I'm making mistakes dividing large numbers - python

I am trying to write a program in python 2.7 that will first see if a number divides the other evenly, and if it does get the result of the division.
However, I am getting some interesting results when I use large numbers.
Currently I am using:
from __future__ import division
import math
a=82348972389472433334783
b=2
if a/b==math.trunc(a/b):
answer=a/b
print 'True' #to quickly see if the if loop was invoked
When I run this I get:
True
But 82348972389472433334783 is clearly not even.
Any help would be appreciated.

That's a crazy way to do it. Just use the remainder operator.
if a % b == 0:
# then b divides a evenly
quotient = a // b

The true division implicitly converts the input to floats which don't provide the precision to store the value of a accurately. E.g. on my machine
>>> int(1E15+1)
1000000000000001
>>> int(1E16+1)
10000000000000000
hence you loose precision. A similar thing happens with your big number (compare int(float(a))-a).
Now, if you check your division, you see the result "is" actually found to be an integer
>>> (a/b).is_integer()
True
which is again not really expected beforehand.
The math.trunc function does something similar (from the docs):
Return the Real value x truncated to an Integral (usually a long integer).
The duck typing nature of python allows a comparison of the long integer and float, see
Checking if float is equivalent to an integer value in python and
Comparing a float and an int in Python.

Why don't you use the modulus operator instead to check if a number can be divided evenly?
n % x == 0

Related

Python why is 10e26 != 10**26 ? (Floating point inaccuracy?)

I was trying to process some rather large numbers in python and came across an overflow error. I decided to investigate a little bit more and came across an inequality I cannot explain.
When I evaluate 10^26 I get:
>>> 10**26
100000000000000000000000000
Which is perfectly logical. However when I evaluate 10e26 and convert it to an int I get:
>>>int(10e26)
1000000000000000013287555072
Why is this?
Do I not understand the e notation properly? (From what I know 10e26 is 10*10^26 as seen in this answer: 10e notation used with variables?)
10^26 is way past the max integer size so I was also wondering if there was any mechanism in python which could allow to work with numbers in scientific format (not considering all those zeros) in order to be able to compute operations with numbers past the max size.
The short answer is that 10e26 and 10**26 do not represent identical values.
10**26, with both operands being int values, evaluates to an int. As int represents integers with arbitrary precision, its value is exactly 1026 as intended.
10e26, on the other hand, is a float literal, and as such the resulting value is subject to the limited precision of the float type on your machine. The result of int(10e26) is the integer value of the float closest to the real number 1027.
10e26 represents ten times ten to the power of 26, which is 1027.
10**26 represents represents ten to the power of 26, 1026.
Obviously, these are different, so 10e26 == 10**26 is false.
However, if we correct the mistake so we compare 1e26 and 10**26 by evaluating 1e26 == 10**26, we get false for a different reason:
1e26 is evaluated in a limited-precision floating-point format, producing 100000000000000004764729344 in most implementations. (Python is not strict about the floating-point format.) 100000000000000004764729344 is the closest one can get to 1026 using 53 significant bits.
10**26 is evaluated with integer arithmetic, producing 100000000000000000000000000.
Comparing them reports they are different.
(I am uncertain of Python semantics, but I presume it converts the floating-point value to an extended-precision integer for the comparison. If we instead convert the integer to floating-point, with float(10**26) == 1e26, the conversion of 100000000000000000000000000 to float produces the same value, 100000000000000004764729344, and the comparison returns true.)

Why is math.sqrt() incorrect for large numbers?

Why does the math module return the wrong result?
First test
A = 12345678917
print 'A =',A
B = sqrt(A**2)
print 'B =',int(B)
Result
A = 12345678917
B = 12345678917
Here, the result is correct.
Second test
A = 123456758365483459347856
print 'A =',A
B = sqrt(A**2)
print 'B =',int(B)
Result
A = 123456758365483459347856
B = 123456758365483467538432
Here the result is incorrect.
Why is that the case?
Because math.sqrt(..) first casts the number to a floating point and floating points have a limited mantissa: it can only represent part of the number correctly. So float(A**2) is not equal to A**2. Next it calculates the math.sqrt which is also approximately correct.
Most functions working with floating points will never be fully correct to their integer counterparts. Floating point calculations are almost inherently approximative.
If one calculates A**2 one gets:
>>> 12345678917**2
152415787921658292889L
Now if one converts it to a float(..), one gets:
>>> float(12345678917**2)
1.5241578792165828e+20
But if you now ask whether the two are equal:
>>> float(12345678917**2) == 12345678917**2
False
So information has been lost while converting it to a float.
You can read more about how floats work and why these are approximative in the Wikipedia article about IEEE-754, the formal definition on how floating points work.
The documentation for the math module states "It provides access to the mathematical functions defined by the C standard." It also states "Except when explicitly noted otherwise, all return values are floats."
Those together mean that the parameter to the square root function is a float value. In most systems that means a floating point value that fits into 8 bytes, which is called "double" in the C language. Your code converts your integer value into such a value before calculating the square root, then returns such a value.
However, the 8-byte floating point value can store at most 15 to 17 significant decimal digits. That is what you are getting in your results.
If you want better precision in your square roots, use a function that is guaranteed to give full precision for an integer argument. Just do a web search and you will find several. Those usually do a variation of the Newton-Raphson method to iterate and eventually end at the correct answer. Be aware that this is significantly slower that the math module's sqrt function.
Here is a routine that I modified from the internet. I can't cite the source right now. This version also works for non-integer arguments but just returns the integer part of the square root.
def isqrt(x):
"""Return the integer part of the square root of x, even for very
large values."""
if x < 0:
raise ValueError('square root not defined for negative numbers')
n = int(x)
if n == 0:
return 0
a, b = divmod(n.bit_length(), 2)
x = (1 << (a+b)) - 1
while True:
y = (x + n//x) // 2
if y >= x:
return x
x = y
If you want to calculate sqrt of really large numbers and you need exact results, you can use sympy:
import sympy
num = sympy.Integer(123456758365483459347856)
print(int(num) == int(sympy.sqrt(num**2)))
The way floating-point numbers are stored in memory makes calculations with them prone to slight errors that can nevertheless be significant when exact results are needed. As mentioned in one of the comments, the decimal library can help you here:
>>> A = Decimal(12345678917)
>>> A
Decimal('123456758365483459347856')
>>> B = A.sqrt()**2
>>> B
Decimal('123456758365483459347856.0000')
>>> A == B
True
>>> int(B)
123456758365483459347856
I use version 3.6, which has no hardcoded limit on the size of integers. I don't know if, in 2.7, casting B as an int would cause overflow, but decimal is incredibly useful regardless.

Converting An "Infinite" Float To An Int [duplicate]

This question already has answers here:
Integer square root in python
(14 answers)
Closed 8 years ago.
I'm trying to check if a number is a perfect square. However, i am dealing with extraordinarily large numbers so python thinks its infinity for some reason. it gets up to 1.1 X 10^154 before the code returns "Inf". Is there anyway to get around this? Here is the code, the lst variable just holds a bunch of really really really really really big numbers
import math
from decimal import Decimal
def main():
for i in lst:
root = math.sqrt(Decimal(i))
print(root)
if int(root + 0.5) ** 2 == i:
print(str(i) + " True")
Replace math.sqrt(Decimal(i)) with Decimal(i).sqrt() to prevent your Decimals decaying into floats
I think that you need to take a look at the BigFloat module, e.g.:
import bigfloat as bf
b = bf.BigFloat('1e1000', bf.precision(21))
print bf.sqrt(b)
Prints BigFloat.exact('9.9999993810013282e+499', precision=53)
#casevh has the right answer -- use a library that can do math on arbitrarily large integers. Since you're looking for squares, you presumably are working with integers, and one could argue that using floating point types (including decimal.Decimal) is, in some sense, inelegant.
You definitely shouldn't use Python's float type; it has limited precision (about 16 decimal places). If you do use decimal.Decimal, be careful to specify the precision (which will depend on how big your numbers are).
Since Python has a big integer type, one can write a reasonably simple algorithm to check for squareness; see my implementation of such an algorithm, along with illustrations of problems with float, and how you could use decimal.Decimal, below.
import math
import decimal
def makendigit(n):
"""Return an arbitraryish n-digit number"""
return sum((j%9+1)*10**i for i,j in enumerate(range(n)))
x=makendigit(30)
# it looks like float will work...
print 'math.sqrt(x*x) - x: %.17g' % (math.sqrt(x*x) - x)
# ...but actually they won't
print 'math.sqrt(x*x+1) - x: %.17g' % (math.sqrt(x*x+1) - x)
# by default Decimal won't be sufficient...
print 'decimal.Decimal(x*x).sqrt() - x:',decimal.Decimal(x*x).sqrt() - x
# ...you need to specify the precision
print 'decimal.Decimal(x*x).sqrt(decimal.Context(prec=30)) - x:',decimal.Decimal(x*x).sqrt(decimal.Context(prec=100)) - x
def issquare_decimal(y,prec=1000):
x=decimal.Decimal(y).sqrt(decimal.Context(prec=prec))
return x==x.to_integral_value()
print 'issquare_decimal(x*x):',issquare_decimal(x*x)
print 'issquare_decimal(x*x+1):',issquare_decimal(x*x+1)
# you can check for "squareness" without going to floating point.
# one option is a bisection search; this Newton's method approach
# should be faster.
# For "industrial use" you should use gmpy2 or some similar "big
# integer" library.
def isqrt(y):
"""Find largest integer <= sqrt(y)"""
if not isinstance(y,(int,long)):
raise ValueError('arg must be an integer')
if y<0:
raise ValueError('arg must be positive')
if y in (0,1):
return y
x0=y//2
while True:
# newton's rule
x1= (x0**2+y)//2//x0
# we don't always get converge to x0=x1, e.g., for y=3
if abs(x1-x0)<=1:
# nearly converged; find biggest
# integer satisfying our condition
x=max(x0,x1)
if x**2>y:
while x**2>y:
x-=1
else:
while (x+1)**2<=y:
x+=1
return x
x0=x1
def issquare(y):
"""Return true if non-negative integer y is a perfect square"""
return y==isqrt(y)**2
print 'isqrt(x*x)-x:',isqrt(x*x)-x
print 'issquare(x*x):',issquare(x*x)
print 'issquare(x*x+1):',issquare(x*x+1)
math.sqrt() converts the argument to a Python float which has a maximum value around 10^308.
You should probably look at using the gmpy2 library. gmpy2 provide very fast multiple precision arithmetic.
If you want to check for arbitrary powers, the function gmpy2.is_power() will return True if a number is a perfect power. It may be a cube or fifth power so you will need to check for power you are interested in.
>>> gmpy2.is_power(456789**372)
True
You can use gmpy2.isqrt_rem() to check if it is an exact square.
>>> gmpy2.isqrt_rem(9)
(mpz(3), mpz(0))
>>> gmpy2.isqrt_rem(10)
(mpz(3), mpz(1))
You can use gmpy2.iroot_rem() to check for arbitrary powers.
>>> gmpy2.iroot_rem(13**7 + 1, 7)
(mpz(13), mpz(1))

How to convert a generic float value into a corresponding integer?

I need to use a module that does some math on integers, however my input is in floats.
What I want to achieve is to convert a generic float value into a corresponding integer value and loose as little data as possible.
For example:
val : 1.28827339907e-08
result : 128827339906934
Which is achieved after multiplying by 1e22.
Unfortunately the range of values can change, so I cannot always multiply them by the same constant. Any ideas?
ADDED
To put it in other words, I have a matrix of values < 1, let's say from 1.323224e-8 to 3.457782e-6.
I want to convert them all into integers and loose as little data as possible.
The answers that suggest multiplying by a power of ten cause unnecessary rounding.
Multiplication by a power of the base used in the floating-point representation has no error in IEEE 754 arithmetic (the most common floating-point implementation) as long as there is no overflow or underflow.
Thus, for binary floating-point, you may be able to achieve your goal by multiplying the floating-point number by a power of two and rounding the result to the nearest integer. The multiplication will have no error. The rounding to integer may have an error up to .5, obviously.
You might select a power of two that is as large as possible without causing any of your numbers to exceed the bounds of the integer type you are using.
The most common conversion of floating-point to integer truncates, so that 3.75 becomes 3. I am not sure about Python semantics. To round instead of truncating, you might use a function such as round before converting to integer.
If you want to preserve the values for operations on matrices I would choose some value to multiply them all by.
For Example:
1.23423
2.32423
4.2324534
Multiply them all by 10000000 and you get
12342300
23242300
42324534
You can perform you multiplications, additions etc with your matrices. Once you have performed all your calculations you can convert them back to floats by dividing them all by the appropriate value depending on the operation you performed.
Mathematically it makes sense because
(Scalar multiplication)
M1` = M1 * 10000000
M2` = M2 * 10000000
Result = M1`.M2`
Result = (M1 x 10000000).(M2 x 10000000)
Result = (10000000 x 10000000) x (M1.M2)
So in the case of multiplication you would divide your result by 10000000 x 10000000.
If its addition / subtraction then you simply divide by 10000000.
You can either choose the value to multiply by through your knowledge of what decimals you expect to find or by scanning the floats and generating the value yourself at runtime.
Hope that helps.
EDIT: If you are worried about going over the maximum capacity of integers - then you would be happy to know that python automatically (and silently) converts integers to longs when it notices overflow is going to occur. You can see for yourself in a python console:
>>> i = 3423
>>> type(i)
<type 'int'>
>>> i *= 100000
>>> type(i)
<type 'int'>
>>> i *= 100000
>>> type(i)
<type 'long'>
If you are still worried about overflow, you can always choose a lower constant with a compromise for slightly less accuracy (since you will be losing some digits towards then end of the decimal point).
Also, the method proposed by Eric Postpischil seems to make sense - but I have not tried it out myself. I gave you a solution from a more mathematical perspective which also seems to be more "pythonic"
Perhaps consider counting the number of places after the decimal for each value to determine the value (x) of your exponent (1ex). Roughly something like what's addressed here. Cheers!
Here's one solution:
def to_int(val):
return int(repr(val).replace('.', '').split('e')[0])
Usage:
>>> to_int(1.28827339907e-08)
128827339907

Formatting a string to microseconds

Looking to format a output to show a very small number..
a= 6500
b= 3600
c=.000900
d= int((b/a)-c)
print d
Answer comes out to be zero, but looking for the .###### numbers after the .
sorry try this
Looks like you got bitten by integer division in python 2.x.
>>> a= 6500
>>> b= 3600
>>> c=.000900
>>> from __future__ import division
>>> print b/a - c
0.552946153846
There may be two issues with your calculation:
If you're using Python 2, division using / between two integers will always be an integer also. This will discard the fractional part of the calculation, which can be unexpected. One fix for this is to force one of the values to be a float value (e.g. float(b)/a). An alternative is to put at the top of your file from __future__ import division, which tells Python to use the Python 3 semantics for division (you'll only get an integer from integer division if the result is an exact integer).
The second issue seems to be about formatting a floating point value. First you seem to want only the fractional part of the value (not the integer part). Usually the best option is to simply subtract the integer part of the value:
d = someFloatingPointValue()
d_frac = d - int(d)
Next, to get a string to output (where you want several decimal places, but not a huge number of them), you probably want to explore Python's string formatting operations:
d = someFloatingPointValue()
d_to4decimalPlaces = "{:.4f}".format(d)

Categories