I was curious if any of you could come up with a more streamline version of code to calculate Brown numbers. as of the moment, this code can do ~650! before it moves to a crawl. Brown Numbers are calculated thought the equation n! + 1 = m**(2) Where M is an integer
brownNum = 8
import math
def squareNum(n):
x = n // 2
seen = set([x])
while x * x != n:
x = (x + (n // x)) // 2
if x in seen: return False
seen.add(x)
return True
while True:
for i in range(math.factorial(brownNum)+1,math.factorial(brownNum)+2):
if squareNum(i) is True:
print("pass")
print(brownNum)
print(math.factorial(brownNum)+1)
break
else:
print(brownNum)
print(math.factorial(brownNum)+1)
brownNum = brownNum + 1
continue
break
print(input(" "))
Sorry, I don't understand the logic behind your code.
I don't understand why you calculate math.factorial(brownNum) 4 times with the same value of brownNum each time through the while True loop. And in the for loop:
for i in range(math.factorial(brownNum)+1,math.factorial(brownNum)+2):
i will only take on the value of math.factorial(brownNum)+1
Anyway, here's my Python 3 code for a brute force search of Brown numbers. It quickly finds the only 3 known pairs, and then proceeds to test all the other numbers under 1000 in around 1.8 seconds on this 2GHz 32 bit machine. After that point you can see it slowing down (it hits 2000 around the 20 second mark) but it will chug along happily until the factorials get too large for your machine to hold.
I print progress information to stderr so that it can be separated from the Brown_number pair output. Also, stderr doesn't require flushing when you don't print a newline, unlike stdout (at least, it doesn't on Linux).
import sys
# Calculate the integer square root of `m` using Newton's method.
# Returns r: r**2 <= m < (r+1)**2
def int_sqrt(m):
if m <= 0:
return 0
n = m << 2
r = n >> (n.bit_length() // 2)
while True:
d = (n // r - r) >> 1
r += d
if -1 <= d <= 1:
break
return r >> 1
# Search for Browns numbers
fac = i = 1
while True:
if i % 100 == 0:
print('\r', i, file=sys.stderr, end='')
fac *= i
n = fac + 1
r = int_sqrt(n)
if r*r == n:
print('\nFound', i, r)
i += 1
You might want to:
pre calculate your square numbers, instead of testing for them on the fly
pre calculate your factorial for each loop iteration num_fac = math.factorial(brownNum) instead of multiple calls
implement your own, memoized, factorial
that should let you run to the hard limits of your machine
one optimization i would make would be to implement a 'wrapper' function around math.factorial that caches previous values of factorial so that as your brownNum increases, factorial doesn't have as much work to do. this is known as 'memoization' in computer science.
edit: found another SO answer with similar intention: Python: Is math.factorial memoized?
You should also initialize the square root more closely to the root.
e = int(math.log(n,4))
x = n//2**e
Because of 4**e <= n <= 4**(e+1) the square root will be between x/2 and x which should yield quadratic convergence of the Heron formula from the first iteration on.
Related
I'm studing recursive function and i faced question of
"Print sum of 1 to n with no 'for' or 'while' "
ex ) n = 10
answer =
55
n = 100
answer = 5050
so i coded
import sys
sys.setrecursionlimit(1000000)
sum = 0
def count(n):
global sum
sum += n
if n!=0:
count(n-1)
count(n = int(input()))
print(sum)
I know it's not good way to get right answer, but there was a solution
n=int(input())
def f(x) :
if x==1 :
return 1
else :
return ((x+1)//2)*((x+1)//2)+f(x//2)*2
print(f(n))
and it works super well , but i really don't know how can human think that logic and i have no idea how it works.
Can you guys explain how does it works?
Even if i'm looking that formula but i don't know why he(or she) used like that
And i wonder there is another solution too (I think it's reall important to me)
I'm really noob of python and code so i need you guys help, thank you for watching this
Here is a recursive solution.
def rsum(n):
if n == 1: # BASE CASE
return 1
else: # RECURSIVE CASE
return n + rsum(n-1)
You can also use range and sum to do so.
n = 100
sum_1_to_n = sum(range(n+1))
you can try this:
def f(n):
if n == 1:
return 1
return n + f(n - 1)
print(f(10))
this function basically goes from n to 1 and each time it adds the current n, in the end, it returns the sum of n + n - 1 + ... + 1
In order to get at a recursive solution, you have to (re)define your problems in terms of finding the answer based on the result of a smaller version of the same problem.
In this case you can think of the result sumUpTo(n) as adding n to the result of sumUpTo(n-1). In other words: sumUpTo(n) = n + sumUpTo(n-1).
This only leaves the problem of finding a value of n for which you know the answer without relying on your sumUpTo function. For example sumUpTo(0) = 0. That is called your base condition.
Translating this to Python code, you get:
def sumUpTo(n): return 0 if n==0 else n + sumUpTo(n-1)
Recursive solutions are often very elegant but require a different way of approaching problems. All recursive solutions can be converted to non-recursive (aka iterative) and are generally slower than their iterative counterpart.
The second solution is based on the formula ∑1..n = n*(n+1)/2. To understand this formula, take a number (let's say 7) and pair up the sequence up to that number in increasing order with the same sequence in decreasing order, then add up each pair:
1 2 3 4 5 6 7 = 28
7 6 5 4 3 2 1 = 28
-- -- -- -- -- -- -- --
8 8 8 8 8 8 8 = 56
Every pair will add up to n+1 (8 in this case) and you have n (7) of those pairs. If you add them all up you get n*(n+1) = 56 which correspond to adding the sequence twice. So the sum of the sequence is half of that total n*(n+1)/2 = 28.
The recursion in the second solution reduces the number of iterations but is a bit artificial as it serves only to compensate for the error introduced by propagating the integer division by 2 to each term instead of doing it on the result of n*(n+1). Obviously n//2 * (n+1)//2 isn't the same as n*(n+1)//2 since one of the terms will lose its remainder before the multiplication takes place. But given that the formula to obtain the result mathematically is part of the solution doing more than 1 iteration is pointless.
There are 2 ways to find the answer
1. Recursion
def sum(n):
if n == 1:
return 1
if n <= 0:
return 0
else:
return n + sum(n-1)
print(sum(100))
This is a simple recursion code snippet when you try to apply the recurrent function
F_n = n + F_(n-1) to find the answer
2. Formula
Let S = 1 + 2 + 3 + ... + n
Then let's do something like this
S = 1 + 2 + 3 + ... + n
S = n + (n - 1) + (n - 2) + ... + 1
Let's combine them and we get
2S = (n + 1) + (n + 1) + ... + (n + 1) - n times
From that you get
S = ((n + 1) * n) / 2
So for n = 100, you get
S = 101 * 100 / 2 = 5050
So in python, you will get something like
sum = lambda n: ( (n + 1) * n) / 2
print(sum(100))
Examples,
1.Input=4
Output=111
Explanation,
1 = 1³(divisors of 1)
2 = 1³ + 2³(divisors of 2)
3 = 1³ + 3³(divisors of 3)
4 = 1³ + 2³ + 4³(divisors of 4)
------------------------
sum = 111(output)
1.Input=5
Output=237
Explanation,
1 = 1³(divisors of 1)
2 = 1³ + 2³(divisors of 2)
3 = 1³ + 3³(divisors of 3)
4 = 1³ + 2³ + 4³(divisors of 4)
5 = 1³ + 5³(divisors of 5)
-----------------------------
sum = 237 (output)
x=int(raw_input().strip())
tot=0
for i in range(1,x+1):
for j in range(1,i+1):
if(i%j==0):
tot+=j**3
print tot
Using this code I can find the answer for small number less than one million.
But I want to find the answer for very large numbers. Is there any algorithm
for how to solve it easily for large numbers?
Offhand I don't see a slick way to make this truly efficient, but it's easy to make it a whole lot faster. If you view your examples as matrices, you're summing them a row at a time. This requires, for each i, finding all the divisors of i and summing their cubes. In all, this requires a number of operations proportional to x**2.
You can easily cut that to a number of operations proportional to x, by summing the matrix by columns instead. Given an integer j, how many integers in 1..x are divisible by j? That's easy: there are x//j multiples of j in the range, so divisor j contributes j**3 * (x // j) to the grand total.
def better(x):
return sum(j**3 * (x // j) for j in range(1, x+1))
That runs much faster, but still takes time proportional to x.
There are lower-level tricks you can play to speed that in turn by constant factors, but they still take O(x) time overall. For example, note that x // j == 1 for all j such that x // 2 < j <= x. So about half the terms in the sum can be skipped, replaced by closed-form expressions for a sum of consecutive cubes:
def sum3(x):
"""Return sum(i**3 for i in range(1, x+1))"""
return (x * (x+1) // 2)**2
def better2(x):
result = sum(j**3 * (x // j) for j in range(1, x//2 + 1))
result += sum3(x) - sum3(x//2)
return result
better2() is about twice as fast as better(), but to get faster than O(x) would require deeper insight.
Quicker
Thinking about this in spare moments, I still don't have a truly clever idea. But the last idea I gave can be carried to a logical conclusion: don't just group together divisors with only one multiple in range, but also those with two multiples in range, and three, and four, and ... That leads to better3() below, which does a number of operations roughly proportional to the square root of x:
def better3(x):
result = 0
for i in range(1, x+1):
q1 = x // i
# value i has q1 multiples in range
result += i**3 * q1
# which values have i multiples?
q2 = x // (i+1) + 1
assert x // q1 == i == x // q2
if i < q2:
result += i * (sum3(q1) - sum3(q2 - 1))
if i+1 >= q2: # this becomes true when i reaches roughly sqrt(x)
break
return result
Of course O(sqrt(x)) is an enormous improvement over the original O(x**2), but for very large arguments it's still impractical. For example better3(10**6) appears to complete instantly, but better3(10**12) takes a few seconds, and better3(10**16) is time for a coffee break ;-)
Note: I'm using Python 3. If you're using Python 2, use xrange() instead of range().
One more
better4() has the same O(sqrt(x)) time behavior as better3(), but does the summations in a different order that allows for simpler code and fewer calls to sum3(). For "large" arguments, it's about 50% faster than better3() on my box.
def better4(x):
result = 0
for i in range(1, x+1):
d = x // i
if d >= i:
# d is the largest divisor that appears `i` times, and
# all divisors less than `d` also appear at least that
# often. Account for one occurence of each.
result += sum3(d)
else:
i -= 1
lastd = x // i
# We already accounted for i occurrences of all divisors
# < lastd, and all occurrences of divisors >= lastd.
# Account for the rest.
result += sum(j**3 * (x // j - i)
for j in range(1, lastd))
break
return result
It may be possible to do better by extending the algorithm in "A Successive Approximation Algorithm for Computing the Divisor Summatory Function". That takes O(cube_root(x)) time for the possibly simpler problem of summing the number of divisors. But it's much more involved, and I don't care enough about this problem to pursue it myself ;-)
Subtlety
There's a subtlety in the math that's easy to miss, so I'll spell it out, but only as it pertains to better4().
After d = x // i, the comment claims that d is the largest divisor that appears i times. But is that true? The actual number of times d appears is x // d, which we did not compute. How do we know that x // d in fact equals i?
That's the purpose of the if d >= i: guarding that comment. After d = x // i we know that
x == d*i + r
for some integer r satisfying 0 <= r < i. That's essentially what floor division means. But since d >= i is also known (that's what the if test ensures), it must also be the case that 0 <= r < d. And that's how we know x // d is i.
This can break down when d >= i is not true, which is why a different method needs to be used then. For example, if x == 500 and i == 51, d (x // i) is 9, but it's certainly not the case that 9 is the largest divisor that appears 51 times. In fact, 9 appears 500 // 9 == 55 times. While for positive real numbers
d == x/i
if and only if
i == x/d
that's not always so for floor division. But, as above, the first does imply the second if we also know that d >= i.
Just for Fun
better5() rewrites better4() for about another 10% speed gain. The real pedagogical point is to show that it's easy to compute all the loop limits in advance. Part of the point of the odd code structure above is that it magically returns 0 for a 0 input without needing to test for that. better5() gives up on that:
def isqrt(n):
"Return floor(sqrt(n)) for int n > 0."
g = 1 << ((n.bit_length() + 1) >> 1)
d = n // g
while d < g:
g = (d + g) >> 1
d = n // g
return g
def better5(x):
assert x > 0
u = isqrt(x)
v = x // u
return (sum(map(sum3, (x // d for d in range(1, u+1)))) +
sum(x // i * i**3 for i in range(1, v)) -
u * sum3(v-1))
def sum_divisors(n):
sum = 0
i = 0
for i in range (1, n) :
if n % i == 0 and n != 0 :
sum = sum + i
# Return the sum of all divisors of n, not including n
return sum
print(sum_divisors(0))
# 0
print(sum_divisors(3)) # Should sum of 1
# 1
print(sum_divisors(36)) # Should sum of 1+2+3+4+6+9+12+18
# 55
print(sum_divisors(102)) # Should be sum of 2+3+6+17+34+51
# 114
I'm trying to maximize the Euler Totient function on Python given it can use large arbitrary numbers. The problem is that the program gets killed after some time so it doesn't reach the desired ratio. I have thought of increasing the starting number into a larger number, but I don't think it's prudent to do so. I'm trying to get a number when divided by the totient gets higher than 10. Essentially I'm trying to find a sparsely totient number that fits this criteria.
Here's my phi function:
def phi(n):
amount = 0
for k in range(1, n + 1):
if fractions.gcd(n, k) == 1:
amount += 1
return amount
The most likely candidates for high ratios of N/phi(N) are products of prime numbers. If you're just looking for one number with a ratio > 10, then you can generate primes and only check the product of primes up to the point where you get the desired ratio
def totientRatio(maxN,ratio=10):
primes = []
primeProd = 1
isPrime = [1]*(maxN+1)
p = 2
while p*p<=maxN:
if isPrime[p]:
isPrime[p*p::p] = [0]*len(range(p*p,maxN+1,p))
primes.append(p)
primeProd *= p
tot = primeProd
for f in primes:
tot -= tot//f
if primeProd/tot >= ratio:
return primeProd,primeProd/tot,len(primes)
p += 1 + (p&1)
output:
totientRatio(10**6)
16516447045902521732188973253623425320896207954043566485360902980990824644545340710198976591011245999110,
10.00371973209101,
55
This gives you the smallest number with that ratio. Multiples of that number will have the same ratio.
n = 16516447045902521732188973253623425320896207954043566485360902980990824644545340710198976591011245999110
n*2/totient(n*2) = 10.00371973209101
n*11*13/totient(n*11*13) = 10.00371973209101
No number will have a higher ratio until you reach the next product of primes (i.e. that number multiplied by the next prime).
n*263/totient(n*263) = 10.041901868473037
Removing a prime from the product affects the ratio by a proportion of (1-1/P).
For example if m = n/109, then m/phi(m) = n/phi(n) * (1-1/109)
(n//109) / totient(n//109) = 9.91194248684247
10.00371973209101 * (1-1/109) = 9.91194248684247
This should allow you to navigate the ratios efficiently and find the numbers that meed your need.
For example, to get a number with a ratio that is >= 10 but closer to 10, you can go to the next prime product(s) and remove one or more of the smaller primes to reduce the ratio. This can be done using combinations (from itertools) and will allow you to find very specific ratios:
m = n*263/241
m/totient(m) = 10.000234225865265
m = n*(263...839) / (7 * 61 * 109 * 137) # 839 is 146th prime
m/totient(m) = 10.000000079805726
I have a partial solution for you, but the results don't look good.. (this solution may not give you an answer with modern computer hardware (amount of ram is limiting currently)) I took an answer from this pcg challenge and modified it to spit out ratios of n/phi(n) up to a particular n
import numba as nb
import numpy as np
import time
n = int(2**31)
#nb.njit("i4[:](i4[:])", locals=dict(
n=nb.int32, i=nb.int32, j=nb.int32, q=nb.int32, f=nb.int32))
def summarum(phi):
#calculate phi(i) for i: 1 - n
#taken from <a>https://codegolf.stackexchange.com/a/26753/42652</a>
phi[1] = 1
i = 2
while i < n:
if phi[i] == 0:
phi[i] = i - 1
j = 2
while j * i < n:
if phi[j] != 0:
q = j
f = i - 1
while q % i == 0:
f *= i
q //= i
phi[i * j] = f * phi[q]
j += 1
i += 1
#divide each by n to get ratio n/phi(n)
i = 1
while i < n: #jit compiled while loop is faster than: for i in range(): blah blah blah
phi[i] = i//phi[i]
i += 1
return phi
if __name__ == "__main__":
s1 = time.time()
a = summarum(np.zeros(n, np.int32))
locations = np.where(a >= 10)
print(len(locations))
I only have enough ram on my work comp. to test about 0 < n < 10^8 and the largest ratio was about 6. You may or may not have any luck going up to larger n, although 10^8 already took several seconds (not sure what the overhead was... spyder's been acting strange lately)
p55# is a sparsely totient number satisfying the desired condition.
Furthermore, all subsequent primorial numbers are as well, because pn# / phi(pn#) is a strictly increasing sequence:
p1# / phi(p1#) is 2, which is positive. For n > 1, pn# / phi(pn#) is equal to pn-1#pn / phi(pn-1#pn), which, since pn and pn-1# are coprime, is equal to (pn-1# / phi(pn-1#)) * (pn/phi(pn)). We know pn > phi(pn) > 0 for all n, so pn/phi(pn) > 1. So we have that the sequence pn# / phi(pn#) is strictly increasing.
I do not believe these to be the only sparsely totient numbers satisfying your request, but I don't have an efficient way of generating the others coming to mind. Generating primorials, by comparison, amounts to generating the first n primes and multiplying the list together (whether by using functools.reduce(), math.prod() in 3.8+, or ye old for loop).
As for the general question of writing a phi(n) function, I would probably first find the prime factors of n, then use Euler's product formula for phi(n). As an aside, make sure to NOT use floating-point division. Even finding the prime factors of n by trial division should outperform computing gcd n times, but when working with large n, replacing this with an efficient prime factorization algorithm will pay dividends. Unless you want a good cross to die on, don't write your own. There's one in sympy that I'm aware of, and given the ubiquity of the problem, probably plenty of others around. Time as needed.
Speaking of timing, if this is still relevant enough to you (or a future reader) to want to time... definitely throw the previous answer in the mix as well.
I have the following code for Project Euler Problem 12. However, it takes a very long time to execute. Does anyone have any suggestions for speeding it up?
n = input("Enter number: ")
def genfact(n):
t = []
for i in xrange(1, n+1):
if n%i == 0:
t.append(i)
return t
print "Numbers of divisors: ", len(genfact(n))
print
m = input("Enter the number of triangle numbers to check: ")
print
for i in xrange (2, m+2):
a = sum(xrange(i))
b = len(genfact(a))
if b > 500:
print a
For n, I enter an arbitrary number such as 6 just to check whether it indeed returns the length of the list of the number of factors.
For m, I enter entered 80 000 000
It works relatively quickly for small numbers. If I enter b > 50 ; it returns 28 for a, which is correct.
My answer here isn't pretty or elegant, it is still brute force. But, it simplifies the problem space a little and terminates successfully in less than 10 seconds.
Getting factors of n:
Like #usethedeathstar mentioned, it is possible to test for factors only up to n/2. However, we can do better by testing only up to the square root of n:
let n = 36
=> factors(n) : (1x36, 2x18, 3x12, 4x9, 6x6, 9x4, 12x3, 18x2, 36x1)
As you can see, it loops around after 6 (the square root of 36). We also don't need to explicitly return the factors, just find out how many there are... so just count them off with a generator inside of sum():
import math
def get_factors(n):
return sum(2 for i in range(1, round(math.sqrt(n)+1)) if not n % i)
Testing the triangular numbers
I have used a generator function to yield the triangular numbers:
def generate_triangles(limit):
l = 1
while l <= limit:
yield sum(range(l + 1))
l += 1
And finally, start testing:
def test_triangles():
triangles = generate_triangles(100000)
for i in triangles:
if get_factors(i) > 499:
return i
Running this with the profiler, it completes in less than 10 seconds:
$ python3 -m cProfile euler12.py
361986 function calls in 8.006 seconds
The BIGGEST time saving here is get_factors(n) testing only up to the square root of n - this makes it heeeaps quicker and you save heaps of memory overhead by not generating a list of factors.
As I said, it still isn't pretty - I am sure there are more elegant solutions. But, it fits the bill of being faster :)
I got my answer to run in 1.8 seconds with Python.
import time
from math import sqrt
def count_divisors(n):
d = {}
count = 1
while n % 2 == 0:
n = n / 2
try:
d[2] += 1
except KeyError:
d[2] = 1
for i in range(3, int(sqrt(n+1)), 2):
while n % i == 0 and i != n:
n = n / i
try:
d[i] += 1
except KeyError:
d[i] = 1
d[n] = 1
for _,v in d.items():
count = count * (v + 1)
return count
def tri_number(num):
next = 1 + int(sqrt(1+(8 * num)))
return num + (next/2)
def main():
i = 1
while count_divisors(i) < 500:
i = tri_number(i)
return i
start = time.time()
answer = main()
elapsed = (time.time() - start)
print("result %s returned in %s seconds." % (answer, elapsed))
Here is the output showing the timedelta and correct answer:
$ python ./project012.py
result 76576500 returned in 1.82238006592 seconds.
Factoring
For counting the divisors, I start by initializing an empty dictionary and a counter. For each factor found, I create key of d[factor] with value of 1 if it does not exist, otherwise, I increment the value d[factor].
For example, if we counted the factors 100, we would see d = {25: 1, 2: 2}
The first while loop, I factor out all 2's, dividing n by 2 each time. Next, I begin factoring at 3, skipping two each time (since we factored all even numbers already), and stopping once I get to the square root of n+1.
We stop at the square_root of n because if there's a pair of factors with one of the numbers bigger than square_root of n, the other of the pair has to be less than 10. If the smaller one doesn't exist, there is no matching larger factor.
https://math.stackexchange.com/questions/1343171/why-only-square-root-approach-to-check-number-is-prime
while n % 2 == 0:
n = n / 2
try:
d[2] += 1
except KeyError:
d[2] = 1
for i in range(3, int(sqrt(n+1)), 2):
while n % i == 0 and i != n:
n = n / i
try:
d[i] += 1
except KeyError:
d[i] = 1
d[n] = 1
Now that I have gotten each factor, and added it to the dictionary, we have to add the last factor (which is just n).
Counting Divisors
Now that the dictionary is complete, we loop through each of the items, and apply the following formula: d(n)=(a+1)(b+1)(c+1)...
https://www.wikihow.com/Determine-the-Number-of-Divisors-of-an-Integer
All this formula means is taking all of the counts of each factor, adding 1, then multiplying them together. Take 100 for example, which has factors 25, 2, and 2. We would calculate d(n)=(a+1)(b+1) = (1+1)(2+1) = (2)(3) = 6 total divisors
for _,v in d.items():
count = count * (v + 1)
return count
Calculate Triangle Numbers
Now, taking a look at tri_number(), you can see that I opted to calculate the next triangle number in a sequence without manually adding each whole number together (saving me millions of operations). Instead I used T(n) = n (n+1) / 2
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/runsums/triNbProof.html
We are providing a whole number to the function as an argument, so we need to solve for n, which is going to be the whole number to add next. Once we have the next number (n), we simply add that single number to num and return
S=n(n+1)2
S=n2+n2
2S=n2+n
n2+n−2S=0
At this point, we use the quadratic formula for : ax2+bx+c=0.
n=−b±√b2−4ac / 2a
n=−1±√1−4(1)(−2S) / 2
n=−1±√1+8S / 2
https://socratic.org/questions/how-do-you-solve-for-n-in-s-n-n-1-2
So all tri_number() does is evaluate n=1+√1+8S / 2 (we ignore the negative equation here). The answer that is returned is the next triangle number in the sequence.
def tri_number(num):
next = 1 + int(sqrt(1+(8 * num)))
return num + (next/2)
Main Loop
Finally, we can look at main(). We start at whole number 1. We count the divisor of 1. If it is less than 500, we get the next triangle number, then try again and again until we get a number with > 500 divisors.
def main():
i = 1
while count_divisors(i) < 500:
i = tri_number(i)
return i
I am sure there are additional ways to optimize but I am not smart enough to understand those ways. If you find any better ways to optimize python, let me know! I originally solved project 12 in Golang, and that run in 25 milliseconds!
$ go run project012.go
76576500
2018/07/12 01:56:31 TIME: main() took 23.581558ms
one of the hints i can give is
def genfact(n):
t = []
for i in xrange(1, n+1):
if n%i == 0:
t.append(i)
return t
change that to
def genfact(n):
t=[]
for i in xrange(1,numpy.sqrt(n)+1):
if(n%i==0):
t.append(i)
t.apend(n/i)
since if a is a divisor than so is b=n/a, since a*b=a*n/b=n, That should help a part already (not sure if in your case a square is possible, but if so, add another case to exclude adding the same number twice)
You could devise a recursive thing too, (like if it is something like for 28, you get 1,28,2,14 and at the moment you are at knowing 14, you put in something to actually remember the divisors of 14 (memoize), than check if they are alraedy in the list, and if not, add them to the list, together with 28/d for each of the divisors of 14, and at the end just take out the duplicates
If you think my first answer is still not fast enough, ask for more, and i will check how it would be done to solve it faster with some more tricks (could probably make use of erastothenes sieve or so too, and some other tricks could be thought up as well if you would wish to really blow up the problem to huge proportions, like to check the first one with over 10k divisors or so)
while True:
c=0
n=1
m=1
for i in range(1,n+1):
if n%i==0:
c=c+1
m=m+1
n=m*(m+1)/2
if c>500:
break
print n
this is not my code but it is so optimized.
source: http://code.jasonbhill.com/sage/project-euler-problem-12/
import time
def num_divisors(n):
if n % 2 == 0: n = n / 2
divisors = 1
count = 0
while n % 2 == 0:
count += 1
n = n / 2
divisors = divisors * (count + 1)
p = 3
while n != 1:
count = 0
while n % p == 0:
count += 1
n = n / p
divisors = divisors * (count + 1)
p += 2
return divisors
def find_triangular_index(factor_limit):
n = 1
lnum, rnum = num_divisors(n), num_divisors(n + 1)
while lnum * rnum < 500:
n += 1
lnum, rnum = rnum, num_divisors(n + 1)
return n
start = time.time()
index = find_triangular_index(500)
triangle = (index * (index + 1)) / 2
elapsed = (time.time() - start)
print("result %s returned in %s seconds." % (triangle, elapsed))
I want to generate the digits of the square root of two to 3 million digits.
I am aware of Newton-Raphson but I don't have much clue how to implement it in C or C++ due to lack of biginteger support. Can somebody point me in the right direction?
Also, if anybody knows how to do it in python (I'm a beginner), I would also appreciate it.
You could try using the mapping:
a/b -> (a+2b)/(a+b) starting with a= 1, b= 1. This converges to sqrt(2) (in fact gives the continued fraction representations of it).
Now the key point: This can be represented as a matrix multiplication (similar to fibonacci)
If a_n and b_n are the nth numbers in the steps then
[1 2] [a_n b_n]T = [a_(n+1) b_(n+1)]T
[1 1]
which now gives us
[1 2]n [a_1 b_1]T = [a_(n+1) b_(n+1)]T
[1 1]
Thus if the 2x2 matrix is A, we need to compute An which can be done by repeated squaring and only uses integer arithmetic (so you don't have to worry about precision issues).
Also note that the a/b you get will always be in reduced form (as gcd(a,b) = gcd(a+2b, a+b)), so if you are thinking of using a fraction class to represent the intermediate results, don't!
Since the nth denominators is like (1+sqrt(2))^n, to get 3 million digits you would likely need to compute till the 3671656th term.
Note, even though you are looking for the ~3.6 millionth term, repeated squaring will allow you to compute the nth term in O(Log n) multiplications and additions.
Also, this can easily be made parallel, unlike the iterative ones like Newton-Raphson etc.
EDIT: I like this version better than the previous. It's a general solution that accepts both integers and decimal fractions; with n = 2 and precision = 100000, it takes about two minutes. Thanks to Paul McGuire for his suggestions & other suggestions welcome!
def sqrt_list(n, precision):
ndigits = [] # break n into list of digits
n_int = int(n)
n_fraction = n - n_int
while n_int: # generate list of digits of integral part
ndigits.append(n_int % 10)
n_int /= 10
if len(ndigits) % 2: ndigits.append(0) # ndigits will be processed in groups of 2
decimal_point_index = len(ndigits) / 2 # remember decimal point position
while n_fraction: # insert digits from fractional part
n_fraction *= 10
ndigits.insert(0, int(n_fraction))
n_fraction -= int(n_fraction)
if len(ndigits) % 2: ndigits.insert(0, 0) # ndigits will be processed in groups of 2
rootlist = []
root = carry = 0 # the algorithm
while root == 0 or (len(rootlist) < precision and (ndigits or carry != 0)):
carry = carry * 100
if ndigits: carry += ndigits.pop() * 10 + ndigits.pop()
x = 9
while (20 * root + x) * x > carry:
x -= 1
carry -= (20 * root + x) * x
root = root * 10 + x
rootlist.append(x)
return rootlist, decimal_point_index
As for arbitrary big numbers you could have a look at The GNU Multiple Precision Arithmetic Library (for C/C++).
For work? Use a library!
For fun? Good for you :)
Write a program to imitate what you would do with pencil and paper. Start with 1 digit, then 2 digits, then 3, ..., ...
Don't worry about Newton or anybody else. Just do it your way.
Here is a short version for calculating the square root of an integer a to digits of precision. It works by finding the integer square root of a after multiplying by 10 raised to the 2 x digits.
def sqroot(a, digits):
a = a * (10**(2*digits))
x_prev = 0
x_next = 1 * (10**digits)
while x_prev != x_next:
x_prev = x_next
x_next = (x_prev + (a // x_prev)) >> 1
return x_next
Just a few caveats.
You'll need to convert the result to a string and add the decimal point at the correct location (if you want the decimal point printed).
Converting a very large integer to a string isn't very fast.
Dividing very large integers isn't very fast (in Python) either.
Depending on the performance of your system, it may take an hour or longer to calculate the square root of 2 to 3 million decimal places.
I haven't proven the loop will always terminate. It may oscillate between two values differing in the last digit. Or it may not.
The nicest way is probably using the continued fraction expansion [1; 2, 2, ...] the square root of two.
def root_two_cf_expansion():
yield 1
while True:
yield 2
def z(a,b,c,d, contfrac):
for x in contfrac:
while a > 0 and b > 0 and c > 0 and d > 0:
t = a // c
t2 = b // d
if not t == t2:
break
yield t
a = (10 * (a - c*t))
b = (10 * (b - d*t))
# continue with same fraction, don't pull new x
a, b = x*a+b, a
c, d = x*c+d, c
for digit in rdigits(a, c):
yield digit
def rdigits(p, q):
while p > 0:
if p > q:
d = p // q
p = p - q * d
else:
d = (10 * p) // q
p = 10 * p - q * d
yield d
def decimal(contfrac):
return z(1,0,0,1,contfrac)
decimal((root_two_cf_expansion()) returns an iterator of all the decimal digits. t1 and t2 in the algorithm are minimum and maximum values of the next digit. When they are equal, we output that digit.
Note that this does not handle certain exceptional cases such as negative numbers in the continued fraction.
(This code is an adaptation of Haskell code for handling continued fractions that has been floating around.)
Well, the following is the code that I wrote. It generated a million digits after the decimal for the square root of 2 in about 60800 seconds for me, but my laptop was sleeping when it was running the program, it should be faster that. You can try to generate 3 million digits, but it might take a couple days to get it.
def sqrt(number,digits_after_decimal=20):
import time
start=time.time()
original_number=number
number=str(number)
list=[]
for a in range(len(number)):
if number[a]=='.':
decimal_point_locaiton=a
break
if a==len(number)-1:
number+='.'
decimal_point_locaiton=a+1
if decimal_point_locaiton/2!=round(decimal_point_locaiton/2):
number='0'+number
decimal_point_locaiton+=1
if len(number)/2!=round(len(number)/2):
number+='0'
number=number[:decimal_point_locaiton]+number[decimal_point_locaiton+1:]
decimal_point_ans=int((decimal_point_locaiton-2)/2)+1
for a in range(0,len(number),2):
if number[a]!='0':
list.append(eval(number[a:a+2]))
else:
try:
list.append(eval(number[a+1]))
except IndexError:
pass
p=0
c=list[0]
x=0
ans=''
for a in range(len(list)):
while c>=(20*p+x)*(x):
x+=1
y=(20*p+x-1)*(x-1)
p=p*10+x-1
ans+=str(x-1)
c-=y
try:
c=c*100+list[a+1]
except IndexError:
c=c*100
while c!=0:
x=0
while c>=(20*p+x)*(x):
x+=1
y=(20*p+x-1)*(x-1)
p=p*10+x-1
ans+=str(x-1)
c-=y
c=c*100
if len(ans)-decimal_point_ans>=digits_after_decimal:
break
ans=ans[:decimal_point_ans]+'.'+ans[decimal_point_ans:]
total=time.time()-start
return ans,total
Python already supports big integers out of the box, and if that's the only thing holding you back in C/C++ you can always write a quick container class yourself.
The only problem you've mentioned is a lack of big integers. If you don't want to use a library for that, then are you looking for help writing such a class?
Here's a more efficient integer square root function (in Python 3.x) that should terminate in all cases. It starts with a number much closer to the square root, so it takes fewer steps. Note that int.bit_length requires Python 3.1+. Error checking left out for brevity.
def isqrt(n):
x = (n >> n.bit_length() // 2) + 1
result = (x + n // x) // 2
while abs(result - x) > 1:
x = result
result = (x + n // x) // 2
while result * result > n:
result -= 1
return result