I have created a relatively complex PyQt program and am trying to implement threads so that when the program encounters a part of the program which is particularly CPU intensive, the GUI will remain refreshed and responsive throughout. Sadly though, I am having some difficulties with the threading.
I am using Python 2.7 for reasons that I don't believe to be relevant.
Anyway, the entire program runs within one class and calls upon a PyQt designer .ui file in order to display the actual GUI. When a particular button is pressed, in order to shred a file, it calls a function within that class that then starts a thread using the 'thread' module, yes, outdated, I know. The shredding function that is then called from this commences the shredding of the file. Throughout the shredding of the file, the actual shredding function interacts and adds bits to the GUI in order to keep the user up to date on what is happening.
During the execution of the function the GUI continues to be refreshed, however it does become a little laggy, I can cope with that. However, when that function is complete, instead of smoothly continuing and allowing the user to keep using the program, the program throws a complete hissy fit and simply just stops working and has to be closed.
Hopefully someone can assist me here. I would greatly appreciate as much detail as possible as I have been searching around for a way to cope with this for a good number of weeks now.
I am using PyQt4.
Here's a simple demo of threading in pyqt5. Qt has it's own threading class that works pretty well.
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtCore import pyqtSignal
import sys
import time
class TheBoss(QtWidgets.QWidget):
def __init__(self, parent=None):
super(TheBoss, self).__init__(parent)
self.resize(300,200)
self.VL = QtWidgets.QVBoxLayout(self)
self.label = QtWidgets.QLabel()
self.VL.addWidget(self.label)
self.logger = Logger()
self.logger.sec_signal.connect(self.label.setText)
self.logger.start()
def closeEvent(self,event):
self.logger.terminate()
class Logger(QtCore.QThread):
sec_signal = pyqtSignal(str)
def __init__(self, parent=None):
super(Logger, self).__init__(parent)
self.current_time = 0
self.go = True
def run(self):
#this is a special fxn that's called with the start() fxn
while self.go:
time.sleep(1)
self.sec_signal.emit(str(self.current_time))
self.current_time += 1
if __name__ == '__main__':
app = QtWidgets.QApplication(sys.argv)
app.setApplicationName("Thread Example")
window = TheBoss()
window.show()
sys.exit(app.exec_())
Related
How can I architect code to run a pyqt GUI multiple times consecutively in a process?
(pyqtgraph specifically, if that is relevant)
The context
A python script that performs long running data capture on measurement equipment (a big for loop). During each capture iteration a new GUI appear and displays live data from the measurement equipment to the user, while the main capture code is running.
I'd like to do something like this:
for setting in settings:
measurement_equipment.start(setting)
gui = LiveDataStreamGUI(measurement_equipment)
gui.display()
measurement_equipment.capture_data(300) #may take hours
gui.close()
The main issue
I'd like the data capture code to be the main thread. However pyqt doesn't seems to allow this architecture, as its app.exec_() is a blocking call, allowing a GUI to be created only once per process (e.g., in gui.display() above).
An application is an executable process that runs on one or more foreground threads each of which can also start background threads to perform parallel operations or operations without blocking the calling thread. An application will terminate after all foreground threads have ended, therefore, you need at least one foreground thread which in your case is created when you call the app.exec_() statement. In a GUI application, this is the UI thread where you should create and display the main window and any other UI widget. Qt will automatically terminate your application process when all widgets are closed.
IMHO, you should try to follow the normal flow described above as much as possible, the workflow could be as follows:
Start Application > Create main window > Start a background thread for each calculation > Send progress to UI thread > Show results in a window after each calculation is finished > Close all windows > End application
Also, you should use ThreadPool to make sure you don't run out of resources.
Here is a complete example:
import sys
import time
import PyQt5
from PyQt5 import QtCore, QtWidgets
from PyQt5.QtCore import QRunnable, pyqtSignal, QObject
from PyQt5.QtWidgets import QApplication, QMainWindow, QWidget, QDialog
class CaptureDataTaskStatus(QObject):
progress = pyqtSignal(int, int) # This signal is used to report progress to the UI thread.
captureDataFinished = pyqtSignal(dict) # Assuming your result is a dict, this can be a class, a number, etc..
class CaptureDataTask(QRunnable):
def __init__(self, num_measurements):
super().__init__()
self.num_measurements = num_measurements
self.status = CaptureDataTaskStatus()
def run(self):
for i in range(0, self.num_measurements):
# Report progress
self.status.progress.emit(i + 1, self.num_measurements)
# Make your equipment measurement here
time.sleep(0.1) # Wait for some time to mimic a long action
# At the end you will have a result, for example
result = {'a': 1, 'b': 2, 'c': 3}
# Send it to the UI thread
self.status.captureDataFinished.emit(result)
class ResultWindow(QWidget):
def __init__(self, result):
super().__init__()
# Display your result using widgets...
self.result = result
# For this example I will just print the dict values to the console
print('a: {}'.format(result['a']))
print('b: {}'.format(result['b']))
print('c: {}'.format(result['c']))
class MainWindow(QMainWindow):
def __init__(self, *args, **kwargs):
super(MainWindow, self).__init__(*args, **kwargs)
self.result_windows = []
self.thread_pool = QtCore.QThreadPool().globalInstance()
# Change the following to suit your needs (I just put 1 here so you can see each task opening a window while the others are still running)
self.thread_pool.setMaxThreadCount(1)
# You could also start by clicking a button, menu, etc..
self.start_capturing_data()
def start_capturing_data(self):
# Here you start data capture tasks as needed (I just start 3 as an example)
for setting in range(0, 3):
capture_data_task = CaptureDataTask(300)
capture_data_task.status.progress.connect(self.capture_data_progress)
capture_data_task.status.captureDataFinished.connect(self.capture_data_finished)
self.thread_pool.globalInstance().start(capture_data_task)
def capture_data_progress(self, current, total):
# Update progress bar, label etc... for this example I will just print them to the console
print('Current: {}'.format(current))
print('Total: {}'.format(total))
def capture_data_finished(self, result):
result_window = ResultWindow(result)
self.result_windows.append(result_window)
result_window.show()
class App(QApplication):
"""Main application wrapper, loads and shows the main window"""
def __init__(self, sys_argv):
super().__init__(sys_argv)
self.main_window = MainWindow()
self.main_window.show()
if __name__ == '__main__':
app = App(sys.argv)
sys.exit(app.exec_())
If you want your GUI to keep updating in realtime and to not be freezed, you have two main ways to do it:
Refresh the GUI from time to time calling QApplication.processEvents() inside your time consuming function.
Create a separate thread (I mean, QThread) where you run your time consuming function
My personal preference is to go for the latter way. Here is a good tutorial for getting started on how to do multi-threading in Qt.
Having a look at your code:
...
gui.display()
measurement_equipment.capture_data(300) #may take hours
gui.close()
...
it seems you are calling app.exec_ inside gui.display. Its very likely you will have to decouple both functions and call app.exec_ outside of gui.display and after calling capture_data. You will also have to connect the finished signal of the new thread to gui.close. It will be something like this:
...
gui.display() # dont call app.exec_ here
thread = QThread.create(measurement_equipment.capture_data, 300)
thread.finished.connect(gui.close)
app.exec_()
...
I hope this can help you and to not be late!!
You can have only One graphic GUI thread. This would imply to have some Threads to capture data and sync data with the graphic application when needed.
We need to know if the GUI data display is displaying realtime data or only oneshot.
my code has thread, but when i close the gui, it still works on background. how can i stop threads? is there something stop(), close()?
i dont use signal, slots? Must i use this?
from PyQt4 import QtGui, QtCore
import sys
import time
import threading
class Main(QtGui.QMainWindow):
def __init__(self, parent=None):
super(Main, self).__init__(parent)
self.kac_ders=QtGui.QComboBox()
self.bilgi_cek=QtGui.QPushButton("Save")
self.text=QtGui.QLineEdit()
self.widgetlayout=QtGui.QFormLayout()
self.widgetlar=QtGui.QWidget()
self.widgetlar.setLayout(self.widgetlayout)
self.bilgiler=QtGui.QTextBrowser()
self.bilgi_cek.clicked.connect(self.on_testLoop)
self.scrollArea = QtGui.QScrollArea()
self.scrollArea.setWidgetResizable(True)
self.scrollArea.setWidget(self.widgetlar)
self.analayout=QtGui.QVBoxLayout()
self.analayout.addWidget(self.text)
self.analayout.addWidget(self.bilgi_cek)
self.analayout.addWidget(self.bilgiler)
self.centralWidget=QtGui.QWidget()
self.centralWidget.setLayout(self.analayout)
self.setCentralWidget(self.centralWidget)
def on_testLoop(self):
self.c_thread=threading.Thread(target=self.kontenjan_ara)
self.c_thread.start()
def kontenjan_ara(self):
while(1):
self.bilgiler.append(self.text.text())
time.sleep(10)
app = QtGui.QApplication(sys.argv)
myWidget = Main()
myWidget.show()
app.exec_()
A few things:
You shouldn't be calling GUI code from outside the main thread. GUI elements are not thread-safe. self.kontenjan_ara updates and reads from GUI elements, it shouldn't be the target of your thread.
In almost all cases, you should use QThreads instead of python threads. They integrate nicely with the event and signal system in Qt.
If you just want to run something every few seconds, you can use a QTimer
def __init__(self, parent=None):
...
self.timer = QTimer(self)
self.timer.timeout.connect(self.kontenjan_ara)
self.timer.start(10000)
def kontenjan_ara(self):
self.bilgiler.append(self.text.text())
If your thread operations are more computationally complex you can create a worker thread and pass data between the worker thread and the main GUI thread using signals.
class Worker(QObject):
work_finished = QtCore.pyqtSignal(object)
#QtCore.pyqtSlot()
def do_work(self):
data = 'Text'
while True:
# Do something with data and pass back to main thread
data = data + 'text'
self.work_finished.emit(data)
time.sleep(10)
class MyWidget(QtGui.QWidget):
def __init__(self, ...)
...
self.worker = Worker()
self.thread = QtCore.QThread(self)
self.worker.work_finished.connect(self.on_finished)
self.worker.moveToThread(self.thread)
self.thread.started.connect(self.worker.do_work)
self.thread.start()
#QtCore.pyqtSlot(object)
def on_finished(self, data):
self.bilgiler.append(data)
...
Qt will automatically kill all the subthreads when the main thread exits the event loop.
I chose to rewrite a bit this answer, because I had failed to properly look at the problem's context. As the other answers and comments tell, you code lacks thread-safety.
The best way to fix this is to try to really think "in threads", to restrict yourself to only use objects living in the same thread, or functions that are known as "threadsafe".
Throwing in some signals and slots will help, but maybe you want to think back a bit to your original problem. In your current code, each time a button is pressed, a new thread in launched, that will, every 10 seconds, do 2 things :
- Read some text from self.text
- Append it to self.bilgiler
Both of these operations are non-threadsafe, and must be called from the thread that owns these objects (the main thread). You want to make the worker threads "schedule & wait" the read & append oeprations, instead of simply "executing" them.
I recommend using the other answer (the thread halting problem is automatically fixed by using proper QThreads that integrate well with Qt's event loop), which would make you use a cleaner approach, more integrated with Qt.
You may also want to rethink your problem, because maybe there is a simpler approach to your problem, for example : not spawning threads each time bilgi_cek is clicked, or using Queue objects so that your worker is completely agnostic of your GUI, and only interact with it using threadsafe objects.
Good luck, sorry if I caused any confusion. My original answer is still available here. I think it would be wise to mark the other answer as the valid answer for this question.
my long term goal is to build a gui for an experiment in experimental physics which has a continuously running gui. By pushing a button I would like to be able to run a pyhton script of my choice which can interact with the running gui. For example setting a number to a spin box.
I attached a starting project. A spinbox and a button. If the button is pressed a random number is set to the spinbox and as soon as the number in the spinbox changes, it prints the number.
Is there a way to call a script (at the moment with a hard coded path) by pushing the button, which then sets the number in the gui to my choice. The content of the script (in this case the number which is set to the spin box) has to be editable during the runtime of the gui.
If you could provide an example for this, I would be grateful and could build the rest myself.
Thanks in advance!
import sys
import random
from PyQt5 import QtCore, QtGui
from PyQt5.QtWidgets import QApplication, QWidget, QDoubleSpinBox, QPushButton
class GuiInteraction(QWidget):
def __init__(self):
super().__init__()
self.initGUI()
self.CallBackFunctions()
def initGUI(self):
self.resize(400, 500)
self.move(300, 300)
self.setWindowTitle('Gui Interaction')
self.doubleSpinBox = QDoubleSpinBox(self)
self.doubleSpinBox.setGeometry(QtCore.QRect(120, 130, 120, 25))
self.doubleSpinBox.setDecimals(5)
self.doubleSpinBox.setMaximum(1000)
self.doubleSpinBox.setObjectName("doubleSpinBox")
self.pushButton = QPushButton("Run Script", self)
self.pushButton.setGeometry(QtCore.QRect(100, 300, 100, 40))
self.pushButton.setObjectName("pushButton")
def CallBackFunctions(self):
self.pushButton.clicked.connect(self.buttonClicked)
self.doubleSpinBox.valueChanged.connect(self.valueChanged)
def buttonClicked(self):
self.doubleSpinBox.setValue(random.uniform(1, 200))
def valueChanged(self):
print(self.doubleSpinBox.value())
if __name__ == '__main__':
app = QApplication(sys.argv)
MyWindow = GuiInteraction()
MyWindow.show()
sys.exit(app.exec_())
I'm thinking you can call a FileDialog, pick a script and use:
mod = __import__(path)
, and than should the script be adequately built with a "run" function of some kind you can just launch it by:
mod.run()
Check this question also.
One way would be to just communicate with an external script through stdin/stdout
my_script.py
def main():
print '4.2'
if __name__ == '__main__':
main()
gui_script.py
import subprocess
...
def buttonClicked(self):
try:
value = float(subprocess.check_output(['python', 'my_script.py']).strip())
except ValueError:
value = 1.0
self.doubleSpinBox.setValue(value)
If you need to pass arguments to your function you can just pass them as additional arguments to the subprocess.check_output call, and them read them from sys.argv (they'll all come in as strings, so you'd have to convert the types if necessary, or use a library like argparse, which can do the type-casting for you) in the called script.
I went for the solution of #armatita, even though I changed it a little. After a brief research __import__ seems to be replaced by the libimport libary, which I now use. The following lines have been added:
Header:
import importlib
import threading
and in the main function:
def buttonClicked(self):
ScriptControlModule = importlib.import_module("ExternalScript")
ScriptControlModule = importlib.reload(ScriptControlModule)
ScriptControlThread = threading.Thread(target=ScriptControlModule.execute,args=(self,))
ScriptControlThread.start()
My question is answered by the importlib lines. I also wanted to start the script in a subthread, so in the case it crashes due to a typo or anything else, the whole gui does not follow the crash.
The ExternalScript is in the same folder and named ExternalScript.py
import random
def execute(self):
self.doubleSpinBox.setValue(random.uniform(1, 5))
Three simple lines of code. I can change these lines while running and get different values in the SpinBox. Works out perfectly!
I know this has been asked many times before. I read all of those threads, and my case seems different. Everybody else who has this trouble has a few straightforward causes that I think I’ve ruled out, such as:
Starting a timer with no event loop running
Starting/stopping a timer from a thread other than the one that created the timer
Failing to set the parent property of a widget, leading to problems with the order of destruction
Below I have a minimal code sample that demonstrates the problem. Notice that I’ve started no threads or timers. I also have set the parent of every widget. If I remove the graph widgets, the problem goes away, so one is tempted to blame pyQtGraph, however, if I include the plot widgets but exclude all the blank tabs (i.e. every tab except tabCatchaTiger), the problem also goes away, and that seems to vindicate pyQtGraph.
Versions:
Windows 7
Python 2.7.8
Wing IDE 5.0.9-1
PyQt 4.11.1
PyQwt 5.2.1
PyQtGraph 0.9.8
Test case:
from PyQt4 import Qt, QtGui, QtCore
import PyQt4.Qwt5 as Qwt
import pyqtgraph as pg
pg.functions.USE_WEAVE = False # Lets pyqtgraph plot without gcc
pg.setConfigOption('background', 'w')
pg.setConfigOption('foreground', 'k')
# GUI for visualizing data from database
class crashyGUI(QtGui.QWidget) :
def __init__(self) :
# Make the window
QtGui.QWidget.__init__(self)
self.resize(700, QtGui.QDesktopWidget().screenGeometry(self).height()*.85)
self.setWindowTitle('Data Visualization')
# Create tab interface
tabWidget = QtGui.QTabWidget(self)
# define the tab objects
self.tabEeny = QtGui.QWidget(tabWidget)
self.tabMeeny = QtGui.QWidget(tabWidget)
self.tabMiney = QtGui.QWidget(tabWidget)
self.tabMoe = QtGui.QWidget(tabWidget)
self.tabCatchaTiger = QtGui.QWidget(tabWidget)
self.tabByThe = QtGui.QWidget(tabWidget)
self.tabToe = QtGui.QWidget(tabWidget)
# Initialize the tab objects
self.initTabCatchaTiger()
###########################################
############### Main Layout ###############
###########################################
tabWidget.addTab(self.tabEeny, 'Eeny')
tabWidget.addTab(self.tabMeeny, 'Meeny')
tabWidget.addTab(self.tabMiney, 'Miney')
tabWidget.addTab(self.tabMoe, 'Moe')
tabWidget.addTab(self.tabCatchaTiger, 'Catch a Tiger')
tabWidget.addTab(self.tabByThe, 'By The')
tabWidget.addTab(self.tabToe, 'Toe')
self.mainLayout = QtGui.QVBoxLayout(self)
self.mainLayout.addWidget(tabWidget)
self.setLayout(self.mainLayout)
def initTabCatchaTiger(self):
###########################################
############# ADC Capture Tab #############
###########################################
# define tab layout
grid = QtGui.QGridLayout(self.tabCatchaTiger)
# create copy of adc plot and add to row 3 of the grid
self.catchaTigerPlot1 = pg.PlotWidget(name = 'Catch a Tiger 1', parent = self.tabCatchaTiger)
self.catchaTigerPlot1.setTitle('Catch a Tiger 1')
grid.addWidget(self.catchaTigerPlot1, 2, 0, 1, 8)
self.catchaTigerPlot2 = pg.PlotWidget(name = 'Catch a Tiger 2', parent = self.tabCatchaTiger)
self.catchaTigerPlot2.setTitle('Catch a Tiger 2')
grid.addWidget(self.catchaTigerPlot2, 3, 0, 1, 8)
# set layout for tab
self.tabCatchaTiger.setLayout(grid)
def closeEvent(self, event) :
pass
def main() :
# open a QApplication and dialog() GUI
app = QtGui.QApplication([])
windowCrashy = crashyGUI()
windowCrashy.show()
app.exec_()
main()
There seem to be two closely-related issues in the example.
The first one causes Qt to print the QObject::startTimer: QTimer can only be used with threads started with QThread messages on exit.
The second one (which may not affect all users) causes Qt to print QPixmap: Must construct a QApplication before a QPaintDevice, and then dump core on exit.
Both of these issues are caused by python deleting objects in an unpredicable order when it exits.
In the example, the second issue can be fixed by adding the following line to the __init__ of the top-level window:
self.setAttribute(QtCore.Qt.WA_DeleteOnClose)
Unless QApplication.setQuitOnLastWindowClosed has been changed to False, this will ensure that the application quits at the right time, and that Qt has a chance to automatically delete all the children of the top-level window before the python garbage-collector gets to work.
However, for this to be completely successful, all the relevant objects must be linked together in a parent-child hierarchy. The example code does this where it can, but there seem to be some critical places in the initialization of the PlotWidget class where it is not done.
In particular, there is nothing to ensure that the central item of the PlotWidget has a parent set when it is created. If the relevant part of the code is changed to this:
class PlotWidget(GraphicsView):
...
def __init__(self, parent=None, background='default', **kargs):
GraphicsView.__init__(self, parent, background=background)
...
self.plotItem = PlotItem(**kargs)
# make sure the item gets a parent
self.plotItem.setParent(self)
self.setCentralItem(self.plotItem)
then the first issue with the QTimer messages also goes away.
Here's a better answer:
You are allowing the QApplication to be collected before python exits. This causes two different issues:
The QTimer error messages are caused by pyqtgraph trying to track its ViewBoxes after the QApplication has been destroyed.
The crash appears to be intrinsic to Qt / PyQt. The following crashes in the same way:
from PyQt4 import Qt, QtGui, QtCore
def main() :
app = QtGui.QApplication([])
x = QtGui.QGraphicsView()
s = QtGui.QGraphicsScene()
x.setScene(s)
x.show()
app.exec_()
main()
You can fix it by adding global app to your main function, or by creating the QApplication at the module level.
Try to write this in block of __init__:
self.setAttribute(Qt.WA_DeleteOnClose)
Personally, I don't put any effort into chasing exit crashes anymore--just use pg.exit() and be done with it.
(but if you do happen to find a bug in pyqtgraph, don't hesitate to open an issue on github)
I had this happen as well and in my case it was caused by a call to deleteLater() on the aboutToQuit-Signal of the application, like so:
def closeEvent(self, *args, **kwargs):
self.deleteLater()
if __name__ == "__main__":
application = QtWidgets.QApplication(sys.argv)
window = testApplication()
# Handle application exit
application.aboutToQuit.connect(window.closeEvent)
# System exit
sys.exit(application.exec_())
Getting rid of the deleteLater on the whole window seemed to solve it.
For example:
#!/usr/bin/env python3
import sys
from PySide import QtCore, QtGui
class Dialog(QtGui.QDialog):
def __init__(self):
QtGui.QDialog.__init__(self)
button = QtGui.QPushButton("test")
layout = QtGui.QVBoxLayout()
layout.addWidget(button)
self.setLayout(layout)
app = QtGui.QApplication(sys.argv)
toast = Dialog()
toast.show()
app.exec_()
print("App freezes the main process!")
The last print() function will not be executed until you close the dialog.
I am working on a script that only uses qt for displaying some content that does not require user interaction, so I would prefer the gui code runs in background.
This is not possible. Qt documentation states:
Although QObject is reentrant, the GUI classes, notably QWidget and all its subclasses, are not reentrant. They can only be used from the main thread. As noted earlier, QCoreApplication::exec() must also be called from that thread.
(emphasis mine)
This answer suggests on the other hand that in reality this is not true :) However it seems that PySide sticks to the official version:
This can be verified by the following code sample:
import sys
import threading
from PySide import QtCore, QtGui
class Dialog(QtGui.QDialog):
def __init__(self):
QtGui.QDialog.__init__(self)
button = QtGui.QPushButton("test")
layout = QtGui.QVBoxLayout()
layout.addWidget(button)
self.setLayout(layout)
app = QtGui.QApplication(sys.argv)
toast = Dialog()
toast.show()
t = threading.Thread(target = lambda: app.exec_())
t.daemon = True
t.start()
print("App freezes the main process!")
input()
which produces the following output:
App freezes the main process!
QApplication::exec: Must be called from the main thread
(and a crash, on my machine). I have also verified the option with creating the app within the other thread - it works, but crashes on exit.
So the solution seems to let Qt have the main thread, and organize your processing in a separate thread. This shouldn't really be a problem: if you'll separate your concerns well it won't make a difference for your console-app part on which thread it's running.
I'm not sure if the PySide imposes any restrictions, but here's how it's done in C++:
Instantiate QApplication in a secondary thread.
Create your dialog in that same thread.
Call either QDialog::exec() OR {QApplication::exec() plus QDialog::show()} in that same thread.
Make sure that your secondary thread has fully shut down before you quit your app.
Yes, the Qt documentation currently says that only the main thread is allowed. However, there is nothing in the Qt source code that forbids creating QApplication in a secondary thread and then using GUI classes in that thread (for Windows and Linux). The documentation should be changed.
Mac OS X is different though -- the Cocoa framework only allows GUI operations in the main thread.