We have boring CSV with 10000 rows of ages (float), titles (enum/int), scores (float), ....
We have N columns each with int/float values in a table.
You can imagine this as points in ND space
We want to pick K points that would have maximised distance between each other.
So if we have 100 points in a tightly packed cluster and one point in the distance we would get something like this for three points:
or this
For 4 points it will become more interesting and pick some point in the middle.
So how to select K most distant rows (points) from N (with any complexity)? It looks like an ND point cloud "triangulation" with a given resolution yet not for 3d points.
I search for a reasonably fast approach (approximate - no precise solution needed) for K=200 and N=100000 and ND=6 (probably multigrid or ANN on KDTree based, SOM or triangulation based..).. Does anyone know one?
From past experience with a pretty similar problem, a simple solution of computing the mean Euclidean distance of all pairs within each group of K points and then taking the largest mean, works very well. As someone noted above, it's probably hard to avoid a loop on all combinations (not on all pairs). So a possible implementation of all this can be as follows:
import itertools
import numpy as np
from scipy.spatial.distance import pdist
Npoints = 3 # or 4 or 5...
# making up some data:
data = np.matrix([[3,2,4,3,4],[23,25,30,21,27],[6,7,8,7,9],[5,5,6,6,7],[0,1,2,0,2],[3,9,1,6,5],[0,0,12,2,7]])
# finding row indices of all combinations:
c = [list(x) for x in itertools.combinations(range(len(data)), Npoints )]
distances = []
for i in c:
distances.append(np.mean(pdist(data[i,:]))) # pdist: a method of computing all pairwise Euclidean distances in a condensed way.
ind = distances.index(max(distances)) # finding the index of the max mean distance
rows = c[ind] # these are the points in question
I propose an approximate solution. The idea is to start from a set of K points chosen in a way I'll explain below, and repeatedly loop through these points replacing the current one with the point, among the N-K+1 points not belonging to the set but including the current one, that maximizes the sum of the distances from the points of the set. This procedure leads to a set of K points where the replacement of any single point would cause the sum of the distances among the points of the set to decrease.
To start the process we take the K points that are closest to the mean of all points. This way we have good chances that on the first loop the set of K points will be spread out close to its optimum. Subsequent iterations will make adjustments to the set of K points towards a maximum of the sum of distances, which for the current values of N, K and ND appears to be reachable in just a few seconds. In order to prevent excessive looping in edge cases, we limit the number of loops nonetheless.
We stop iterating when an iteration does not improve the total distance among the K points. Of course, this is a local maximum. Other local maxima will be reached for different initial conditions, or by allowing more than one replacement at a time, but I don't think it would be worthwhile.
The data must be adjusted in order for unit displacements in each dimension to have the same significance, i.e., in order for Euclidean distances to be meaningful. E.g., if your dimensions are salary and number of children, unadjusted, the algorithm will probably yield results concentrated in the extreme salary regions, ignoring that person with 10 kids. To get a more realistic output you could divide salary and number of children by their standard deviation, or by some other estimate that makes differences in salary comparable to differences in number of children.
To be able to plot the output for a random Gaussian distribution, I have set ND = 2 in the code, but setting ND = 6, as per your request, is no problem (except you cannot plot it).
import matplotlib.pyplot as plt
import numpy as np
import scipy.spatial as spatial
N, K, ND = 100000, 200, 2
MAX_LOOPS = 20
SIGMA, SEED = 40, 1234
rng = np.random.default_rng(seed=SEED)
means, variances = [0] * ND, [SIGMA**2] * ND
data = rng.multivariate_normal(means, np.diag(variances), N)
def distances(ndarray_0, ndarray_1):
if (ndarray_0.ndim, ndarray_1.ndim) not in ((1, 2), (2, 1)):
raise ValueError("bad ndarray dimensions combination")
return np.linalg.norm(ndarray_0 - ndarray_1, axis=1)
# start with the K points closest to the mean
# (the copy() is only to avoid a view into an otherwise unused array)
indices = np.argsort(distances(data, data.mean(0)))[:K].copy()
# distsums is, for all N points, the sum of the distances from the K points
distsums = spatial.distance.cdist(data, data[indices]).sum(1)
# but the K points themselves should not be considered
# (the trick is that -np.inf ± a finite quantity always yields -np.inf)
distsums[indices] = -np.inf
prev_sum = 0.0
for loop in range(MAX_LOOPS):
for i in range(K):
# remove this point from the K points
old_index = indices[i]
# calculate its sum of distances from the K points
distsums[old_index] = distances(data[indices], data[old_index]).sum()
# update the sums of distances of all points from the K-1 points
distsums -= distances(data, data[old_index])
# choose the point with the greatest sum of distances from the K-1 points
new_index = np.argmax(distsums)
# add it to the K points replacing the old_index
indices[i] = new_index
# don't consider it any more in distsums
distsums[new_index] = -np.inf
# update the sums of distances of all points from the K points
distsums += distances(data, data[new_index])
# sum all mutual distances of the K points
curr_sum = spatial.distance.pdist(data[indices]).sum()
# break if the sum hasn't changed
if curr_sum == prev_sum:
break
prev_sum = curr_sum
if ND == 2:
X, Y = data.T
marker_size = 4
plt.scatter(X, Y, s=marker_size)
plt.scatter(X[indices], Y[indices], s=marker_size)
plt.grid(True)
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
Output:
Splitting the data into 3 equidistant Gaussian distributions the output is this:
Assuming that if you read your csv file with N (10000) rows and D dimension (or features) into a N*D martix X. You can calculate the distance between each point and store it in a distance matrix as follows:
import numpy as np
X = np.asarray(X) ### convert to numpy array
distance_matrix = np.zeros((X.shape[0],X.shape[0]))
for i in range(X.shape[0]):
for j in range(i+1,X.shape[0]):
## We compute triangle matrix and copy the rest. Distance from point A to point B and distance from point B to point A are the same.
distance_matrix[i][j]= np.linalg.norm(X[i]-X[j]) ## Here I am calculating Eucledian distance. Other distance measures can also be used.
#distance_matrix = distance_matrix + distance_matrix.T - np.diag(np.diag(distance_matrix)) ## This syntax can be used to get the lower triangle of distance matrix, which is not really required in your case.
K = 5 ## Number of points that you want to pick
indexes = np.unravel_index(np.argsort(distance_matrix.ravel())[-1*K:], distance_matrix.shape)
print(indexes)
Bottom Line Up Front: Dealing with multiple equally distant points and the Curse of Dimensionality are going to be larger problems than just finding the points. Spoiler alert: There's a surprise ending.
I think this an interesting question but I'm bewildered by some of the answers. I think this is, in part, due to the sketches provided. You've no doubt noticed the answers look similar -- 2d, with clusters -- even though you indicated a wider scope was needed. Because others will eventually see this, I'm going to step through my thinking a bit slowly so bear with me for the early part.
It makes sense to start with a simplified example to see if we can generalize a solution with data that's easy to grasp and a linear 2D model is easiest of the easy.
We don't need to calculate all the distances though. We just need the ones at the extremes. So we can then take the top and bottom few values:
right = lin_2_D.nlargest(8, ['x'])
left = lin_2_D.nsmallest(8, ['x'])
graph = sns.scatterplot(x="x", y="y", data=lin_2_D, color = 'gray', marker = '+', alpha = .4)
sns.scatterplot(x = right['x'], y = right['y'], color = 'red')
sns.scatterplot(x = left['x'], y = left['y'], color = 'green')
fig = graph.figure
fig.set_size_inches(8,3)
What we have so far: Of 100 points, we've eliminated the need to calculate the distance between 84 of them. Of what's left we can further drop this by ordering the results on one side and checking the distance against the others.
You can imagine a case where you have a couple of data points way off the trend line that could be captured by taking the greatest or least y values, and all that starts to look like Walter Tross's top diagram. Add in a couple of extra clusters and you get what looks his bottom diagram and it appears that we're sort of making the same point.
The problem with stopping here is the requirement you mentioned is that you need a solution that works for any number of dimensions.
The unfortunate part is that we run into four challenges:
Challenge 1: As you increase the dimensions you can run into a large number of cases where you have multiple solutions when seeking midpoints. So you're looking for k furthest points but have a large number of equally valid possible solutions and no way prioritizing them. Here are two super easy examples illustrate this:
A) Here we have just four points and in only two dimensions. You really can't get any easier than this, right? The distance from red to green is trivial. But try to find the next furthest point and you'll see both of the black points are equidistant from both the red and green points. Imagine you wanted the furthest six points using the first graphs, you might have 20 or more points that are all equidistant.
edit: I just noticed the red and green dots are at the edges of their circles rather than at the center, I'll update later but the point is the same.
B) This is super easy to imagine: Think of a D&D 4 sided die. Four points of data in a three-dimensional space, all equidistant so it's known as a triangle-based pyramid. If you're looking for the closest two points, which two? You have 4 choose 2 (aka, 6) combinations possible. Getting rid of valid solutions can be a bit of a problem because invariably you face questions such as "why did we get rid of these and not this one?"
Challenge 2: The Curse of Dimensionality. Nuff Said.
Challenge 3 Revenge of The Curse of Dimensionality Because you're looking for the most distant points, you have to x,y,z ... n coordinates for each point or you have to impute them. Now, your data set is much larger and slower.
Challenge 4 Because you're looking for the most distant points, dimension reduction techniques such as ridge and lasso are not going to be useful.
So, what to do about this?
Nothing.
Wait. What?!?
Not truly, exactly, and literally nothing. But nothing crazy. Instead, rely on a simple heuristic that is understandable and computationally easy. Paul C. Kainen puts it well:
Intuitively, when a situation is sufficiently complex or uncertain,
only the simplest methods are valid. Surprisingly, however,
common-sense heuristics based on these robustly applicable techniques
can yield results which are almost surely optimal.
In this case, you have not the Curse of Dimensionality but rather the Blessing of Dimensionality. It's true you have a lot of points and they'll scale linearly as you seek other equidistant points (k) but the total dimensional volume of space will increase to power of the dimensions. The k number of furthest points you're is insignificant to the total number of points. Hell, even k^2 becomes insignificant as the number of dimensions increase.
Now, if you had a low dimensionality, I would go with them as a solution (except the ones that are use nested for loops ... in NumPy or Pandas).
If I was in your position, I'd be thinking how I've got code in these other answers that I could use as a basis and maybe wonder why should I should trust this other than it lays out a framework on how to think through the topic. Certainly, there should be some math and maybe somebody important saying the same thing.
Let me reference to chapter 18 of Computer Intensive Methods in Control and Signal Processing and an expanded argument by analogy with some heavy(-ish) math. You can see from the above (the graph with the colored dots at the edges) that the center is removed, particularly if you followed the idea of removing the extreme y values. It's a though you put a balloon in a box. You could do this a sphere in a cube too. Raise that into multiple dimensions and you have a hypersphere in a hypercube. You can read more about that relationship here.
Finally, let's get to a heuristic:
Select the points that have the most max or min values per dimension. When/if you run out of them pick ones that are close to those values if there isn't one at the min/max. Essentially, you're choosing the corners of a box For a 2D graph you have four points, for a 3D you have the 8 corners of the box (2^3).
More accurately this would be a 4d or 5d (depending on how you might assign the marker shape and color) projected down to 3d. But you can easily see how this data cloud gives you the full range of dimensions.
Here is a quick check on learning; for purposes of ease, ignore the color/shape aspect: It's easy to graphically intuit that you have no problem with up to k points short of deciding what might be slightly closer. And you can see how you might need to randomize your selection if you have a k < 2D. And if you added another point you can see it (k +1) would be in a centroid. So here is the check: If you had more points, where would they be? I guess I have to put this at the bottom -- limitation of markdown.
So for a 6D data cloud, the values of k less than 64 (really 65 as we'll see in just a moment) points are pretty easy. But...
If you don't have a data cloud but instead have data that has a linear relationship, you'll 2^(D-1) points. So, for that linear 2D space, you have a line, for linear 3D space, you'd have a plane. Then a rhomboid, etc. This is true even if your shape is curved. Rather than do this graph myself, I'm using the one from an excellent post on by Inversion Labs on Best-fit Surfaces for 3D Data
If the number of points, k, is less than 2^D you need a process to decide what you don't use. Linear discriminant analysis should be on your shortlist. That said, you can probably satisfice the solution by randomly picking one.
For a single additional point (k = 1 + 2^D), you're looking for one that is as close to the center of the bounding space.
When k > 2^D, the possible solutions will scale not geometrically but factorially. That may not seem intuitive so let's go back to the two circles. For 2D you have just two points that could be a candidate for being equidistant. But if that were 3D space and rotate the points about the line, any point in what is now a ring would suffice as a solution for k. For a 3D example, they would be a sphere. Hyperspheres (n-spheres) from thereon. Again, 2^D scaling.
One last thing: You should seriously look at xarray if you're not already familiar with it.
Hope all this helps and I also hope you'll read through the links. It'll be worth the time.
*It would be the same shape, centrally located, with the vertices at the 1/3 mark. So like having 27 six-sided dice shaped like a giant cube. Each vertice (or point nearest it) would fix the solution. Your original k+1 would have to be relocated too. So you would select 2 of the 8 vertices. Final question: would it be worth calculating the distances of those points against each other (remember the diagonal is slightly longer than the edge) and then comparing them to the original 2^D points? Bluntly, no. Satifice the solution.
If you're interested in getting the most distant points you can take advantage of all of the methods that were developed for nearest neighbors, you just have to give a different "metric".
For example, using scikit-learn's nearest neighbors and distance metrics tools you can do something like this
import numpy as np
from sklearn.neighbors import BallTree
from sklearn.neighbors.dist_metrics import PyFuncDistance
from sklearn.datasets import make_blobs
from matplotlib import pyplot as plt
def inverted_euclidean(x1, x2):
# You can speed this up using cython like scikit-learn does or numba
dist = np.sum((x1 - x2) ** 2)
# We invert the euclidean distance and set nearby points to the biggest possible
# positive float that isn't inf
inverted_dist = np.where(dist == 0, np.nextafter(np.inf, 0), 1 / dist)
return inverted_dist
# Make up some fake data
n_samples = 100000
n_features = 200
X, _ = make_blobs(n_samples=n_samples, centers=3, n_features=n_features, random_state=0)
# We exploit the BallTree algorithm to get the most distant points
ball_tree = BallTree(X, leaf_size=50, metric=PyFuncDistance(inverted_euclidean))
# Some made up query, you can also provide a stack of points to query against
test_point = np.zeros((1, n_features))
distance, distant_points_inds = ball_tree.query(X=test_point, k=10, return_distance=True)
distant_points = X[distant_points_inds[0]]
# We can try to visualize the query results
plt.plot(X[:, 0], X[:, 1], ".b", alpha=0.1)
plt.plot(test_point[:, 0], test_point[:, 1], "*r", markersize=9)
plt.plot(distant_points[:, 0], distant_points[:, 1], "sg", markersize=5, alpha=0.8)
plt.show()
Which will plot something like:
There are many points that you can improve on:
I implemented the inverted_euclidean distance function with numpy, but you can try to do what the folks of scikit-learn do with their distance functions and implement them in cython. You could also try to jit compile them with numba.
Maybe the euclidean distance isn't the metric you would like to use to find the furthest points, so you're free to implement your own or simply roll with what scikit-learn provides.
The nice thing about using the Ball Tree algorithm (or the KdTree algorithm) is that for each queried point you have to do log(N) comparisons to find the furthest point in the training set. Building the Ball Tree itself, I think also requires log(N) comparison, so in the end if you want to find the k furthest points for every point in the ball tree training set (X), it will have almost O(D N log(N)) complexity (where D is the number of features), which will increase up to O(D N^2) with the increasing k.
I am looking for an efficient way to detect plateaus in otherwise very noisy data. The plateaus are always relatively broad A simple example of what this data could look like:
test=np.random.uniform(0.9,1,100)
test[10:20]=0
plt.plot(test)
Note that there can be multiple plateaus (which should all be detected) which can have different values.
I've tried using scipy.signal.argrelextrema, but it doesn't seem to be doing what I want it to:
peaks=argrelextrema(test,np.less,order=25)
plt.vlines(peaks,ymin=0, ymax=1)
I don't need the exact interval of the plateau- a rough range estimate would be enough, as long as that estimate is bigger or equal than the actual plateau range. It should be relatively efficient however.
There is a method scipy.signal.find_peaks that you can try, here is an exmple
import numpy
from scipy.signal import find_peaks
test = numpy.random.uniform(0.9, 1.0, 100)
test[10 : 20] = 0
peaks, peak_plateaus = find_peaks(- test, plateau_size = 1)
although find_peaks only finds peaks, it can be used to find valleys if the array is negated, then you do the following
for i in range(len(peak_plateaus['plateau_sizes'])):
if peak_plateaus['plateau_sizes'][i] > 1:
print('a plateau of size %d is found' % peak_plateaus['plateau_sizes'][i])
print('its left index is %d and right index is %d' % (peak_plateaus['left_edges'][i], peak_plateaus['right_edges'][i]))
it will print
a plateau of size 10 is found
its left index is 10 and right index is 19
This is really just a "dumb" machine learning task. You'll want to code a custom function to screen for them. You have two key characteristics to a plateau:
They're consecutive occurrences of the same value (or very nearly so).
The first and last points deviate strongly from a forward and backward moving average, respectively. (Try quantifying this based on the standard deviation if you expect additive noise, for geometric noise you'll have to take the magnitude of your signal into account too.)
A simple loop should then be sufficient to calculate a forward moving average, stdev of points in that forward moving average, reverse moving average, and stdev of points in that reverse moving average.
Read until you find a point well outside the regular noise (compare to variance). Start buffering those indices into a list.
Keep reading and buffering indices into that list while they have the same value (or nearly the same, if your plateaus can be a little rough; you'll want to use some tolerance plus the standard deviation of your plateaus, or just some tolerance if you expect them all to behave similarly).
If the variance of the points in your buffer gets too high, it's not a plateau, too rough; throw it out and start scanning again from your current position.
If the last value was very different from the previous (on the order of the change that triggered your code to start buffering indices) and in the opposite direction of the original impulse, cap your buffer here; you've got a plateau there.
Now do whatever you want with the points at those indices. Delete them, replace them with a linear interpolation between the two boundary points, whatever.
I could generate some noise and give you some sample code, but this is really something you're going to have to adapt to your application. (For example, there's a shortcoming in this method that a plateau which captures a point on the middle of the "cliff edge" may leave that point when it removes the rest of the plateau. If that's something you're worried about, you'll have to do a little more exploring after you ID the plateau.) You should be able to do this in a single pass over the data, but it might be wise to get some statistics on the whole set first to intelligently tweak your thresholds.
If you have an exact definition of what constitutes a plateau, you can make this a lot less hand-wavey and ML-looking, but so long as you're trying to identify fuzzy pattern, you're gonna have to take a statistics-based approach.
I had a similar problem, and found a simple heuristic solution shared below. I find plateaus as ranges of constant gradient of the signal. You could change the code to also check that the gradient is (close to) 0.
I apply a moving average (uniform_filter_1d) to filter out noise. Also, I calculate the first and second derivative of the signal numerically, so I'm not sure it matches the requirement of efficiency. But it worked perfectly for my signal and might be a good starting point for others.
def find_plateaus(F, min_length=200, tolerance = 0.75, smoothing=25):
'''
Finds plateaus of signal using second derivative of F.
Parameters
----------
F : Signal.
min_length: Minimum length of plateau.
tolerance: Number between 0 and 1 indicating how tolerant
the requirement of constant slope of the plateau is.
smoothing: Size of uniform filter 1D applied to F and its derivatives.
Returns
-------
plateaus: array of plateau left and right edges pairs
dF: (smoothed) derivative of F
d2F: (smoothed) Second Derivative of F
'''
import numpy as np
from scipy.ndimage.filters import uniform_filter1d
# calculate smooth gradients
smoothF = uniform_filter1d(F, size = smoothing)
dF = uniform_filter1d(np.gradient(smoothF),size = smoothing)
d2F = uniform_filter1d(np.gradient(dF),size = smoothing)
def zero_runs(x):
'''
Helper function for finding sequences of 0s in a signal
https://stackoverflow.com/questions/24885092/finding-the-consecutive-zeros-in-a-numpy-array/24892274#24892274
'''
iszero = np.concatenate(([0], np.equal(x, 0).view(np.int8), [0]))
absdiff = np.abs(np.diff(iszero))
ranges = np.where(absdiff == 1)[0].reshape(-1, 2)
return ranges
# Find ranges where second derivative is zero
# Values under eps are assumed to be zero.
eps = np.quantile(abs(d2F),tolerance)
smalld2F = (abs(d2F) <= eps)
# Find repititions in the mask "smalld2F" (i.e. ranges where d2F is constantly zero)
p = zero_runs(np.diff(smalld2F))
# np.diff(p) gives the length of each range found.
# only accept plateaus of min_length
plateaus = p[(np.diff(p) > min_length).flatten()]
return (plateaus, dF, d2F)
Good Morning,
I am implimenting a Cressman filter for doing distance weighted averages in Numpy.. I use a Ball Tree implimentation (thanks to Jake VanderPlas) to return a list of locatations for each point in a request array.. the query array (q) is shape [n,3] and at each point has the x,y,z at point I want to do a weighted average of points stored in the tree.. the code wrapped around the tree returns points within a certain distance so I get an arrays of variable length arrays..
I use a where to find non-empty entries (ie positions where there were at least some points within the radius of influence) creating the isgood array...
I then loop over all query points to return the weighted average of the values self.z (note that this can either be dims=1 or dims=2 to allow multiple co-gridding)
so the thing that complilcates using map or other quicker methods is the nonuniformity of the lengths of the arrays within self.distances and self.locations... I am still fairly green to numpy/python but I can not think of a way to do this array wise (ie not reverting to loops)
self.locations, self.distances = self.tree.query_radius( q, r, return_distance=True)
t2=time()
if debug: print "Removing voids"
isgood=np.where( np.array([len(x) for x in self.locations])!=0)[0]
interpol = np.zeros( (len(self.locations),) + np.shape(self.z[0]) )
interpol.fill(np.nan)
for dist, ix, posn, roi in zip(self.distances[isgood], self.locations[isgood], isgood, r[isgood]):
interpol[isgood[jinterpol]] = np.average(self.z[ix], weights=(roi**2-dist**2) / (roi**2 + dist**2), axis=0)
jinterpol += 1
so... Any hints of how to speed up the loop?..
For a typical mapping as appied to mapping weather radar data from a range,azimuth,elevation grid to a cartesian grid where I have 240x240x34 points and 4 variables takes 99s to query the tree (written by Jake in C and cython.. this is the hard step as you need to search the data!) and 100 seconds to do the calculation... which in my opinon is slow?? where is my overhead? is np.mean efficient or as it is called millions of times is there a speedup to be gained here? would I gain by using float32 rather than the default64... or even scaling to ints (which would be very hard to avoid wrap around in the weighting... any hints gratefully recieved!
You can find a discussion about the relative merits of the Cressman scheme vs using a Gaussian weight function at:
http://www.flame.org/~cdoswell/publications/radar_oa_00.pdf
The key is to match the smoothing parameter to the data (I recommend using a value close to the average spacing between data points). Once you know the smoothing parameter, you can set an "influence radius" equal to the radius where the weight function falls to 0.01 (or whatever).
How important is speed? If you wish, rather than calling an exponential function to determine the weight, you can make up a discrete table of weights for some fixed number of radius increments, which speeds up the calculation considerably. Ideally, you should have data outside the grid boundaries that can be used in the mapping of the values surrounding the gridpoints (even on the boundary points of the grid). Note this is NOT a true interpolation scheme - it won't return the observed values at the data points exactly. Like the Cressman scheme, it's a low-pass filer.
I have an array of points in unknown dimensional space, such as:
data=numpy.array(
[[ 115, 241, 314],
[ 153, 413, 144],
[ 535, 2986, 41445]])
and I would like to find the average euclidean distance between all points.
Please note that I have over 20,000 points, so I would like to do this as efficiently as possible.
Thanks.
If you have access to scipy, you could try the following:
scipy.spatial.distance.cdist(data,data)
Well, I don't think that there is a super fast way to do this, but this should do it:
tot = 0.
for i in xrange(data.shape[0]-1):
tot += ((((data[i+1:]-data[i])**2).sum(1))**.5).sum()
avg = tot/((data.shape[0]-1)*(data.shape[0])/2.)
Now that you've stated your goal of finding the outliers, you are probably better off computing the sample mean and, with that, the sample variance, since both those operations will give you an O(nd) operation. With that, you should be able to find outliers (e.g. excluding points further from the mean than some fraction of the std. dev.), and that filtering process should be possible to perform in O(nd) time for a total of O(nd).
You might be interested in a refresher on Chebyshev's inequality.
Is it ever worthwhile to optimize without a working solution? Also, computation of a distance matrix over the entire data set rarely needs to be fast because you only do it once--when you need to know a distance between two points, you just look it up, it's already calculated.
So if you don't have a place to start, here's one. If you want to do this in Numpy without the need to write any inline fortran or C, that should be no problem, though perhaps you want to include this small vector-based virtual machine called "numexpr" (available on PyPI, trivial to intall) which in this case gave a 5x performance boost versus Numpy alone.
Below i've calculated a distance matrix for 10,000 points in 2D space (a 10K x 10k matrix giving the distance between all 10k points). This took 59 seconds on my MBP.
import numpy as NP
import numexpr as NE
# data are points in 2D space (x, y)--obviously, this code can accept data of any dimension
x = NP.random.randint(0, 10, 10000)
y = NP.random.randint(0, 10, 10000)
fnx = lambda q : q - NP.reshape(q, (len(q), 1))
delX = fnx(x)
delY = fnx(y)
dist_mat = NE.evaluate("(delX**2 + delY**2)**0.5")
There's no getting around the number of evaluations:
Sum[n-i, {i, 0, n}] = http://www.equationsheet.com/latexrender/pictures/27744c0bd81116aa31c138ab38a2aa87.gif
But you can save yourself the expense of all those square roots if you can get by with an approximate result. It depends on your needs.
If you're going to calculate an average, I would advise you to not try putting all the values into an array before calculating. Just calculate the sum (and sum of squares if you need standard deviation as well) and throw away each value as you calculate it.
Since
and
, I don't know if this means you have to multiply by two somewhere.
If you want a fast and inexact solution, you could probably adapt the Fast Multipole Method algorithm.
Points that are separated by a small distance have a smaller contribution to the final average distance, so it would make sense to group points into clusters and compare the clusters distances.