Python : Gann square of 9 - python

I want to simulate the Gann's Square of 9 chart in Python.
For people who are not aware of what the chart looks like, click here for a basic idea and enter a value(say, 100) in the current market price blank.
The chart essentially expands as a spiral, starting from the center position. ( A picture of the Gann chart spiral )
My questions regarding this are as follows :
What is the best data structure I should choose to build an expanding spiral? Was thinking of constructing a matrix for it, but how do I regulate the matrix?
How do I search (quickly, preferably without traversing through the entire matrix) for a particular value in the chart? (assuming it is a big chart with about 100 levels in the spiral)
I am stuck at the approach to start coding the chart, so any insight into this would be wonderful.

Gann Square of Any Size
Hopefully this solves your problem
class GannSquare():
"""An container object for Gann Square"""
def __init__(self, size):
""" attributes and method of Gann Square
input parameters: size
output returned: an object along with its attributes
"""
self.size = size
self.even_size = size % 2 == 0
self.odd_size = size % 2 == 1
self.num_elements = size ** 2
self.matrix = self.generate()
self.horizontal_axis = self.get_horizontal_axis()
self.vertical_axis = self.get_vertical_axis()
self.diagonal_1 = self.get_diagonal_1()
self.diagonal_2 = self.get_diagonal_2()
self.diagonal_axis = self.get_diagonal_axis()
def generate(self):
"""
generate a Gann Square based on the input parameter size
"""
from numpy import array
NORTH, SOUTH, EAST, WEST = (0, 1), (0, -1), (1, 0), (-1, 0) # directional vectors
clockwise = {
WEST:NORTH,
NORTH: EAST,
EAST: SOUTH,
SOUTH: WEST
} # clockwise transformation
RIGHT, LEFT = 1, -1
# forward or backward increment
if self.size < 1:
raise ValueError
x, y = self.size // 2, self.size // 2
# the middle of the box
dx, dy = WEST # initial direction
inc = LEFT # backward increment
G = [[None] * self.size for _ in range(self.size)]
count = 0
while True:
count += 1
G[x][y] = count # visit
# follow predefined direction
_dx, _dy = clockwise[dx,dy]
_x, _y = x +inc* _dx, y +inc* _dy
if (0 <= _x < self.size and 0 <= _y < self.size and
G[_x][_y] is None):
# in the box
x, y = _x, _y
dx, dy = _dx, _dy
else: # fill in the box
x, y = x +inc* dx, y +inc* dy
if not (0 <= x < self.size and 0 <= y < self.size):
return array(G) # out of the box
def display_matrix(self):
width = len(str(max(e for row in self.matrix for e in row if e is not None)))
fmt = "{:0%dd}" % width
for row in self.matrix:
print(" ".join("_"*width if e is None else fmt.format(e) for e in row))
def get_horizontal_axis(self):
return self.matrix[:,self.size//2]
def get_vertical_axis(self):
return self.matrix[self.size//2, :]
def get_diagonal_1(self):
diagonal_1 = []
for i in range(self.size):
diagonal_1.append(self.matrix[i,self.size-i-1])
return diagonal_1
def get_diagonal_2(self):
diagonal_2 = []
for i in range(self.size):
diagonal_2.append(self.matrix[i,i])
return diagonal_2
def get_diagonal_axis(self):
from numpy import concatenate
return concatenate((self.diagonal_1, self.diagonal_2))
Example usage:
gs = GannSquare(21)
gs.display_matrix()
Result:
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
380 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 402
379 306 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 326 403
378 305 240 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 258 327 404
377 304 239 182 133 134 135 136 137 138 139 140 141 142 143 144 145 198 259 328 405
376 303 238 181 132 091 092 093 094 095 096 097 098 099 100 101 146 199 260 329 406
375 302 237 180 131 090 057 058 059 060 061 062 063 064 065 102 147 200 261 330 407
374 301 236 179 130 089 056 031 032 033 034 035 036 037 066 103 148 201 262 331 408
373 300 235 178 129 088 055 030 013 014 015 016 017 038 067 104 149 202 263 332 409
372 299 234 177 128 087 054 029 012 003 004 005 018 039 068 105 150 203 264 333 410
371 298 233 176 127 086 053 028 011 002 001 006 019 040 069 106 151 204 265 334 411
370 297 232 175 126 085 052 027 010 009 008 007 020 041 070 107 152 205 266 335 412
369 296 231 174 125 084 051 026 025 024 023 022 021 042 071 108 153 206 267 336 413
368 295 230 173 124 083 050 049 048 047 046 045 044 043 072 109 154 207 268 337 414
367 294 229 172 123 082 081 080 079 078 077 076 075 074 073 110 155 208 269 338 415
366 293 228 171 122 121 120 119 118 117 116 115 114 113 112 111 156 209 270 339 416
365 292 227 170 169 168 167 166 165 164 163 162 161 160 159 158 157 210 271 340 417
364 291 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 272 341 418
363 290 289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 342 419
362 361 360 359 358 357 356 355 354 353 352 351 350 349 348 347 346 345 344 343 420
441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426 425 424 423 422 421
and several other methods
gs.size, gs.num_elements, gs.even_size, gs.odd_size,
gs.horizontal_axis, gs.vertical_axis, gs.diagonal_axis
are self explanatory.
Numpy array is used to store the Gann matrix so that we can use numpy.where whenever we need to search a particular value in it.

Suppose 1 is located (0, 0), the exact position of any given positive integer can be obtained by following function:
import math
def f(num):
n = math.floor(math.sqrt(num)) // 2
if (num <= 4*n*n):
k = num - (2*n-1)**2
if k <= 2*n:
return (- n, k - n + 1)
else:
return (k - 3 * n, n)
else:
k = num - (2*n)**2
if k <= 2*n + 1:
return (n, n - k + 1)
else:
return (3 * n - k + 1, - n)
This is derived from two facts:
number (2*n+1)^2 is always located (-n, -n)
number (2*n)^2 is always located (n-1, n)

Related

finding the size of an array in python

for i in set(data['MovementNumber'].values):
data2 = data.loc[data['MovementNumber'] == i]
x = len(data2)
print(x)
This for loop basically makes a cell array for the 83 trials I have. The issue im having is that when I use len for the cell array. i get the array with the length of the individual arrays. and i get this array:
'''
[957
280
305
217
204
321
228
291
341
245
381
177
284
410
226
279
270
241
302
235
260
218
207
202
261
370
288
210
243
199
282
184
223
191
205
228
244
213
164
230
226
245
197
303
187
239
242
267
250
221
271
218
208
225
248
334
215
462
321
319
346
231
223
293
261
274
181
304
329
295
311
298
303
227
218
245
235
182
215
242
174
261
460]
I want the length of this array but when i try to use len(x) i get the following error
object of type 'int' has no len()
can someone help me with this? Thanks!

Reshaping a 3D array to a 2D array to produce a DataFrame: keep track of indices to produce column names

The following code generates a pandas.DataFrame from a 3D array over the first axis. I manually create the columns names (defining cols): is there a more built-in way to do this (to avoid potential errors e.g. regarding C-order)?
--> I am looking for a way to guarantee the respect of the order of the indices after the reshape operation (here it relies on the correct order of the iterations over range(nrow) and range(ncol)).
import numpy as np
import pandas as pd
nt = 6 ; nrow = 4 ; ncol = 3 ; shp = (nt, nrow, ncol)
np.random.seed(0)
a = np.array(np.random.randint(0, 1000, nt*nrow*ncol)).reshape(shp)
# This is the line I think should be improved --> any numpy function or so?
cols = [str(i) + '-' + str(j) for i in range(nrow) for j in range(ncol)]
adf = pd.DataFrame(a.reshape(nt, -1), columns = cols)
print(adf)
0-0 0-1 0-2 1-0 1-1 1-2 2-0 2-1 2-2 3-0 3-1 3-2
0 684 559 629 192 835 763 707 359 9 723 277 754
1 804 599 70 472 600 396 314 705 486 551 87 174
2 600 849 677 537 845 72 777 916 115 976 755 709
3 847 431 448 850 99 984 177 755 797 659 147 910
4 423 288 961 265 697 639 544 543 714 244 151 675
5 510 459 882 183 28 802 128 128 932 53 901 550
EDIT
Illustrating why I don't like my solution - it is just too easy to make a code which technically works but produce a wrong result (inverting i and j or nrow and ncol):
wrongcols1 = [str(i) + '-' + str(j) for i in range(ncol) for j in range(nrow)]
adf2 = pd.DataFrame(a.reshape(nt, -1), columns=wrongcols1)
print(adf2)
0-0 0-1 0-2 0-3 1-0 1-1 1-2 1-3 2-0 2-1 2-2 2-3
0 684 559 629 192 835 763 707 359 9 723 277 754
1 804 599 70 472 600 396 314 705 486 551 87 174
2 600 849 677 537 845 72 777 916 115 976 755 709
3 847 431 448 850 99 984 177 755 797 659 147 910
4 423 288 961 265 697 639 544 543 714 244 151 675
5 510 459 882 183 28 802 128 128 932 53 901 550
wrongcols2 = [str(j) + '-' + str(i) for i in range(nrow) for j in range(ncol)]
adf3 = pd.DataFrame(a.reshape(nt, -1), columns=wrongcols2)
print(adf3)
0-0 1-0 2-0 0-1 1-1 2-1 0-2 1-2 2-2 0-3 1-3 2-3
0 684 559 629 192 835 763 707 359 9 723 277 754
1 804 599 70 472 600 396 314 705 486 551 87 174
2 600 849 677 537 845 72 777 916 115 976 755 709
3 847 431 448 850 99 984 177 755 797 659 147 910
4 423 288 961 265 697 639 544 543 714 244 151 675
5 510 459 882 183 28 802 128 128 932 53 901 550
Try this and see if it fits your use case:
Generate columns via a combination of np.indices, np.dstack and np.vstack :
columns = np.vstack(np.dstack(np.indices((nrow, ncol))))
array([[0, 0],
[0, 1],
[0, 2],
[1, 0],
[1, 1],
[1, 2],
[2, 0],
[2, 1],
[2, 2],
[3, 0],
[3, 1],
[3, 2]])
Now convert to string via a combination of map, join and list comprehension:
columns = ["-".join(map(str, entry)) for entry in columns]
['0-0',
'0-1',
'0-2',
'1-0',
'1-1',
'1-2',
'2-0',
'2-1',
'2-2',
'3-0',
'3-1',
'3-2']
Let's know how it goes.
You could try to use pd.MultiIndex to construct your hierarchy.
First redefine your cols to a list of tuples:
cols = [(i, j) for i in range(nrow) for j in range(ncol)]
Then construct the multi index with cols:
multi_cols = pd.MultiIndex.from_tuples(cols)
And build the dataframe:
adf = pd.DataFrame(a.reshape(nt, -1), columns=multi_cols)
Result:
0 1 2 3
0 1 2 0 1 2 0 1 2 0 1 2
0 684 559 629 192 835 763 707 359 9 723 277 754
1 804 599 70 472 600 396 314 705 486 551 87 174
2 600 849 677 537 845 72 777 916 115 976 755 709
3 847 431 448 850 99 984 177 755 797 659 147 910
4 423 288 961 265 697 639 544 543 714 244 151 675
5 510 459 882 183 28 802 128 128 932 53 901 550
Access of elements:
print(adf[1][2][0])
>>> 763

make another column in dataframe to filter out the week of the month based on date

I have a code as below:
from datetime import datetime
import random
pd.DataFrame({'date':pd.date_range(datetime.today(), periods=100).tolist(),
'country': random.sample(range(1,101), 100),
'amount': random.sample(range(1,101), 100),
'others': random.sample(range(1,101), 100)})
I wish to have an output such as:
month_week sum(country) sum(amount) sum(other)
4_1
4_2
4_3
4_4
the sum is actually the value sum of the week.
Something like this:
In [713]: df['month_week'] = df['date'].dt.month.map(str) + '_' + df['date'].apply(lambda d: (d.day-1) // 7 + 1).map(str)
In [725]: df.groupby('month_week').sum().reset_index()
Out[725]:
month_week country amount others
0 4_3 377 367 290
1 4_4 315 445 475
2 4_5 128 48 47
3 5_1 395 355 293
4 5_2 382 500 430
5 5_3 286 196 250
6 5_4 291 448 343
7 5_5 151 147 109
8 6_1 434 359 437
9 6_2 371 301 487
10 6_3 303 475 243
11 6_4 327 270 274
12 6_5 174 114 161
13 7_1 432 253 360
14 7_2 272 321 361
15 7_3 353 404 327
16 7_4 59 47 163

ValueError: Data must be positive (boxcox scipy)

I'm trying to transform my dataset to a normal distribution.
0 8.298511e-03
1 3.055319e-01
2 6.938647e-02
3 2.904091e-02
4 7.422441e-02
5 6.074046e-02
6 9.265747e-04
7 7.521846e-02
8 5.960521e-02
9 7.405019e-04
10 3.086551e-02
11 5.444835e-02
12 2.259236e-02
13 4.691038e-02
14 6.463911e-02
15 2.172805e-02
16 8.210005e-02
17 2.301189e-02
18 4.073898e-07
19 4.639910e-02
20 1.662777e-02
21 8.662539e-02
22 4.436425e-02
23 4.557591e-02
24 3.499897e-02
25 2.788340e-02
26 1.707958e-02
27 1.506404e-02
28 3.207647e-02
29 2.147011e-03
30 2.972746e-02
31 1.028140e-01
32 2.183737e-02
33 9.063370e-03
34 3.070437e-02
35 1.477440e-02
36 1.036309e-02
37 2.000609e-01
38 3.366233e-02
39 1.479767e-03
40 1.137169e-02
41 1.957088e-02
42 4.921303e-03
43 4.279257e-02
44 4.363429e-02
45 1.040123e-01
46 2.930958e-02
47 1.935434e-03
48 1.954418e-02
49 2.980253e-02
50 3.643772e-02
51 3.411437e-02
52 4.976063e-02
53 3.704608e-02
54 7.044161e-02
55 8.101365e-03
56 9.310477e-03
57 7.626637e-02
58 8.149728e-03
59 4.157399e-01
60 8.200258e-02
61 2.844295e-02
62 1.046601e-01
63 6.565680e-02
64 9.825436e-04
65 9.353639e-02
66 6.535298e-02
67 6.979044e-04
68 2.772859e-02
69 4.378422e-02
70 2.020185e-02
71 4.774493e-02
72 6.346146e-02
73 2.466264e-02
74 6.636585e-02
75 2.548934e-02
76 1.113937e-06
77 5.723409e-02
78 1.533288e-02
79 1.027341e-01
80 4.294570e-02
81 4.844853e-02
82 5.579620e-02
83 2.531824e-02
84 1.661426e-02
85 1.430836e-02
86 3.157232e-02
87 2.241722e-03
88 2.946256e-02
89 1.038383e-01
90 1.868837e-02
91 8.854596e-03
92 2.391759e-02
93 1.612714e-02
94 1.007823e-02
95 1.975513e-01
96 3.581289e-02
97 1.199747e-03
98 1.263381e-02
99 1.966746e-02
100 4.040786e-03
101 4.497264e-02
102 4.030524e-02
103 8.627087e-02
104 3.248317e-02
105 5.727582e-03
106 1.781355e-02
107 2.377991e-02
108 4.299568e-02
109 3.664353e-02
110 5.167902e-02
111 4.006848e-02
112 7.072990e-02
113 6.744938e-03
114 1.064900e-02
115 9.823497e-02
116 8.992714e-03
117 1.792453e-01
118 6.817763e-02
119 2.588843e-02
120 1.048027e-01
121 6.468491e-02
122 1.035536e-03
123 8.800684e-02
124 5.975065e-02
125 7.365861e-04
126 4.209485e-02
127 4.232421e-02
128 2.371866e-02
129 5.894714e-02
130 7.177195e-02
131 2.116566e-02
132 7.579219e-02
133 3.174744e-02
134 0.000000e+00
135 5.786439e-02
136 1.458493e-02
137 9.820156e-02
138 4.373873e-02
139 4.271649e-02
140 5.532575e-02
141 2.311324e-02
142 1.644508e-02
143 1.328273e-02
144 3.908473e-02
145 2.355468e-03
146 2.519321e-02
147 1.131868e-01
148 1.708967e-02
149 1.027661e-02
150 2.439899e-02
151 1.604058e-02
152 1.134323e-02
153 2.247722e-01
154 3.408590e-02
155 2.222239e-03
156 1.659830e-02
157 2.284733e-02
158 4.618550e-03
159 3.674162e-02
160 4.131283e-02
161 8.846273e-02
162 2.504404e-02
163 6.004396e-03
164 1.986309e-02
165 2.347111e-02
166 3.865636e-02
167 3.672307e-02
168 6.658419e-02
169 3.726879e-02
170 7.600138e-02
171 7.184871e-03
172 1.142840e-02
173 9.741311e-02
174 8.165448e-03
175 1.529210e-01
176 6.648081e-02
177 2.617601e-02
178 9.547816e-02
179 6.857775e-02
180 8.129399e-04
181 7.107914e-02
182 5.884794e-02
183 8.398721e-04
184 6.972981e-02
185 4.461767e-02
186 2.264404e-02
187 5.566633e-02
188 6.595136e-02
189 2.301914e-02
190 7.488919e-02
191 3.108619e-02
192 4.989364e-07
193 4.834949e-02
194 1.422578e-02
195 9.398186e-02
196 4.870391e-02
197 3.841369e-02
198 6.406801e-02
199 2.603315e-02
200 1.692629e-02
201 1.409982e-02
202 4.099215e-02
203 2.093724e-03
204 2.640732e-02
205 1.032129e-01
206 1.581881e-02
207 8.977325e-03
208 1.941141e-02
209 1.502126e-02
210 9.923589e-03
211 2.757357e-01
212 3.096234e-02
213 4.388900e-03
214 1.784778e-02
215 2.179550e-02
216 3.944159e-03
217 3.703552e-02
218 4.033897e-02
219 1.157076e-01
220 2.400446e-02
221 5.761179e-03
222 1.899621e-02
223 2.401468e-02
224 4.458745e-02
225 3.357898e-02
226 5.331003e-02
227 3.488753e-02
228 7.466599e-02
229 6.075236e-03
230 9.815318e-03
231 9.598735e-02
232 7.103607e-03
233 1.100602e-01
234 5.677641e-02
235 2.420500e-02
236 9.213369e-02
237 4.024043e-02
238 6.987694e-04
239 8.612055e-02
240 5.663353e-02
241 4.871693e-04
242 4.533811e-02
243 3.593244e-02
244 1.982537e-02
245 5.490786e-02
246 5.603109e-02
247 1.671653e-02
248 6.522711e-02
249 3.341356e-02
250 2.378629e-06
251 4.299939e-02
252 1.223163e-02
253 8.392798e-02
254 4.272826e-02
255 3.183946e-02
256 4.431299e-02
257 2.661024e-02
258 1.686707e-02
259 4.070924e-03
260 3.325947e-02
261 2.023611e-03
262 2.402284e-02
263 8.369778e-02
264 1.375093e-02
265 8.899898e-03
266 2.148740e-02
267 1.301483e-02
268 8.355791e-03
269 2.549934e-01
270 2.792516e-02
271 4.652563e-03
272 1.556313e-02
273 1.936942e-02
274 3.547794e-03
275 3.412516e-02
276 3.932606e-02
277 5.305868e-02
278 2.354438e-02
279 5.379380e-03
280 1.904203e-02
281 2.045495e-02
282 3.275855e-02
283 3.007389e-02
284 8.227664e-02
285 2.479949e-02
286 6.573835e-02
287 5.165842e-03
288 7.599650e-03
289 9.613557e-02
290 6.690175e-03
291 1.779880e-01
292 5.076263e-02
293 3.117607e-02
294 7.495692e-02
295 3.707768e-02
296 7.086975e-04
297 8.935981e-02
298 5.624249e-02
299 7.105331e-04
300 3.339868e-02
301 3.354603e-02
302 2.041988e-02
303 3.862522e-02
304 5.977081e-02
305 1.730081e-02
306 6.909621e-02
307 3.729478e-02
308 3.940647e-07
309 4.385336e-02
310 1.391891e-02
311 8.898305e-02
312 3.840141e-02
313 3.214408e-02
314 4.284080e-02
315 1.841022e-02
316 1.528207e-02
317 3.106559e-03
318 3.945481e-02
319 2.085094e-03
320 2.464190e-02
321 7.844914e-02
322 1.526590e-02
323 9.922147e-03
324 1.649218e-02
325 1.341602e-02
326 8.124446e-03
327 2.867380e-01
328 2.663867e-02
329 5.342012e-03
330 1.752612e-02
331 2.010863e-02
332 3.581845e-03
333 3.652284e-02
334 4.484362e-02
335 4.600939e-02
336 2.213280e-02
337 5.494917e-03
338 2.016594e-02
339 2.118010e-02
340 2.964000e-02
341 3.405549e-02
342 1.014185e-01
343 2.451624e-02
344 7.966998e-02
345 5.301538e-03
346 8.198895e-03
347 8.789368e-02
348 7.222417e-03
349 1.448276e-01
350 5.676056e-02
351 2.987054e-02
352 6.851434e-02
353 4.193034e-02
354 7.025054e-03
355 8.557358e-02
356 5.812736e-02
357 2.263676e-02
358 2.922588e-02
359 3.363161e-02
360 1.495056e-02
361 5.871619e-02
362 6.235094e-02
363 1.691340e-02
364 5.361939e-02
365 3.722318e-02
366 9.828477e-03
367 4.155345e-02
368 1.327760e-02
369 7.205372e-02
370 4.151130e-02
371 3.265365e-02
372 2.879418e-02
373 2.314340e-02
374 1.653692e-02
375 1.077611e-02
376 3.481427e-02
377 1.815487e-03
378 2.232305e-02
379 1.005192e-01
380 1.491262e-02
381 3.752658e-02
382 1.271613e-02
383 1.223707e-02
384 8.088923e-03
385 2.572550e-01
386 2.300194e-02
387 2.847960e-02
388 1.782098e-02
389 1.900759e-02
390 3.647629e-03
391 3.723368e-02
392 4.079514e-02
393 5.510332e-02
394 3.072313e-02
395 4.183566e-03
396 1.891549e-02
397 1.870293e-02
398 3.182769e-02
399 4.167840e-02
400 1.343152e-01
401 2.451973e-02
402 7.567017e-02
403 4.837843e-03
404 6.477297e-03
405 7.664675e-02
Name: value, dtype: float64
This is the code I used for transforming dataset:
from scipy import stats
x,_ = stats.boxcox(df)
I get this error:
if any(x <= 0):
-> 1031 raise ValueError("Data must be positive.")
1032
1033 if lmbda is not None: # single transformation
ValueError: Data must be positive
Is it because my values are too small that it's producing an error? Not sure what I'm doing wrong. New to using boxcox, could be using it incorrectly in this example. Open to suggestions and alternatives. Thanks!
Your data contains the value 0 (at index 134). When boxcox says the data must be positive, it means strictly positive.
What is the meaning of your data? Does 0 make sense? Is that 0 actually a very small number that was rounded down to 0?
You could simply discard that 0. Alternatively, you could do something like the following. (This amounts to temporarily discarding the 0, and then using -1/λ for the transformed value of 0, where λ is the Box-Cox transformation parameter.)
First, create some data that contains one 0 (all other values are positive):
In [13]: np.random.seed(8675309)
In [14]: data = np.random.gamma(1, 1, size=405)
In [15]: data[100] = 0
(In your code, you would replace that with, say, data = df.values.)
Copy the strictly positive data to posdata:
In [16]: posdata = data[data > 0]
Find the optimal Box-Cox transformation, and verify that λ is positive. This work-around doesn't work if λ ≤ 0.
In [17]: bcdata, lam = boxcox(posdata)
In [18]: lam
Out[18]: 0.244049919975582
Make a new array to hold that result, along with the limiting value of the transform of 0 (which is -1/λ):
In [19]: x = np.empty_like(data)
In [20]: x[data > 0] = bcdata
In [21]: x[data == 0] = -1/lam
The following plot shows the histograms of data and x.
Rather than normal boxcox, you can use boxcox1p. It adds 1 to x so there won't be any "0" record
from scipy.special import boxcox1p
scipy.special.boxcox1p(x, lmbda)
For more info check out the docs at https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox1p.html
Is your data that you are sending to boxcox 1-dimensional ndarray?
Second way could be adding shift parameter by summing shift (see details from the link) to all of the ndarray elements before sending it to boxcox and subtracting shift from the resulting array elements (if I have understood boxcox algorithm correctly, that could be solution in your case, too).
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.stats.boxcox.html

Why won't my code print anything?(python)

These were my instructions:
Write a program using while loop, which prints the sum of every third numbers from 1 to 1001 ( both 1 and 1001 are included)
(1 + 4 + 7 + 10 + ....)
Here is my code:
num = 0
x = 1
while x != 1001:
num += x
x += 3
print(num)
Can someone point out where I've gone wrong?
Your while loop never gets the condition x != 1001 evaluated to True.
I checked last few values of x and those are
994
997
1000
1003
As you see the value of x never becomes 1001.
So to terminate the condition when x is going to surpass 1001 you need to modify the conditon as following.
while x <= 1001:
num += x
x += 3
print(num)
You miscalculate the expected value, x can never be 1001, The number around 1001 is 1000 and 1003, so the while loop goes forever.
I think you may use:
while x != 1000:
or:
while x < 1001:
Note as #idjaw pointed out, using != here is not a very good choice.
x won't take the value 1001 ever. It becomes 1000 and then 1003 in the next iteration, so the loop continues to go on forever.
while x<=1001:
Can be used to resolve this.
x Would never be 1001 so It would run forever.
If you want to make sure bring the print statement within loop and print the value of x
num = 0
x = 1
while x != 1001:
num += x
x += 3
print(x)
It would print the value of x. give ctrl+c once it crossed 1000.
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
67
70
73
76
79
82
85
88
91
94
97
100
103
106
109
112
115
118
121
124
127
130
133
136
139
142
145
148
151
154
157
160
163
166
169
172
175
178
181
184
187
190
193
196
199
202
205
208
211
214
217
220
223
226
229
232
235
238
241
244
247
250
253
256
259
262
265
268
271
274
277
280
283
286
289
292
295
298
301
304
307
310
313
316
319
322
325
328
331
334
337
340
343
346
349
352
355
358
361
364
367
370
373
376
379
382
385
388
391
394
397
400
403
406
409
412
415
418
421
424
427
430
433
436
439
442
445
448
451
454
457
460
463
466
469
472
475
478
481
484
487
490
493
496
499
502
505
508
511
514
517
520
523
526
529
532
535
538
541
544
547
550
553
556
559
562
565
568
571
574
577
580
583
586
589
592
595
598
601
604
607
610
613
616
619
622
625
628
631
634
637
640
643
646
649
652
655
658
661
664
667
670
673
676
679
682
685
688
691
694
697
700
703
706
709
712
715
718
721
724
727
730
733
736
739
742
745
748
751
754
757
760
763
766
769
772
775
778
781
784
787
790
793
796
799
802
805
808
811
814
817
820
823
826
829
832
835
838
841
844
847
850
853
856
859
862
865
868
871
874
877
880
883
886
889
892
895
898
901
904
907
910
913
916
919
922
925
928
931
934
937
940
943
946
949
952
955
958
961
964
967
970
973
976
979
982
985
988
991
994
997
1000
1003
1006
As you clearly see the x never become 1001. Thats why the loop run forever.
As others say change the condition to x <= 1001 which would end you loop.

Categories