I wrote a C++ wrapper class to some functions in LAPACK. In order to test the class, I use the Python C Extension, where I call numpy, and do the same operations, and compare the results by taking the difference
For example, for the inverse of a matrix, I generate a random matrix in C++, then pass it as a string (with many, many digits, like 30 digits) to Python's terminal using PyRun_SimpleString, and assign the matrix as numpy.matrix(...,dtype=numpy.double) (or numpy.complex128). Then I use numpy.linalg.inv() to calculate the inverse of the same matrix. Finally, I take the difference between numpy's result and my result, and use numpy.isclose with a specific relative tolerance to see whether the results are close enough.
The problem: The problem is that when I use C++ floats, the relative precision I need to be able to compare is about 1e-2!!! And yet with this relative precision I get some statistical failures (with low probability).
Doubles are fine... I can do 1e-10 and it's statistically safe.
While I know that floats have intrinsic bit precision of about 1e-6, I'm wondering why I have to go so low to 1e-2 to be able to compare the results, and it still fails some times!
So, going so low down to 1e-2 got me wondering whether I'm thinking about this whole thing the wrong way. Is there something wrong with my approach?
Please ask for more details if you need it.
Update 1: Eric requested example of Python calls. Here is an example:
//create my matrices
Matrix<T> mat_d = RandomMatrix<T>(...);
auto mat_d_i = mat_d.getInverse();
//I store everything in the dict 'data'
PyRun_SimpleString(std::string("data={}").c_str());
//original matrix
//mat_d.asString(...) will return in the format [[1,2],[3,4]], where 32 is 32 digits per number
PyRun_SimpleString(std::string("data['a']=np.matrix(" + mat_d.asString(32,'[',']',',') + ",dtype=np.complex128)").c_str());
//pass the inverted matrix to Python
PyRun_SimpleString(std::string("data['b_c']=np.matrix(" + mat_d_i.asString(32,'[',']',',') + ",dtype=np.complex128)").c_str());
//inverse in numpy
PyRun_SimpleString(std::string("data['b_p']=np.linalg.inv(data['a'])").c_str());
//flatten the matrices to make comparing them easier (make them 1-dimensional)
PyRun_SimpleString("data['fb_p']=((data['b_p']).flatten().tolist())[0]");
PyRun_SimpleString("data['fb_c']=((data['b_c']).flatten().tolist())[0]");
//make the comparison. The function compare_floats(f1,f2,t) calls numpy.isclose(f1,f2,rtol=t)
//prec is an integer that takes its value from a template function, where I choose the precision I want based on type
PyRun_SimpleString(std::string("res=list(set([compare_floats(data['fb_p'][i],data['fb_c'][i],1e-"+ std::to_string(prec) +") for i in range(len(data['fb_p']))]))[0]").c_str());
//the set above eliminates repeated True and False. If all results are True, we expect that res=[True], otherwise, the test failed somewhere
PyRun_SimpleString(std::string("res = ((len(res) == 1) and res[0])").c_str());
//Now if res is True, then success
Comments in the code describe the procedure step-by-step.
Related
I want to translate this MATLAB code into Python, I guess I did everything right, even though I didn't get the same results.
MATLAB script:
n=2 %Filter_Order
Wn=[0.4 0.6] %# Normalized cutoff frequencies
[b,a] = butter(n,Wn,'bandpass') % Transfer function coefficients of the filter
Python script:
import numpy as np
from scipy import signal
n=2 #Filter_Order
Wn=np.array([0.4,0.6]) # Normalized cutoff frequencies
b, a = signal.butter(n, Wn, btype='band') #Transfer function coefficients of the filter
a coefficients in MATLAB: 1, -5.55e-16, 1.14, -1.66e-16, 0.41
a coefficients in Python: 1, -2.77e-16, 1.14, -1.94e-16, 0.41
Could it just be a question of precision, since the two different values (the 2nd and 4th) are both on the order of 10^(-16)?!
The b coefficients are the same on the other hand.
You machine precision is about 1e-16 (in MATLAB this can be checked easily with eps(), I presume about the same in Python). The 'error' you are dealing with is thus on the order of machine precision, i.e. not actually calculable within fitting precision.
Also of note is that MATLAB ~= Python (or != in Python), thus the implementations of butter() on one hand and signal.butter() on the other will be slightly different, even if you use the exact same numbers, due to the way both languages are translated to machine code.
It rarely matters to have coefficients differing 16 orders of magnitude; the smaller ones would be essentially neglected. In case you do need exact values, consider using either symbolic math, or some kind of Variable Precision Arithmetic (vpa() in MATLAB), but I guess that in your case the difference is irrelevant.
Is there a simple way to calculate (especially powers/exponetiation) with matrices whose elements are integers from finite field, or at least arbitrary integer precision matrices with support of % operator?
For example let's say we have a matrix
A = 1 1
1 0
and want to compute something like (A**100) % 1000, how to achieve this?
I have tried numpy, but problem is that it uses fixed precision data types so it overflows quickly... Then I tried sympy since it supports arbitrary integer precision, but it does not seem to have support for finite fields operations (except for inverse)...
It might be an overkill, but Sage has everything you want (and much more). It is a python based software, but is very large (~1.2GB download). You can use sage --preparse script.sage to create a python file.
There is even SO-like QA site https://ask.sagemath.org/questions/ which is specialized to sage.
Example of your code might be:
m = Matrix(GF(5), [[1, 1], [1, 0]])
power = m^100
I have used GF(5) as GF(1000) is not a finite field. Also there are some differences, for instance the exponentiation can be done either by x**y or equivalently x^y.
I get a 512^3 array representing a Temperature distribution from a simulation (written in Fortran). The array is stored in a binary file that's about 1/2G in size. I need to know the minimum, maximum and mean of this array and as I will soon need to understand Fortran code anyway, I decided to give it a go and came up with the following very easy routine.
integer gridsize,unit,j
real mini,maxi
double precision mean
gridsize=512
unit=40
open(unit=unit,file='T.out',status='old',access='stream',&
form='unformatted',action='read')
read(unit=unit) tmp
mini=tmp
maxi=tmp
mean=tmp
do j=2,gridsize**3
read(unit=unit) tmp
if(tmp>maxi)then
maxi=tmp
elseif(tmp<mini)then
mini=tmp
end if
mean=mean+tmp
end do
mean=mean/gridsize**3
close(unit=unit)
This takes about 25 seconds per file on the machine I use. That struck me as being rather long and so I went ahead and did the following in Python:
import numpy
mmap=numpy.memmap('T.out',dtype='float32',mode='r',offset=4,\
shape=(512,512,512),order='F')
mini=numpy.amin(mmap)
maxi=numpy.amax(mmap)
mean=numpy.mean(mmap)
Now, I expected this to be faster of course, but I was really blown away. It takes less than a second under identical conditions. The mean deviates from the one my Fortran routine finds (which I also ran with 128-bit floats, so I somehow trust it more) but only on the 7th significant digit or so.
How can numpy be so fast? I mean you have to look at every entry of an array to find these values, right? Am I doing something very stupid in my Fortran routine for it to take so much longer?
EDIT:
To answer the questions in the comments:
Yes, also I ran the Fortran routine with 32-bit and 64-bit floats but it had no impact on performance.
I used iso_fortran_env which provides 128-bit floats.
Using 32-bit floats my mean is off quite a bit though, so precision is really an issue.
I ran both routines on different files in different order, so the caching should have been fair in the comparison I guess ?
I actually tried open MP, but to read from the file at different positions at the same time. Having read your comments and answers this sounds really stupid now and it made the routine take a lot longer as well. I might give it a try on the array operations but maybe that won't even be necessary.
The files are actually 1/2G in size, that was a typo, Thanks.
I will try the array implementation now.
EDIT 2:
I implemented what #Alexander Vogt and #casey suggested in their answers, and it is as fast as numpy but now I have a precision problem as #Luaan pointed out I might get. Using a 32-bit float array the mean computed by sum is 20% off. Doing
...
real,allocatable :: tmp (:,:,:)
double precision,allocatable :: tmp2(:,:,:)
...
tmp2=tmp
mean=sum(tmp2)/size(tmp)
...
Solves the issue but increases computing time (not by very much, but noticeably).
Is there a better way to get around this issue? I couldn't find a way to read singles from the file directly to doubles.
And how does numpy avoid this?
Thanks for all the help so far.
Your Fortran implementation suffers two major shortcomings:
You mix IO and computations (and read from the file entry by entry).
You don't use vector/matrix operations.
This implementation does perform the same operation as yours and is faster by a factor of 20 on my machine:
program test
integer gridsize,unit
real mini,maxi,mean
real, allocatable :: tmp (:,:,:)
gridsize=512
unit=40
allocate( tmp(gridsize, gridsize, gridsize))
open(unit=unit,file='T.out',status='old',access='stream',&
form='unformatted',action='read')
read(unit=unit) tmp
close(unit=unit)
mini = minval(tmp)
maxi = maxval(tmp)
mean = sum(tmp)/gridsize**3
print *, mini, maxi, mean
end program
The idea is to read in the whole file into one array tmp in one go. Then, I can use the functions MAXVAL, MINVAL, and SUM on the array directly.
For the accuracy issue: Simply using double precision values and doing the conversion on the fly as
mean = sum(real(tmp, kind=kind(1.d0)))/real(gridsize**3, kind=kind(1.d0))
only marginally increases the calculation time. I tried performing the operation element-wise and in slices, but that did only increase the required time at the default optimization level.
At -O3, the element-wise addition performs ~3 % better than the array operation. The difference between double and single precision operations is less than 2% on my machine - on average (the individual runs deviate by far more).
Here is a very fast implementation using LAPACK:
program test
integer gridsize,unit, i, j
real mini,maxi
integer :: t1, t2, rate
real, allocatable :: tmp (:,:,:)
real, allocatable :: work(:)
! double precision :: mean
real :: mean
real :: slange
call system_clock(count_rate=rate)
call system_clock(t1)
gridsize=512
unit=40
allocate( tmp(gridsize, gridsize, gridsize), work(gridsize))
open(unit=unit,file='T.out',status='old',access='stream',&
form='unformatted',action='read')
read(unit=unit) tmp
close(unit=unit)
mini = minval(tmp)
maxi = maxval(tmp)
! mean = sum(tmp)/gridsize**3
! mean = sum(real(tmp, kind=kind(1.d0)))/real(gridsize**3, kind=kind(1.d0))
mean = 0.d0
do j=1,gridsize
do i=1,gridsize
mean = mean + slange('1', gridsize, 1, tmp(:,i,j),gridsize, work)
enddo !i
enddo !j
mean = mean / gridsize**3
print *, mini, maxi, mean
call system_clock(t2)
print *,real(t2-t1)/real(rate)
end program
This uses the single precision matrix 1-norm SLANGE on matrix columns. The run-time is even faster than the approach using single precision array functions - and does not show the precision issue.
The numpy is faster because you wrote much more efficient code in python (and much of the numpy backend is written in optimized Fortran and C) and terribly inefficient code in Fortran.
Look at your python code. You load the entire array at once and then call functions that can operate on an array.
Look at your fortran code. You read one value at a time and do some branching logic with it.
The majority of your discrepancy is the fragmented IO you have written in Fortran.
You can write the Fortran just about the same way as you wrote the python and you'll find it runs much faster that way.
program test
implicit none
integer :: gridsize, unit
real :: mini, maxi, mean
real, allocatable :: array(:,:,:)
gridsize=512
allocate(array(gridsize,gridsize,gridsize))
unit=40
open(unit=unit, file='T.out', status='old', access='stream',&
form='unformatted', action='read')
read(unit) array
maxi = maxval(array)
mini = minval(array)
mean = sum(array)/size(array)
close(unit)
end program test
I am trying to create a list of points from a road network. Here, I try to put their coordinates in a List of [x,y] whose items have a float format. As a new point from the network is picked, it should be checked with the existing points in the list. if it exists, then the same index will be given to the feature of network, otherwise a new point will be added to the list and the new index will be given to the feature.
I know that a float number will be saved differently form integers, but for exactly the same float numbers, I still cannot use:
If new_point in list_of_points:
#do something
and I should use:
for point in list_of_points:
if abs(point.x-new_point.x)<0.01 and abs(point.y-new_point.y)<0.01
#do something
the points are supposed to be exactly the same as I snap them using the ArcGIS software, and when I check the coordinates in the software they are exactly the same.
I asked this question for:
1- I think using "in" can make my code tidy and also faster while using for-loop is kind of clumsy way of coding for this situation.
2- I want to know: does that mean even exactly the same float numbers are stored differently?
It's never a good idea to check for equality between two floating point numbers. However, there are built in functions to do a comparison like that. From numpy you can use allclose. For example,
>>> np.allclose( (1.0,2.0), (1.00000001,2.0000001) )
True
This checks if the two array like inputs are element-wise equal within a certain tolerance. You can adjust the relative and absolute tolerances with keyword arguments.
Any given Python implenetation should always store a given floating point number in the same, deterministic, non-random way within itself. I do not believe you can take the same floating point number, input it twice, and have it stored in two different ways. But I'm also reluctant to believe that you're going to be getting exact duplicates of coordinates out of a geographic program like ArcGIS, especially if the resolution is very small. There are many ways that floating point math can mess with your expectations, so you shouldn't ever expect that you'll have identical floats. And between different machines and different versions, you get even more possibilities for error.
If you're worried about the elegance of your code, you can just create a function to abstract out the for loop.
def coord_in(coord, coord_list):
for other_coord in coord_list:
if abs(coord.x-other_coord.x)<0.00001 and abs(coord.y-other_coord.y)<0.00001:
return True
return False
For a large number of points, numpy will always be faster (and perhapd more elegant). If you have separated the x and y coords into (float) arrays arrx and arry:
numpy.sometrue((arrx-point.x)**2+(arry-point.y)**2<tol**2)
will return True if point is within distance tol of an existing point.
2: exactly the same literal (e.g., "2.3") will be stored as exactly the same float representation for for a given platform and data-type, but in general it depends on the bit-ness, endian-ness and perhaps the compiler used to make python.
To be certain when comparing numbers, you should at least round to the precision of the least precise number, or (better) do the kind of thing you are doing here.
>>> 1==1.00000000000000000000000000000000001
True
Old thread but helped me develop my own solution using list comprehension. Because of course it's not a good idea to compare two floats using ==. The following returns list of indices of all elements of the input list that are reasonably close to the value we're looking for.
def findFloats(listOfFloats, value):
return [i for i, number in enumerate(listOfFloats)
if abs(number-value) < 0.00001]
cost=0
for i in range(12):
cost=cost+math.pow(float(float(q[i])-float(w[i])),2)
cost=(math.sqrt(cost))
Any faster alternative to this? i am need to improve my entire code so trying to improve each statements performance.
thanking u
In addition to the general optimization remarks that are already made (and to which I subscribe), there is a more "optimized" way of doing what you want: you manipulate arrays of values and combine them mathematically. This is a job for the very useful and widely used NumPy package!
Here is how you would do it:
q_array = numpy.array(q, dtype=float)
w_array = numpy.array(w, dtype=float)
cost = math.sqrt(((q_array-w_array)**2).sum())
(If your arrays q and w already contain floats, you can remove the dtype=float.)
This is almost as fast as it can get, since NumPy's operations are optimized for arrays. It is also much more legible than a loop, because it is both simple and short.
Just a hint, but usually real performance improvements come when you evaluate the code at a function or even higher level.
During a good evaluation, you may find whole blocks that code be thrown away or rewritten to simplify the process.
Profilers are useful AFTER you've cleaned up crufty not-very-legible code. irrespective of whether it's to be run once or N zillion times, you should not write code like that.
Why are you doing float(q[i]) and float(w[i])? What type(s) is/are the elements of q and `w'?
If x and y are floats, then x - y will be a float too, so that's 3 apparently redundant occurrences of float() already.
Calling math.pow() instead of using the ** operator bears the overhead of lookups on 'math' and 'pow'.
Etc etc
See if the following code gives the same answers and reads better and is faster:
costsq = 0.0
for i in xrange(12):
costsq += (q[i] - w[i]) ** 2
cost = math.sqrt(costsq)
After you've tested that and understood why the changes were made, you can apply the lessons to other Python code. Then if you have a lot more array or matrix work to do, consider using numpy.
Assuming q and w contain numbers the conversions to float are not necessary, otherwise you should convert the lists to a usable representation earlier (and separately from your calculation)
Given that your function seems to only be doing the equivalent of this:
cost = sum( (qi-wi)**2 for qi,wi in zip(q[:12],w) ) ** 0.5
Perhaps this form would execute faster.