1114
4 0 1120
4 1 1121
4 2 1122
4 3 1123
4 4 1124
5 0 1130
5 1 1131
5 2 1132
5 3 1133
5 4 1134
4
3 0 1110
3 1 1111
3 2 1112
3 3 1113
3 4 1114
4 0 11110
4 1 11111
4 2 11112
4 3 11113
4 4 11114
5 0 11120
5 1 11121
5 2 11122
5 3 11123
5 4 11124
6 0 11130
6 1 11131
6 2 11132
6 3 11133
6 4 11134
Here is the script I use to generate the plots:
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import LogNorm
from matplotlib.patches import FancyBboxPatch
def parse_file(file_name):
output = {}
with open(file_name, 'r') as data_file:
for line in data_file:
entries = line.strip().split()
if len(entries) == 1:
time_step = int(entries[0])
output[time_step] = {}
elif len(entries) == 3:
x = float(entries[0])
y = float(entries[1])
value = float(entries[2])
output[time_step][(x, y)] = value
else:
raise RuntimeError('Anomalous line {} in file {}'.format(line, data_file.name))
return output
def main():
fig, axes = plt.subplots()
axes.set_xlim(-1,10)
axes.set_ylim(-1,10)
cmap = cm.plasma
norm = LogNorm(vmin = 1e-2, vmax = 1.2e4)
smap = cm.ScalarMappable(norm = norm, cmap = cmap)
smap.set_array([])
color_bar = fig.colorbar(mappable = smap, ax = axes, orientation = 'vertical', label = 'label')
data = parse_file(file_name = 'data.txt')
for time_step, information in data.items():
cells = []
for (x,y), value in information.items():
cell = FancyBboxPatch(xy = (x - 0.5, y - 0.5),
width = 1, height = 1,
boxstyle = 'square,pad=0.',
edgecolor = 'black',
facecolor = smap.to_rgba(value))
#print(time_step, '\t', x, '\t', y, '\t', value, '\t', smap.to_rgba(value))
axes.add_patch(cell)
cells.append(cell)
fig.savefig('time-step_{}.png'.format(time_step))
for cell in cells:
cell.remove()
if __name__ == '__main__':
main()
And here is one of the plots that is created from running that script:
This plot (and the other three that are created, but not shown here) look fine. So I am confident that I am using ScalarMappable correctly. Now I take the actual data I want to plot, again in a file called data.txt. The format is the same as before, except if a line has four entries, then the first entry is the time step (and I do not care about the other entries). Here is an example of data.txt:
2 0.424066E-02 0.200000E+01 0.885500E+08
0 1 0.850703E+00
1 3 0.388551E-09
2 4 0.141948E-06
2 6 0.126299E-09
3 9 0.166871E-08
4 12 0.340738E-08
5 13 0.246948E-09
5 14 0.129005E-09
6 16 0.140043E-08
6 17 0.885307E-09
26 76 0.591676E-08
26 78 0.745985E-08
27 77 0.263136E-08
27 78 0.131857E-08
27 79 0.151193E-05
27 80 0.265941E-07
27 81 0.170975E-05
27 82 0.206355E-08
27 83 0.334444E-07
28 80 0.569439E-05
28 81 0.864904E-07
28 82 0.114196E-02
28 83 0.130067E-06
28 84 0.608045E-04
28 85 0.351649E-07
28 86 0.543117E-07
28 88 0.202115E-08
29 83 0.225374E-07
29 84 0.125586E-07
29 85 0.253383E-04
29 86 0.943810E-06
29 87 0.104539E-04
29 88 0.210241E-06
29 89 0.196533E-03
29 90 0.707278E-06
29 91 0.565096E-05
29 92 0.840856E-08
29 93 0.277478E-07
30 86 0.707234E-09
30 88 0.549048E-07
30 89 0.281776E-08
30 90 0.259219E-04
30 91 0.298973E-06
30 92 0.311047E-04
30 93 0.144465E-05
30 94 0.632642E-04
30 95 0.787893E-08
30 96 0.252900E-08
31 91 0.425350E-08
31 92 0.371105E-08
31 93 0.621869E-05
31 94 0.680069E-06
31 95 0.315149E-04
31 96 0.670790E-07
31 97 0.568911E-06
31 98 0.187946E-08
31 99 0.135024E-07
32 94 0.384693E-09
32 96 0.174407E-06
32 97 0.480216E-08
32 98 0.244989E-05
32 99 0.876257E-07
32 100 0.189371E-04
32 101 0.264917E-06
32 102 0.297745E-05
32 103 0.213684E-09
33 99 0.110356E-08
33 100 0.131345E-08
33 101 0.448076E-06
33 102 0.106369E-06
33 103 0.128984E-04
33 104 0.230382E-07
33 105 0.266535E-07
34 102 0.428166E-08
34 103 0.668242E-08
34 104 0.842244E-05
34 105 0.843016E-07
34 106 0.137510E-05
34 107 0.879097E-08
34 108 0.758233E-07
35 105 0.280844E-06
35 106 0.639110E-07
35 107 0.497335E-05
35 108 0.260105E-06
35 109 0.188060E-05
35 110 0.375853E-09
35 111 0.935430E-09
35 112 0.138533E-07
35 113 0.101658E-06
35 114 0.504823E-09
35 115 0.989704E-09
35 116 0.152468E-06
35 117 0.220735E-07
36 114 0.430884E-08
36 116 0.115980E-07
36 117 0.128436E-05
36 118 0.814433E-05
37 117 0.316595E-09
37 118 0.141531E-06
37 119 0.965141E-05
38 119 0.459954E-08
38 120 0.114088E-04
38 121 0.198695E-09
39 120 0.109457E-08
39 121 0.105160E-04
39 122 0.254984E-08
40 122 0.717566E-05
40 123 0.179081E-08
40 124 0.352463E-09
41 123 0.454357E-05
41 124 0.629608E-07
41 125 0.777480E-07
42 124 0.453866E-05
42 125 0.108592E-06
42 126 0.320262E-06
42 127 0.252596E-09
42 128 0.114714E-09
43 125 0.372578E-06
43 126 0.344297E-07
43 127 0.188018E-05
43 128 0.631276E-08
43 129 0.368003E-08
44 126 0.170090E-07
44 127 0.121695E-07
44 128 0.147407E-05
44 129 0.349674E-07
44 130 0.767494E-06
45 128 0.193141E-09
45 129 0.361851E-06
45 130 0.573704E-07
45 131 0.457287E-06
45 132 0.148004E-08
45 133 0.164772E-07
45 134 0.386942E-09
45 135 0.539603E-08
45 136 0.227778E-09
45 137 0.640126E-08
45 138 0.189604E-09
45 139 0.754561E-09
46 132 0.215880E-07
46 134 0.102847E-08
46 136 0.628736E-08
46 137 0.427124E-09
46 138 0.711664E-07
46 139 0.749082E-08
46 140 0.425043E-06
46 141 0.776307E-08
46 142 0.102985E-06
46 143 0.693232E-09
46 144 0.215846E-08
47 141 0.660244E-08
47 142 0.901189E-09
47 143 0.299062E-07
47 144 0.195833E-08
47 145 0.178405E-07
47 146 0.558550E-09
47 147 0.235167E-08
48 144 0.393065E-09
48 146 0.493252E-08
48 147 0.299176E-09
48 148 0.130504E-07
48 149 0.244654E-09
48 150 0.143702E-08
49 149 0.565286E-09
49 151 0.122230E-08
3 0.424066E-02 0.200000E+01 0.885500E+08
0 1 0.850710E+00
1 3 0.388551E-09
2 4 0.141948E-06
2 6 0.126299E-09
3 9 0.166871E-08
4 12 0.340738E-08
5 13 0.246948E-09
5 14 0.129005E-09
6 16 0.140043E-08
6 17 0.885307E-09
26 76 0.593799E-08
26 78 0.747463E-08
27 77 0.283934E-08
27 78 0.115725E-08
27 79 0.153613E-05
27 80 0.236099E-08
27 81 0.171178E-05
27 83 0.334426E-07
28 80 0.575684E-05
28 81 0.242170E-07
28 82 0.114208E-02
28 83 0.133947E-07
28 84 0.608362E-04
28 85 0.335522E-08
28 86 0.543624E-07
28 88 0.202170E-08
29 83 0.258149E-07
29 84 0.107337E-07
29 85 0.261133E-04
29 86 0.167223E-06
29 87 0.108977E-04
29 88 0.432469E-08
29 89 0.196993E-03
29 90 0.997563E-08
29 91 0.565922E-05
29 92 0.127589E-09
29 93 0.277365E-07
30 86 0.731139E-09
30 88 0.613936E-07
30 89 0.984612E-09
30 90 0.261316E-04
30 91 0.845314E-07
30 92 0.324848E-04
30 93 0.656773E-07
30 94 0.632706E-04
30 95 0.335583E-09
30 96 0.252938E-08
31 91 0.529954E-08
31 92 0.394099E-08
31 93 0.681605E-05
31 94 0.104800E-06
31 95 0.315602E-04
31 96 0.231610E-08
31 97 0.566868E-06
31 99 0.135330E-07
32 94 0.450380E-09
32 96 0.178679E-06
32 97 0.955313E-09
32 98 0.252946E-05
32 99 0.770340E-08
32 100 0.191937E-04
32 101 0.825856E-08
32 102 0.297762E-05
33 99 0.128999E-08
33 100 0.146516E-08
33 101 0.616111E-06
33 102 0.539415E-07
33 103 0.128046E-04
33 104 0.865090E-09
33 105 0.266759E-07
34 102 0.899336E-08
34 103 0.331924E-08
34 104 0.850733E-05
34 105 0.462457E-08
34 106 0.137714E-05
34 107 0.199044E-09
34 108 0.758844E-07
35 105 0.308602E-06
35 106 0.470668E-07
35 107 0.520013E-05
35 108 0.458893E-07
35 109 0.185756E-05
35 111 0.159320E-07
35 112 0.729552E-09
35 113 0.101697E-06
35 114 0.135746E-09
35 115 0.128676E-06
35 116 0.231448E-07
35 117 0.220783E-07
36 114 0.480979E-08
36 116 0.921582E-06
36 117 0.373798E-06
36 118 0.814449E-05
37 117 0.888355E-08
37 118 0.132905E-06
37 119 0.965147E-05
38 118 0.360663E-09
38 119 0.423745E-08
38 120 0.114090E-04
39 120 0.109122E-08
39 121 0.105186E-04
40 122 0.717737E-05
40 124 0.352428E-09
41 123 0.460618E-05
41 124 0.358205E-09
41 125 0.777514E-07
42 124 0.464136E-05
42 125 0.589035E-08
42 126 0.320503E-06
42 128 0.114709E-09
43 125 0.408148E-06
43 126 0.567978E-08
43 127 0.187958E-05
43 129 0.368007E-08
44 126 0.258868E-07
44 127 0.348446E-08
44 128 0.150718E-05
44 129 0.167101E-08
44 130 0.767515E-06
45 128 0.176686E-09
45 129 0.403334E-06
45 130 0.162718E-07
45 131 0.458273E-06
45 132 0.196826E-09
45 133 0.167474E-07
45 135 0.563904E-08
45 137 0.655709E-08
45 139 0.751998E-09
46 132 0.216010E-07
46 134 0.107901E-08
46 136 0.673825E-08
46 138 0.784839E-07
46 139 0.220743E-09
46 140 0.432287E-06
46 141 0.427029E-09
46 142 0.103696E-06
46 144 0.211976E-08
47 141 0.696394E-08
47 142 0.585710E-09
47 143 0.315456E-07
47 144 0.425448E-09
47 145 0.181981E-07
47 146 0.136911E-09
47 147 0.226765E-08
48 144 0.442465E-09
48 146 0.553370E-08
48 147 0.138932E-09
48 148 0.128376E-07
48 150 0.144107E-08
49 149 0.624360E-09
49 151 0.123765E-08
The script that I use to create the plots is almost the same as before. The only differences are (1) how data.txt is parsed, (2) setting the limits of the x and y axes, and (3) the variable norm. Here is the script:
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import LogNorm
from matplotlib.patches import FancyBboxPatch
def parse_file(file_name):
output = {}
with open(file_name, 'r') as data_file:
for line in data_file:
entries = line.strip().split()
if len(entries) == 4:
time_step = int(entries[0])
output[time_step] = {}
elif len(entries) == 3:
x = float(entries[0])
y = float(entries[1])
value = float(entries[2])
output[time_step][(x, y)] = value
else:
raise RuntimeError('Anomalous line {} in file {}'.format(line, data_file.name))
return output
def main():
fig, axes = plt.subplots()
axes.set_xlim(0,150)
axes.set_ylim(0,250)
cmap = cm.plasma
norm = LogNorm(vmin = pow(10, -10), vmax = pow(10, -2.2))
smap = cm.ScalarMappable(norm = norm, cmap = cmap)
smap.set_array([])
color_bar = fig.colorbar(mappable = smap, ax = axes, orientation = 'vertical', label = 'label')
data = parse_file(file_name = 'data.txt')
for time_step, information in data.items():
cells = []
for (x,y), value in information.items():
cell = FancyBboxPatch(xy = (x - 0.5, y - 0.5),
width = 1, height = 1,
boxstyle = 'square,pad=0.',
edgecolor = 'black',
facecolor = smap.to_rgba(value))
#print(time_step, '\t', x, '\t', y, '\t', value, '\t', smap.to_rgba(value))
axes.add_patch(cell)
cells.append(cell)
fig.savefig('time-step_{}.png'.format(time_step))
for cell in cells:
cell.remove()
if __name__ == '__main__':
main()
Now all of the patches are black. Here is one of the plots that is created:
I do not see anything obviously wrong using the print statement (which is commented out in the script):
print(time_step, '\t', x, '\t', y, '\t', value, '\t', smap.to_rgba(value))
Why are all the FancyBboxPatches black instead of the color I have chosen with the ScalarMappable (and how can I make them be the color I have chosen with the ScalarMappable)?
It doesn't look as if the patches are black. I would guess that they are just too small, such that their edge (which is black) takes up the complete area of the patch. You may use a thinner edge, or no edge at all, or you may set the edgecolor to the value of your liking as well. In general, You may also use simple patches like Rectangle instead of the FancyBboxPatch.

Efficient finite field multiplication with log-antilog-table lookup in numpy

I am trying to implement efficient multiplication in GF(2^8), which elements are most naturally represented as uint8-numpy-values, in a numpy-thonic way. Therefore, I implemented GF-Arithmetics (in pure Python, not numpy) in order to build log-antilog-tables (I took a ranom generator, 9); in particular, I implemented a (non-numpy) Python-Function multGF which implements GF-Multiplication, which works great but is slow (since it uses polynomial modulo calcs). A common trick to speed up multiplication is to use the following equation:
Building the log-antilog-uint8-ndarrays is easily performed like this:
gen = 9 ; K = [1] ; g = gen
for i in range(1,255):
K.append(g)
g = multGF(g,gen)
antilog = np.array(K, dtype='uint8')
log = np.full(256,0, dtype='uint8')
for i in range(255): log[antilog[i]] = i
But, and that is my question, how to implement the multiplication in a numpy-thonic way? Both, the log table and the antilog table are of size 255 (not 256; no log for 0) and the exponents have to be added modulo 255 - and not mod 256. I came up with the following IMHO non numpy-thonic solution:
def multGF2(a,b):
return antilog[(int(log[a]) + log[b]) % 255]
I had to convert the uint8-addition (which works mod-256 naturally) into an int-addtion in order to perform mod-255-addition. This is neither elegant nor efficient and I am quite sure, that any has a better solution?
For testing: here are both logtables as arrays:
log = [ nan 0 250 214 245 173 209 42 240 1 168 71 204 187 37 132 235 91
251 191 163 84 66 146 199 212 182 215 32 30 127 247 230 206 86 229
246 65 186 244 158 87 79 171 61 174 141 180 194 113 207 50 177 150
210 54 27 105 25 231 122 93 242 43 225 2 201 156 81 142 224 52
241 53 60 64 181 190 239 254 153 119 82 72 74 9 166 62 56 13
169 143 136 34 175 109 189 80 108 165 202 188 45 99 172 203 145 126
205 157 49 24 22 139 100 159 20 111 226 133 117 233 88 46 237 130
38 3 220 217 252 35 196 96 151 89 76 6 137 192 219 5 47 178
236 110 48 98 55 118 59 155 176 92 185 179 234 211 249 70 148 18
114 39 77 124 67 14 69 58 4 195 161 7 57 147 51 238 8 135
164 144 138 116 131 208 29 162 170 85 104 193 184 97 75 216 103 115
160 123 197 11 183 10 40 222 94 101 167 213 198 90 140 243 121 149
200 63 152 12 44 23 19 129 17 68 134 28 95 218 154 248 15 16
106 227 221 102 128 120 112 26 228 78 83 31 41 36 232 21 125 107
33 73 253 223]
antilog = [ 1 9 65 127 170 141 137 173 178 85 203 201 219 89 167 232 233 224
161 222 116 249 112 221 111 58 241 56 227 186 29 245 28 252 93 131
247 14 126 163 204 246 7 63 220 102 123 142 146 110 51 176 71 73
55 148 88 174 169 150 74 44 87 217 75 37 22 166 225 168 159 11
83 253 84 194 136 164 243 42 97 68 82 244 21 189 34 41 122 135
211 17 153 61 206 228 133 193 147 103 114 207 237 196 190 57 234 251
98 95 145 117 240 49 162 197 183 120 149 81 239 214 60 199 165 250
107 30 238 223 125 184 15 119 226 179 92 138 182 113 212 46 69 91
181 106 23 175 160 215 53 134 218 80 230 151 67 109 40 115 198 172
187 20 180 99 86 208 10 90 188 43 104 5 45 94 152 52 143 155
47 76 26 202 192 154 38 13 101 96 77 19 139 191 48 171 132 200
210 24 216 66 100 105 12 108 33 50 185 6 54 157 25 209 3 27
195 129 229 140 128 236 205 255 70 64 118 235 242 35 32 59 248 121
156 16 144 124 177 78 8 72 62 213 39 4 36 31 231 158 2 18
130 254 79 ]

Parenthesized repetitions in Python regular expressions

I have the following string (say the variable name is "str")
(((TEST (4 5 17 33 38 45 93 101 104 108 113 116 135 146 148)) (TRAIN (0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 39 40 41 42 43 44 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 94 95 96 97 98 99 100 102 103 105 106 107 109 110 111 112 114 115 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 136 137 138 139 140 141 142 143 144 145 147 149 150 151))) ((TEST (19 35 46 47 48 56 59 61 65 69 71 84 105 107 130)) (TRAIN (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 49 50 51 52 53 54 55 57 58 60 62 63 64 66 67 68 70 72 73 74 75 76 77 78 79 80 81 82 83 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 106 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151)))'
from which I would like to get
['TEST (4 5 17 33 38 45 93 101 104 108 113 116 135 146 148)', 'TEST (19 35 46 47 48 56 59 61 65 69 71 84 105 107 130)']
using re.findall() function in Python.
I tried the following
m = re.findall(r'TEST\s\((\d+\s?)*\)', str)
for which I get the result
['148', '130']
which is a list of only the last numbers of each set of numbers I want. I don't know why my regexp is wrong. Can someone please help me fix this problem?
Thanks!
Do not use a capturing group that repeats; only the last value will be captured. re.findall() will only return captured groups when you use them.
A non-capturing group for the repeat would work much better here:
m = re.findall(r'TEST\s\((?:\d+\s?)*\)', str)
Demo:
>>> import re
>>> s = '(((TEST (4 5 17 33 38 45 93 101 104 108 113 116 135 146 148)) (TRAIN (0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 39 40 41 42 43 44 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 94 95 96 97 98 99 100 102 103 105 106 107 109 110 111 112 114 115 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 136 137 138 139 140 141 142 143 144 145 147 149 150 151))) ((TEST (19 35 46 47 48 56 59 61 65 69 71 84 105 107 130)) (TRAIN (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 49 50 51 52 53 54 55 57 58 60 62 63 64 66 67 68 70 72 73 74 75 76 77 78 79 80 81 82 83 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 106 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151)))'
>>> re.findall(r'TEST\s\((?:\d+\s?)*\)', s)
['TEST (4 5 17 33 38 45 93 101 104 108 113 116 135 146 148)', 'TEST (19 35 46 47 48 56 59 61 65 69 71 84 105 107 130)']
Without the capturing group, re.findall() returns the whole match.
You can use (not worrying about the digits in between):
import re
print re.findall(r'\((TEST.*?\))\)', s)
['TEST (4 5 17 33 38 45 93 101 104 108 113 116 135 146 148)', 'TEST (19 35 46 47 48 56 59 61 65 69 71 84 105 107 130)']
Try this one. After TEST it matches every character until a closing parentheses and it stops there ([^)]+):
re.findall(r'\((TEST[^)]+\))', s)
It yields:
['TEST (4 5 17 33 38 45 93 101 104 108 113 116 135 146 148)',
'TEST (19 35 46 47 48 56 59 61 65 69 71 84 105 107 130)']

Categories