Two Y axis Bar plot: custom xticks - python

I am trying to add custom xticks to a relatively complicated bar graph plot and I am stuck.
I am plotting from two data frames, merged_90 and merged_15:
merged_15
Volume y_err_x Area_2D y_err_y
TripDate
2015-09-22 1663.016032 199.507503 1581.591701 163.473202
merged_90
Volume y_err_x Area_2D y_err_y
TripDate
1990-06-10 1096.530711 197.377497 1531.651913 205.197493
I want to create a bar graph with two axes (i.e. Area_2D and Volume) where the Area_2D and Volume bars are grouped based on their respective data frame. An example script would look like:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy
fig = plt.figure()
ax1 = fig.add_subplot(111)
merged_90.Volume.plot(ax=ax1, color='orange', kind='bar',position=2.5, yerr=merged_90['y_err_x'] ,use_index=False , width=0.1)
merged_15.Volume.plot(ax=ax1, color='red', kind='bar',position=0.9, yerr=merged_15['y_err_x'] ,use_index=False, width=0.1)
ax2 = ax1.twinx()
merged_90.Area_2D.plot(ax=ax2,color='green', kind='bar',position=3.5, yerr=merged_90['y_err_y'],use_index=False, width=0.1)
merged_15.Area_2D.plot(ax=ax2,color='blue', kind='bar',position=0, yerr=merged_15['y_err_y'],use_index=False, width=0.1)
ax1.set_xlim(-0.5,0.2)
x = scipy.arange(1)
ax2.set_xticks(x)
ax2.set_xticklabels(['2015'])
plt.tight_layout()
plt.show()
The resulting plot is:
One would think I could change:
x = scipy.arange(1)
ax2.set_xticks(x)
ax2.set_xticklabels(['2015'])
to
x = scipy.arange(2)
ax2.set_xticks(x)
ax2.set_xticklabels(['1990','2015'])
but that results in:
I would like to see the ticks ordered in chronological order (i.e. 1990,2015)
Thanks!

Have you considered dropping the second axis and plotting them as follows:
ind = np.array([0,0.3])
width = 0.1
fig, ax = plt.subplots()
Rects1 = ax.bar(ind, [merged_90.Volume.values, merged_15.Volume.values], color=['orange', 'red'] ,width=width)
Rects2 = ax.bar(ind + width, [merged_90.Area_2D.values, merged_15.Area_2D.values], color=['green', 'blue'] ,width=width)
ax.set_xticks([.1,.4])
ax.set_xticklabels(('1990','2015'))
This produces:
I omitted the error and colors but you can easily add them. That would produce a readable graph given your test data. As you mentioned in comments you would still rather have two axes, presumably for different data with proper scales. To do this you could do:
fig = plt.figure()
ax1 = fig.add_subplot(111)
merged_90.Volume.plot(ax=ax, color='orange', kind='bar',position=2.5, use_index=False , width=0.1)
merged_15.Volume.plot(ax=ax, color='red', kind='bar',position=1.0, use_index=False, width=0.1)
ax2 = ax1.twinx()
merged_90.Area_2D.plot(ax=ax,color='green', kind='bar',position=3.5,use_index=False, width=0.1)
merged_15.Area_2D.plot(ax=ax,color='blue', kind='bar',position=0,use_index=False, width=0.1)
ax1.set_xlim([-.45, .2])
ax2.set_xlim(-.45, .2])
ax1.set_xticks([-.35, 0])
ax1.set_xticklabels([1990, 2015])
This produces:
Your problem was with resetting just one axis limit and not the other, they are created as twins but do not necessarily follow the changes made to one another.

Related

Ticks and Labels on Twin Axes

How can I set the labels on the extra axes?
The ticks and labels should be the same on all 4 axes. I'm doing something wrong... Thanks!
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = True
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
plt.show()
# create reusable ticks and labels
ticks = [0,1/2,3.14159/4,3.14159/2,1]
labels = [r"$0$", r"$\displaystyle\frac{1}{2}$", r"$\displaystyle\frac{\pi}{4}$", r"$\displaystyle\frac{\pi}{2}$", r"$1$"]
# Version 1: twinx() + xaxis.set_ticks()
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.xaxis.set_ticks(ticks, labels=labels)
ax1.yaxis.set_ticks(ticks, labels=labels)
ax2.xaxis.set_ticks(ticks, labels=labels)
ax3.yaxis.set_ticks(ticks, labels=labels)
plt.show()
# Version 2: twinx() + set_xticklabels)()
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.set_xticks(ticks)
ax1.set_xticklabels(labels)
ax1.set_yticks(ticks)
ax1.set_yticklabels(labels)
ax2.set_xticks(ticks)
ax2.set_xticklabels(labels)
ax3.set_yticks(ticks)
ax3.set_yticklabels(labels)
plt.show()
Confused: How come ax1 has both xaxis and yaxis, while ax2, ax3 do not appear to?
A unintuitive solution based on matplotlib.axes.Axes.twinx:
Create a new Axes with an invisible x-axis and an independent y-axis
positioned opposite to the original one (i.e. at right).
This means unintuitively (at least for me) you have to switch x/y at the .twin call.
unintuitively not concerning the general matplotlib twinx functionality, but concerning such a manual ticks and label assignment
To highlight that a bit more I used ax2_x and ax3_y in the code.
Disclaimer: Not sure if that will break your plot intention when data is added.
Probably at least you have to take special care with the data assignment to those twin axes - keeping that "axis switch" in mind.
Also keep that axis switch" in mind when assigning different ticks and labels to the x/y axis.
But for now I think that's the plot you were looking for:
Code:
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = True
# create reusable ticks and labels
ticks = [0,1/2,3.14159/4,3.14159/2,1]
labels = [r"$0$", r"$\displaystyle\frac{1}{2}$", r"$\displaystyle\frac{\pi}{4}$", r"$\displaystyle\frac{\pi}{2}$", r"$1$"]
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax1.xaxis.set_ticks(ticks, labels=labels)
ax1.yaxis.set_ticks(ticks, labels=labels)
ax2_x = ax1.twiny() # switch
ax3_y = ax1.twinx() # switch
ax2_x.xaxis.set_ticks(ticks, labels=labels)
ax3_y.yaxis.set_ticks(ticks, labels=labels)
plt.show()
Or switch the x/yaxis.set_ticks - with the same effect:
On second thought, I assume that's the preferred way to do it, especially when data comes into play.
ax2_x = ax1.twinx()
ax3_y = ax1.twiny()
ax2_x.yaxis.set_ticks(ticks, labels=labels) # switch
ax3_y.xaxis.set_ticks(ticks, labels=labels) # switch
In case you don't intend to use the twin axis functionality (that means having different data with different scaling assigned to those axis) but 'only' want the ticks and labels on all 4 axis for better plot readability:
Solution based on answer of ImportanceOfBeingErnest with the same plot result:
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = True
# create reusable ticks and labels
ticks = [0,1/2,3.14159/4,3.14159/2,1]
labels = [r"$0$", r"$\displaystyle\frac{1}{2}$", r"$\displaystyle\frac{\pi}{4}$", r"$\displaystyle\frac{\pi}{2}$", r"$1$"]
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax1.xaxis.set_ticks(ticks, labels=labels)
ax1.yaxis.set_ticks(ticks, labels=labels)
ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True, labeltop=True)
ax1.tick_params(axis="y", left=True, right=True, labelleft=True, labelright=True)
plt.show()
ax2 = ax1.twinx() shares the x-axis with ax1.
ax3 = ax1.twiny() shares the y-axis with ax1.
As a result, the two lines where you set ax2.xaxis and ax3.yaxis's ticks and ticklabels are redundant with the changes you already applied on ax1.
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = False # My computer doesn't have LaTeX, don't mind me.
# Create reusable ticks and labels.
ticks = [0, 1/2, 3.14159/4, 3.14159/2, 1]
labels = [r"$0$", r"$\frac{1}{2}$", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$1$"]
# Set the ticks and ticklabels for each axis.
fig = plt.figure(figsize=(5,5))
ax1 = fig.add_subplot()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
for axis in (ax1.xaxis,
ax1.yaxis,
ax2.yaxis,
ax3.xaxis):
axis.set_ticks(ticks)
axis.set_ticklabels(labels)
fig.show()
Notice that if I comment out the work on ax2 and ax3, we get exactly what you have in your question:
for axis in (ax1.xaxis, ax1.yaxis,
# ax2.yaxis,
# ax3.xaxis,
):
axis.set_ticks(ticks)
axis.set_ticklabels(labels)
Now let's ruin ax1 via modifications on ax2, just to show that the bound between twins works well:
ax2.xaxis.set_ticks(range(10))
ax2.xaxis.set_ticklabels(tuple("abcdefghij"))

How to plot a paired histogram using seaborn

I would like to make a paired histogram like the one shown here using the seaborn distplot.
This kind of plot can also be referred to as the back-to-back histogram shown here, or a bihistogram inverted/mirrored along the x-axis as discussed here.
Here is my code:
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
green = np.random.normal(20,10,1000)
blue = np.random.poisson(60,1000)
fig, ax = plt.subplots(figsize=(8,6))
sns.distplot(blue, hist=True, kde=True, hist_kws={'edgecolor':'black'}, kde_kws={'linewidth':2}, bins=10, color='blue')
sns.distplot(green, hist=True, kde=True, hist_kws={'edgecolor':'black'}, kde_kws={'linewidth':2}, bins=10, color='green')
ax.set_xticks(np.arange(-20,121,20))
ax.set_yticks(np.arange(0.0,0.07,0.01))
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.show()
Here is the output:
When I use the method discussed here (plt.barh), I get the bar plot shown just below, which is not what I am looking for.
Or maybe I haven't understood the workaround well enough...
A simple/short implementation of python-seaborn-distplot similar to these kinds of plots would be perfect. I edited the figure of my first plot above to show the kind of plot I hope to achieve (though y-axis not upside down):
Any leads would be greatly appreciated.
You could use two subplots and invert the y-axis of the lower one and plot with the same bins.
df = pd.DataFrame({'a': np.random.normal(0,5,1000), 'b': np.random.normal(20,5,1000)})
fig =plt.figure(figsize=(5,5))
ax = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
bins = np.arange(-20,40)
ax.hist(df['a'], bins=bins)
ax2.hist(df['b'],color='orange', bins=bins)
ax2.invert_yaxis()
edit:
improvements suggested by #mwaskom
fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(5,5))
bins = np.arange(-20,40)
for ax, column, color, invert in zip(axes.ravel(), df.columns, ['teal', 'orange'], [False,True]):
ax.hist(df[column], bins=bins, color=color)
if invert:
ax.invert_yaxis()
plt.subplots_adjust(hspace=0)
Here is a possible approach using seaborn's displots.
Seaborn doesn't return the created graphical elements, but the ax can be interrogated. To make sure the ax only contains the elements you want upside down, those elements can be drawn first. Then, all the patches (the rectangular bars) and the lines (the curve for the kde) can be given their height in negative. Optionally the x-axis can be set at y == 0 using ax.spines['bottom'].set_position('zero').
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
green = np.random.normal(20, 10, 1000)
blue = np.random.poisson(60, 1000)
fig, ax = plt.subplots(figsize=(8, 6))
sns.distplot(green, hist=True, kde=True, hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2}, bins=10,
color='green')
for p in ax.patches: # turn the histogram upside down
p.set_height(-p.get_height())
for l in ax.lines: # turn the kde curve upside down
l.set_ydata(-l.get_ydata())
sns.distplot(blue, hist=True, kde=True, hist_kws={'edgecolor': 'black'}, kde_kws={'linewidth': 2}, bins=10,
color='blue')
ax.set_xticks(np.arange(-20, 121, 20))
ax.set_yticks(np.arange(0.0, 0.07, 0.01))
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
pos_ticks = np.array([t for t in ax.get_yticks() if t > 0])
ticks = np.concatenate([-pos_ticks[::-1], [0], pos_ticks])
ax.set_yticks(ticks)
ax.set_yticklabels([f'{abs(t):.2f}' for t in ticks])
ax.spines['bottom'].set_position('zero')
plt.show()

Python - dual y axis chart, align zero

I'm trying to create a horizontal bar chart, with dual x axes. The 2 axes are very different in scale, 1 set goes from something like -5 to 15 (positive and negative value), the other set is more like 100 to 500 (all positive values).
When I plot this, I'd like to align the 2 axes so zero shows at the same position, and only the negative values are to the left of this. Currently the set with all positive values starts at the far left, and the set with positive and negative starts in the middle of the overall plot.
I found the align_yaxis example, but I'm struggling to align the x axes.
Matplotlib bar charts: Aligning two different y axes to zero
Here is an example of what I'm working on with simple test data. Any ideas/suggestions? thanks
import pandas as pd
import matplotlib.pyplot as plt
d = {'col1':['Test 1','Test 2','Test 3','Test 4'],'col 2':[1.4,-3,1.3,5],'Col3':[900,750,878,920]}
df = pd.DataFrame(data=d)
fig = plt.figure() # Create matplotlib figure
ax = fig.add_subplot(111) # Create matplotlib axes
ax2 = ax.twiny() # Create another axes that shares the same y-axis as ax.
width = 0.4
df['col 2'].plot(kind='barh', color='darkblue', ax=ax, width=width, position=1,fontsize =4, figsize=(3.0, 5.0))
df['Col3'].plot(kind='barh', color='orange', ax=ax2, width=width, position=0, fontsize =4, figsize=(3.0, 5.0))
ax.set_yticklabels(df.col1)
ax.set_xlabel('Positive and Neg',color='darkblue')
ax2.set_xlabel('Positive Only',color='orange')
ax.invert_yaxis()
plt.show()
I followed the link from a question and eventually ended up at this answer : https://stackoverflow.com/a/10482477/5907969
The answer has a function to align the y-axes and I have modified the same to align x-axes as follows:
def align_xaxis(ax1, v1, ax2, v2):
"""adjust ax2 xlimit so that v2 in ax2 is aligned to v1 in ax1"""
x1, _ = ax1.transData.transform((v1, 0))
x2, _ = ax2.transData.transform((v2, 0))
inv = ax2.transData.inverted()
dx, _ = inv.transform((0, 0)) - inv.transform((x1-x2, 0))
minx, maxx = ax2.get_xlim()
ax2.set_xlim(minx+dx, maxx+dx)
And then use it within the code as follows:
import pandas as pd
import matplotlib.pyplot as plt
d = {'col1':['Test 1','Test 2','Test 3','Test 4'],'col 2' [1.4,-3,1.3,5],'Col3':[900,750,878,920]}
df = pd.DataFrame(data=d)
fig = plt.figure() # Create matplotlib figure
ax = fig.add_subplot(111) # Create matplotlib axes
ax2 = ax.twiny() # Create another axes that shares the same y-axis as ax.
width = 0.4
df['col 2'].plot(kind='barh', color='darkblue', ax=ax, width=width, position=1,fontsize =4, figsize=(3.0, 5.0))
df['Col3'].plot(kind='barh', color='orange', ax=ax2, width=width, position=0, fontsize =4, figsize=(3.0, 5.0))
ax.set_yticklabels(df.col1)
ax.set_xlabel('Positive and Neg',color='darkblue')
ax2.set_xlabel('Positive Only',color='orange')
align_xaxis(ax,0,ax2,0)
ax.invert_yaxis()
plt.show()
This will give you what you're looking for

Z-order across axes when using matplotlib's twinx [duplicate]

In pyplot, you can change the order of different graphs using the zorder option or by changing the order of the plot() commands. However, when you add an alternative axis via ax2 = twinx(), the new axis will always overlay the old axis (as described in the documentation).
Is it possible to change the order of the axis to move the alternative (twinned) y-axis to background?
In the example below, I would like to display the blue line on top of the histogram:
import numpy as np
import matplotlib.pyplot as plt
import random
# Data
x = np.arange(-3.0, 3.01, 0.1)
y = np.power(x,2)
y2 = 1/np.sqrt(2*np.pi) * np.exp(-y/2)
data = [random.gauss(0.0, 1.0) for i in range(1000)]
# Plot figure
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = ax1.twinx()
ax2.hist(data, bins=40, normed=True, color='g',zorder=0)
ax2.plot(x, y2, color='r', linewidth=2, zorder=2)
ax1.plot(x, y, color='b', linewidth=2, zorder=5)
ax1.set_ylabel("Parabola")
ax2.set_ylabel("Normal distribution")
ax1.yaxis.label.set_color('b')
ax2.yaxis.label.set_color('r')
plt.show()
Edit: For some reason, I am unable to upload the image generated by this code. I will try again later.
You can set the zorder of an axes, ax.set_zorder(). One would then need to remove the background of that axes, such that the axes below is still visible.
ax2 = ax1.twinx()
ax1.set_zorder(10)
ax1.patch.set_visible(False)

Merge matplotlib subplots with shared x-axis

I have two graphs to where both have the same x-axis, but with different y-axis scalings.
The plot with regular axes is the data with a trend line depicting a decay while the y semi-log scaling depicts the accuracy of the fit.
fig1 = plt.figure(figsize=(15,6))
ax1 = fig1.add_subplot(111)
# Plot of the decay model
ax1.plot(FreqTime1,DecayCount1, '.', color='mediumaquamarine')
# Plot of the optimized fit
ax1.plot(x1, y1M, '-k', label='Fitting Function: $f(t) = %.3f e^{%.3f\t} \
%+.3f$' % (aR1,kR1,bR1))
ax1.set_xlabel('Time (sec)')
ax1.set_ylabel('Count')
ax1.set_title('Run 1 of Cesium-137 Decay')
# Allows me to change scales
# ax1.set_yscale('log')
ax1.legend(bbox_to_anchor=(1.0, 1.0), prop={'size':15}, fancybox=True, shadow=True)
Now, i'm trying to figure out to implement both close together like the examples supplied by this link
http://matplotlib.org/examples/pylab_examples/subplots_demo.html
In particular, this one
When looking at the code for the example, i'm a bit confused on how to implant 3 things:
1) Scaling the axes differently
2) Keeping the figure size the same for the exponential decay graph but having a the line graph have a smaller y size and same x size.
For example:
3) Keeping the label of the function to appear in just only the decay graph.
Any help would be most appreciated.
Look at the code and comments in it:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import gridspec
# Simple data to display in various forms
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)
fig = plt.figure()
# set height ratios for subplots
gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1])
# the first subplot
ax0 = plt.subplot(gs[0])
# log scale for axis Y of the first subplot
ax0.set_yscale("log")
line0, = ax0.plot(x, y, color='r')
# the second subplot
# shared axis X
ax1 = plt.subplot(gs[1], sharex = ax0)
line1, = ax1.plot(x, y, color='b', linestyle='--')
plt.setp(ax0.get_xticklabels(), visible=False)
# remove last tick label for the second subplot
yticks = ax1.yaxis.get_major_ticks()
yticks[-1].label1.set_visible(False)
# put legend on first subplot
ax0.legend((line0, line1), ('red line', 'blue line'), loc='lower left')
# remove vertical gap between subplots
plt.subplots_adjust(hspace=.0)
plt.show()
Here is my solution:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)
fig, (ax1,ax2) = plt.subplots(nrows=2, sharex=True, subplot_kw=dict(frameon=False)) # frameon=False removes frames
plt.subplots_adjust(hspace=.0)
ax1.grid()
ax2.grid()
ax1.plot(x, y, color='r')
ax2.plot(x, y, color='b', linestyle='--')
One more option is seaborn.FacetGrid but this requires Seaborn and Pandas libraries.
Here are some adaptions to show how the code could work to add a combined legend when plotting a pandas dataframe. ax=ax0 can be used to plot on a given ax and ax0.get_legend_handles_labels() gets the information for the legend.
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
dates = pd.date_range('20210101', periods=100, freq='D')
df0 = pd.DataFrame({'x': np.random.normal(0.1, 1, 100).cumsum(),
'y': np.random.normal(0.3, 1, 100).cumsum()}, index=dates)
df1 = pd.DataFrame({'z': np.random.normal(0.2, 1, 100).cumsum()}, index=dates)
fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, gridspec_kw={'height_ratios': [2, 1], 'hspace': 0})
df0.plot(ax=ax0, color=['dodgerblue', 'crimson'], legend=False)
df1.plot(ax=ax1, color='limegreen', legend=False)
# put legend on first subplot
handles0, labels0 = ax0.get_legend_handles_labels()
handles1, labels1 = ax1.get_legend_handles_labels()
ax0.legend(handles=handles0 + handles1, labels=labels0 + labels1)
# remove last tick label for the second subplot
yticks = ax1.get_yticklabels()
yticks[-1].set_visible(False)
plt.tight_layout()
plt.show()

Categories