When I solve the problem of Linear Programming, like in the following formula, I want the result of x all to be int type
Consider the following problem:
Minimize: f = -1*x[0] + 4*x[1]
Subject to:
-3*x[0] + 1*x[1] <= 6
1*x[0] + 2*x[1] <= 4
x[1] >= -3
where: -inf <= x[0] <= inf
next is the python coder
>>> c = [-1, 4]
>>> A = [[-3, 1], [1, 2]]
>>> b = [6, 4]
>>> x0_bounds = (None, None)
>>> x1_bounds = (-3, None)
>>> res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds),
... options={"disp": True})
>>> print(res)
Optimization terminated successfully.
Current function value: -11.428571
Iterations: 2
status: 0
success: True
fun: -11.428571428571429
x: array([-1.14285714, 2.57142857])
message: 'Optimization terminated successfully.'
nit: 2
From the docs:
method : str, optional Type of solver. At this time only ‘simplex’ is
supported.
Simplex cannot handle integrality constraints so you cannot solve integer programming problems with scipy.optimize.linprog yet. You can try other libraries like PuLP, Pyomo or CVXOPT.
Scipy added scipy.optimize.milp in version 1.9.0 just recently.
It also added the integrality= parameter to the existing linprog. So your code can be updated as follows
import scipy.optimize
import numpy as np
c = [-1, 4]
A = [[-3, 1.], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3.5, None)
res = scipy.optimize.linprog(
c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds),
integrality=[1, 1],
options={"disp": True})
res.x
array([10., -3.])
Where integrality=[1, 1] specifies that both variables x0 and x1 are to be integers.
(I changed a bound from -3 to -3.5 so that it actually has an interesting difference in solution between integers and reals.)
Following is a python module that includes a function LPmi(.) to solve mixed integer linear programs. It employs the Branch and Bound algorithm on top of scipy.optimize.linprog(.). It is this responder's creation; anyone is free to use or modify it. It also includes an example in the form of a test(.) function.
import numpy as np
from scipy.optimize import linprog
import copy
class LP:
minimise = True
c = None
A_ub = None
b_ub = None
A_eq = None
b_eq = None
bounds = None
method = ""
fun = 0.
x = None
success = False
def __init__(self,c,minimise=True,Aub=None, bub=None, Aeq=None, beq=None,
bounds=None,method="revised simplex"):
self.minimise = minimise
if self.minimise:
self.c = c
else:
self.c = -1 * c
self.A_ub = Aub
self.b_ub = bub
self.A_eq = Aeq
self.b_eq = beq
self.bounds = bounds
self.method = method
def cal(self):
res = linprog(self.c,A_ub=self.A_ub, b_ub=self.b_ub,
A_eq=self.A_eq, b_eq=self.b_eq,bounds=self.bounds,
method=self.method)
if res["success"] == False:
return res["message"]
else:
self.success = True
if self.minimise:
self.fun = res["fun"]
else:
self.fun = -1 * res["fun"]
self.x = res["x"]
def get_res(self):
return (self.x, self.fun, self.success)
class LP_Data:
minimise = True
c = None
A_ub = None
b_ub = None
A_eq = None
b_eq = None
bounds = None
method = ""
def __init__(self,c,minimise=True,Aub=None, bub=None, Aeq=None, beq=None,
bounds=None,method="revised simplex"):
self.minimise = minimise
if self.minimise:
self.c = c
else:
self.c = -1 * c
self.A_ub = Aub
self.b_ub = bub
self.A_eq = Aeq
self.b_eq = beq
self.bounds = bounds
self.method = method
def set_bounds(self,bounds_list):
self.bounds = bounds_list
class LPd:
data = []
fun = 0.
x = []
success = False
result = None
def __init__(self,lp_data):
self.data = lp_data
self.clip_bound = np.array(list(zip(*self.data.bounds)))
def cal(self):
result = None
res = linprog(self.data.c,A_ub=self.data.A_ub, b_ub=self.data.b_ub,
A_eq=self.data.A_eq, b_eq=self.data.b_eq,
bounds=self.data.bounds,
method=self.data.method)
if res["success"] == False:
self.result = ([], np.NaN, False, None)
else:
self.success = True
if self.data.minimise:
self.fun = res["fun"]
else:
self.fun = -1 * res["fun"]
self.x = res["x"].clip(self.clip_bound[0], self.clip_bound[1])
self.result = (self.x, self.fun, self.success, self.data)
def get_res(self):
return self.result
def level_iterator(level0, int_index):
level1 = []
for k in range(len(level0)):
for i in int_index:
if level0[k][0][i-1] != np.floor(level0[k][0][i-1]):
cur_bounds = level0[k][3].bounds[i-1]
lp = LPd(copy.deepcopy(level0[k][3]))
lp.data.bounds[i-1] = (cur_bounds[0],
max(cur_bounds[0], floor(level0[k][0][i-1])))
lp.cal()
output = lp.get_res()
level1.append(output)
lp = LPd(copy.deepcopy(level0[k][3]))
lp.data.bounds[i-1] = (min(np.ceil(level0[k][0][i-1]),
cur_bounds[1]), cur_bounds[1])
lp.cal()
output = lp.get_res()
level1.append(output)
break
return level1
def intsol(solution,int_index):
is_int = True
for i in int_index:
if solution[0][i-1] != np.floor(solution[0][i-1]):
is_int = False
break
return is_int
def feasiblelevl(level, solution, int_index):
newlevel = []
solution = solution
for k in range(len(level)):
lp = level[k]
if len(lp[0]) > 0:
if lp[2] == False:
pass
elif intsol(lp,int_index) and lp[1] >= solution[1]:
solution = lp
elif lp[1] > solution[1]:
newlevel.append(lp)
return (newlevel, solution)
def LPmi(data, int_index):
level0 = []
lp = LPd(data)
lp.cal()
level0.append(lp.get_res())
solution = [None,-np.inf,None,None]
level0 = (level0, solution)
level0 = feasiblelevl(level0[0], solution, int_index)
if len(level0[0]) == 0:
return level0[1][0:3]
else:
for k in range(10):
level1 = level_iterator(level0[0],int_index)
level1 = feasiblelevl(level1, solution, int_index)
if len(level1[0]) == 0:
break
level0 = level1
return level1[1][0:3]
def test():
c = np.array([3.,7])
minimise = False
A_ub = np.array([[7.,8],[1,3]])
b_ub = np.array([56,12])
data = LP_Data(c,minimise,A_ub,b_ub,bounds=[(0,None),(0,None)])
int_index = [2] #or [1,2] or [] or [1]#
out = LPmi(data,int_index)
print(out)
if __name__ == "__main__":
np.set_printoptions(precision=3,suppress=True)
test()
Inspired by w-k-yeung, and having always wanted to do a little implementation of branch and bound, I cooked up my own version.
Do not use this. It's not well-tested and won't perform well. It won't find all possible solutions. There are too many good, free, OSS solutions to recommend this one. However....
If you just want something simple and easy to setup w/ your existing code, and it's a toy problem, and you don't care about the quality of results (or plan to manually check results for final usage), AND you're just doing this for fun, you may want to have a look at this.
I've implemented the branching as depth-first, so memory usage tends to stay roughly constant (but is a function of the search depth you choose and the size of your model.) I've tried to be good with memory where I could and implemented a few optimizations. It's still painfully slow. I'm playing with a 51-variable problem where each has a range of 0-4 or so, and it'll run for days. Plenty of FOSS packages should solve this in seconds or minutes.
Enjoy! This code is this responder's creation. Anyone is free to use or modify it. It has no warranty. I will not support it.
"""A Mixed-Integer solver based on scipy.optimize.linprog.
This code implements branch-and-bound on the linear relaxation of a given
mixed-integer program. It requires numpy and scipy.optimize.
Usage examples are given in the test() and test2() functions. Parameters of
MipModel are mostly as documented in scipy.optimize.linprog. The additional
parameter "int_vars" gives a sequence of indexes of the variables that should be
constrained to integer solutions.
Typical usage will follow the pattern of:
import mip
mip_model = mip.MipModel(C, minimize, Aub, bub, Aeq, beq, bounds, int_vars)
mip.set_debug_prints(True)
best_solution = mip.find_solutions(mip_model, depth_limit=C.shape[0] - 1)
print(f' soln: {best_solution.x}\n objective value: {best_solution.fun}\n'
f'success: '{best_solution.success}')
"""
import collections
from dataclasses import dataclass, field, replace
import datetime
import itertools
import numpy as np
from scipy.optimize import linprog
import sys
from typing import Generator, List, MutableSequence, Optional, Sequence, Tuple
_DEBUG = True
def set_debug_prints(is_on):
global _DEBUG
_DEBUG = is_on
#dataclass(frozen=True)
class MipResult:
model: 'MipModel'
fun: float = np.inf
x: np.ndarray = np.array([])
success: bool = False
def is_int_soln(self) -> bool:
"""Returns True if the result has integer values for integer variables."""
return np.all(self.x[self.model.int_vars] ==
np.floor(self.x[self.model.int_vars]))
def vars_to_split(self) -> List[int]:
"""Returns the list of integer var indexes with non-integer solutions."""
if self.success:
return list(np.where(self.x[self.model.int_vars] !=
np.floor(self.x[self.model.int_vars]))[0])
else:
return []
#dataclass(frozen=True)
class MipModel:
c: np.ndarray
minimize: bool = True
Aub: Optional[np.ndarray] = None
bub: Optional[np.ndarray] = None
Aeq: Optional[np.ndarray] = None
beq: Optional[np.ndarray] = None
bounds : Tuple = ()
int_vars: Sequence[int] = field(default_factory=list)
method: str = 'revised simplex'
clip_bound: np.ndarray = field(init=False)
def __post_init__(self):
if not self.minimize:
object.__setattr__(self, 'c', -1 * self.c)
if not self.bounds:
object.__setattr__(self, 'clip_bound',
np.tile(np.array([[0], [np.inf]]), self.c.shape[0]))
else:
lower, upper = zip(*self.bounds)
numeric_upper = [np.inf if u is None else u for u in upper]
object.__setattr__(self, 'clip_bound',
np.array((lower, numeric_upper), dtype=np.float64))
def solve(self) -> MipResult:
res = linprog(self.c,A_ub=self.Aub, b_ub=self.bub, A_eq=self.Aeq,
b_eq=self.beq, bounds=self.bounds, method=self.method)
if res["success"]:
result = MipResult(
self,
(int(self.minimize) * 2 - 1) * res['fun'],
res['x'].clip(self.clip_bound[0], self.clip_bound[1]),
res['success'])
else:
result = MipResult(self)
return result
def split_on_var(self, var_i: int, value: Optional[float] = None
) -> Generator['MipModel', None, None]:
"""Yields two new models with bound `var_i` split at `value` or middle"""
assert var_i in range(len(self.bounds)), 'Bad variable index for split'
bound_i = self.bounds[var_i]
if value is None:
if bound_i[1] is not None:
value = self.clip_bound[:, var_i].sum() / 2.0
else:
yield self
return
# We know where to split, have to treat None carefully.
elif bound_i[1] is None:
bound_i = (bound_i[0], np.inf)
# else bound and value are set numerically.
assert value >= bound_i[0] and value <= bound_i[1], 'Bad value in split.'
new_bounds = (*self.bounds[:var_i],
(bound_i[0], max(bound_i[0], np.floor(value))),
*self.bounds[var_i + 1:])
yield replace(self, bounds=new_bounds)
if np.isinf(bound_i[1]):
new_upper = (np.ceil(value), None)
else:
new_upper = (min(np.ceil(value), bound_i[1]), bound_i[1])
new_bounds = (*self.bounds[:var_i],
new_upper,
*self.bounds[var_i + 1:])
yield replace(self, bounds=new_bounds)
def filter_result(result: MipResult, best_soln: MipResult,
results: MutableSequence[MipResult]=[]
) -> Tuple[MutableSequence[MipResult], MipResult]:
if result.success:
if result.is_int_soln() and result.fun <= best_soln.fun:
if _DEBUG:
print('\n', f' {result.x}: {result.fun}')
sys.stdout.flush()
best_soln = result
else:
results.append(result)
return results, best_soln
def walk_branches(solutions: Sequence[MipResult], best_soln: MipResult,
depth_limit: int) -> Tuple[MipResult, int]:
"""Does depth-first search w/ branch & bound on the models in `solutions`.
This function keeps track of a best solution and branches on variables
for each solution in `solutions` up to a depth of `depth_limit`. Intermediate
best solutions are printed with objective function and timestamp.
Args:
solutions: Iterable of MipResult, assumes "not result.is_int_soln()"
best_soln: MipResult of the best integer solution (by fun) so far.
depth_limit: Integer depth limit of the search. This function will use up
to (2**depth_limit + 1) * 8 bytes of memory to store hashes that
identify previoulsy solved instances. Shallow copies are used
aggressively, but memory may be an issue as a function of this
parameter. CPU time _certainly_ is. Remove use of "repeats" for constant
memory utilization.
Returns: The best MipResult obtained in the search (by result.fun) and a
count of stopped branches.
"""
def chirp(top_count):
if _DEBUG:
now = datetime.datetime.now()
print(f'{len(stack):3} {now.strftime("%m-%d %H:%M:%S")}')
sys.stdout.flush()
num_cut = 0
repeats = set()
# Put solutions in a stack paired with variable indexs that need splitting.
# Pop an element, split it, and push any new branches back on, reducing vars
# to split by one element. Repeat until stack_limit reached or stack is
# empty.
stack = [(s, s.vars_to_split()) for s in solutions]
stack_limit = len(stack) + depth_limit + 1
start_depth = len(stack)
chirp(start_depth)
while stack and (len(stack) <= stack_limit):
if len(stack) < start_depth:
chirp(len(stack))
start_depth = len(stack)
cur_depth = len(stack) - start_depth
soln, split_vars = stack.pop()
var_i = split_vars.pop()
if split_vars:
stack.append((soln, split_vars))
for model in soln.model.split_on_var(var_i, soln.x[var_i]):
# Skip any set of bounds we've (probably) already seen.
bounds_hash = hash(model.bounds)
if bounds_hash in repeats:
continue
# Filter out any infeasible or integer solutions to avoid further
# processing.
result = model.solve()
if result.success:
if result.is_int_soln() and result.fun <= best_soln.fun:
if _DEBUG:
now = datetime.datetime.now()
time = now.strftime("%H:%M:%S")
print(f'\n {result.x}: {result.fun} (d={cur_depth}, {time})')
sys.stdout.flush()
best_soln = result
elif len(stack) < stack_limit:
new_vars = result.vars_to_split()
if new_vars:
stack.append((result, new_vars))
else:
num_cut += 1
# Save bounds for all but the last layer (which uses too much storage
# for the compute it saves.)
if cur_depth < depth_limit - 1:
repeats.add(bounds_hash)
return best_soln, num_cut
def find_solutions(mip_model: MipModel, depth_limit: int = 0) -> MipResult:
"""Searches for mixed integer solutions to mip_model with branch & bound.
This function searches for mixed-integer solutions to the given model by
branching on the linear relaxtion of the model. Results will be returned
early (if set_debug_prints(True) is called) by passing over results in
depth_limit // npasses (currently 3), so depth_limit can be passed in large
and the program terminated early if adequate results are found.
The search does not (at the moment) branch on all variables, only those for
which the linear relaxation gives non-integer solutions. This may limit the
search space and miss some solutions. To fully exhaust the search space, set
depth_limit to the number of variables you have.
If set_debug_prints(True) is called before, the search will also print a
countdown and timestamps to give a since of how far the search is and over
what runtime.
Args:
mip_model: The MipModel to search.
depth_limit: The maximum depth of search tree branching. Default 0 means
branch for each variable in the model (i.e. full search).
Returns:
MipResult of the best solution found.
"""
best_soln = MipResult(mip_model)
linear_soln = mip_model.solve()
if not linear_soln.success:
print('Model is infeasible even for linear relaxation.')
return best_soln
if not len(mip_model.int_vars):
return linear_soln
# Start with some reasonable areas to search.
solutions = []
models = [mip_model] + list(itertools.chain.from_iterable(
mip_model.split_on_var(v) for v in mip_model.int_vars))
for result in map(MipModel.solve, models):
solutions, best_soln = filter_result(result, best_soln, solutions)
# Default depth_limit means branch on all the vars.
if depth_limit == 0:
depth_limit = mip_model.c.shape[0]
# Since we did one split above, we've already fixed one var and done one
# level, so depth_limit can be reduced.
best_soln, num_cut = walk_branches(solutions, best_soln, depth_limit - 1)
if _DEBUG:
now = datetime.datetime.now()
print('{}: {} branches un-explored.\n'.format(
now.strftime("%m-%d %H:%M:%S"),
num_cut))
return best_soln
def test():
"""Implements the example from scipy.optimizie.linprog doc w/ 1 int var."""
set_debug_prints(False)
C = np.array([-1, 4])
minimize = True
Aub = np.array([[-3, 1],[1, 2]])
bub = np.array([6, 4])
int_vars = [1] # or [0, 1] or [] or [0]
mip_model = MipModel(C, minimize, Aub, bub, bounds=((0, None), (-3, None)),
int_vars=int_vars)
out = find_solutions(mip_model)
print(f'test:\n soln: {out.x}\n objective value: {out.fun}\n success: '
f'{out.success}')
def test2():
"""Implements the reference problem from https://xkcd.com/287/."""
import math
set_debug_prints(True)
print('test2: (takes ~15 seconds)')
target = 15.05
C = np.array([2.15, 2.75, 3.35, 3.55, 4.2, 5.8])
bounds = tuple((0, math.floor(target / c)) for c in C)
Aeq = C[np.newaxis, :]
beq = np.array([target])
# Aub = None
# bub = None
minimize = False
int_vars = np.arange(C.shape[0])
mip_model = MipModel(C, minimize, None, None, Aeq, beq, bounds=bounds,
int_vars=int_vars)
out = find_solutions(mip_model, depth_limit=C.shape[0] - 1)
print(f' soln: {out.x}\n objective value: {out.fun}\n success: '
f'{out.success}')
if __name__ == "__main__":
np.set_printoptions(precision=3,suppress=True)
test()
test2()
scipy has now added the milp function in their upcoming 1.9.0 release (see the official documentation) so you can now also solve mixed-integer problems. It uses the performant open source HiGHS solver under the hood.
For your example:
import numpy as np
from scipy.optimize import linprog, milp, Bounds, LinearConstraint
# linprog
c = [-1, 4]
A_ub = [[-3, 1], [1, 2]]
b_ub = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
bounds = (x0_bounds, x1_bounds)
options = {"disp": False}
res_linprog = linprog(
c,
A_ub=A_ub,
b_ub=b_ub,
bounds=bounds,
options=options)
print(res_linprog)
# MILP
integrality = [1, 1]
lb = [-np.inf, -3]
ub = [np.inf, np.inf]
variable_bounds = Bounds(lb, ub)
constraints = LinearConstraint(A_ub, -np.inf, b_ub)
res_milp = milp(
c,
integrality=integrality,
bounds=variable_bounds,
constraints=constraints,
options=options)
# milp() returns float values even for integer variables
# so we can cast to int
res_milp.x = [int(x_i) for x_i in res_milp.x]
print(res_milp)
Related
Sudoku is a well known CSP and, in this case, LC problem. I don't need the solution, which follows.
My question is why does self.DOMAIN = "123456789" (line #4) work, whereas self.DOMAIN = map(str, range(1, 10)) (line #5) does not? Are they not equivalent?
class Solution:
def __init__(self):
self.SIZE = 9
# self.DOMAIN = map(str, range(1, self.SIZE + 1)) # THIS DES NOT WORK NOT WORK
self.DOMAIN = "123456789" # THIS WORKS
self.EMPTY = "."
from collections import defaultdict
self.rows = defaultdict(set) # {row:set}
self.cols = defaultdict(set) # {col:set}
self.boxs = defaultdict(set) # {box:set}
self.row_idx = lambda cell: cell // self.SIZE # determines row from cell num
self.col_idx = lambda cell: cell % self.SIZE # determins col from cell num
self.box_idx = lambda r, c: (r // 3) * 3 + c // 3 # determines box from row, col
def solveSudoku(self, board: List[List[str]]) -> None:
"""
Do not return anything, modify board in-place instead.
"""
assert(len(board) == self.SIZE and len(board[0]) == self.SIZE), \
"Sudoku board must be 9x9 in dimensions"
# Initialize board state
self.board = board
for r in range(self.SIZE):
for c in range(self.SIZE):
val = self.board[r][c]
if val != self.EMPTY:
self.rows[r].add(val)
self.cols[c].add(val)
self.boxs[self.box_idx(r, c)].add(val)
# Begin backtracking search from the first cell
self.backtrack(0)
def backtrack(self, cell):
if cell == 81:
# all values have been set and we are outside the board range
return True
r, c = self.row_idx(cell), self.col_idx(cell)
if self.board[r][c] != self.EMPTY:
# nothing to do, continue search
return self.backtrack(cell + 1)
# explore values in the domain for this cell
for candidate_val in self.DOMAIN:
if self.is_valid(r, c, candidate_val):
# place candidate
self.board[r][c] = candidate_val
self.rows[r].add(candidate_val)
self.cols[c].add(candidate_val)
self.boxs[self.box_idx(r, c)].add(candidate_val)
# continue search
if self.backtrack(cell + 1):
return True
# remove candidate and backtrack
self.board[r][c] = self.EMPTY
self.rows[r].remove(candidate_val)
self.cols[c].remove(candidate_val)
self.boxs[self.box_idx(r, c)].remove(candidate_val)
# no solution found for all values in the domain for this cell
return False
def is_valid(self, r, c, val):
""" Returns whether a value can be placed in board[r][c] in the current game state """
if val in self.rows[r]:
return False
if val in self.cols[c]:
return False
if val in self.boxs[self.box_idx(r, c)]:
return False
return True
You are suffering confusion between "generator" and "container".
Consult type( ... ) to tell the difference between them.
Python generators are "lazy", for excellent technical reasons.
Sometimes we can get away with just evaluating
the first K items of an infinite generator.
In your method you want everything greedily pulled out,
and then stored in a container.
The conventional way to phrase this is to wrap map with list:
self.DOMAIN = list(map(str, range(1, 10)))
or perhaps in your case you would prefer that .join pull them out:
self.DOMAIN = ''.join(map(str, range(1, 10)))
I implemented the algortihm of Moschopoulos that gives the density and c.d.f of a sum of gamma random variables. A C++ implementation exists in the dcoga R package, but i need mine to handle arbitrary precision numbers through the mpmath library.
The major problem with the following code is the runtime: some parameters of the class (the _delta slot) need to be updated and re-computed 'on-the-fly' when needed, and it takes a lot of time. I ran a cProfile on a simple exemple so you can see where is the problem quickly, but i dont know enough to make it faster. See for yourself by running the follwoing :
import mpmath as mp
import numpy as np
import scipy.stats.distributions as sc_dist
def gamma_density(x,a,b):
return mp.power(x,a-1) * mp.exp(-x/b) / mp.power(b,a) / mp.gamma(a)
def gamma_cdf(x,a,b):
return mp.gammainc(a,0,x/b,regularized=True)
class GammaConvolution:
def __init__(self,alpha,beta):
#alpha and beta must be provided as numpy array of mpmath.mpf objects
n = len(alpha)
if not len(beta) == n:
raise ValueError('you should provide as much alphas and betas')
if n == 1:
raise ValueError('you should provide at least 2 gammas.')
if not (type(alpha[0]) == mp.mpf and type(beta[0]) == mp.mpf):
raise ValueError('you should provide alpha and beta in mp.mpf format.')
alpha = np.array(alpha)
beta = np.array(beta)
# sanity check :
check = alpha>0
if not np.all(check):
alpha = alpha[check]
beta = beta[check]
print('Some alphas were negatives. We discarded them. {} are remaining'.format(len(alpha)))
self.signs = np.array([-1 if b < 0 else 1 for b in beta])
self.alpha = alpha
self.beta = 1/beta * self.signs
self.n = self.alpha.shape[0]
# Moshopoulos parameters :
self._beta1 = np.min(self.beta)
self._c = np.prod([mp.power(self._beta1/self.beta[i], self.alpha[i]) for i in range(self.n)])
self._rho = np.sum(self.alpha)
self._delta = [mp.mpf('1')]
self._lgam_mod = [np.sum([self.alpha[i] * (1 - (self._beta1 / self.beta[i])) for i in range(self.n)])] # this correpsont o get_lgam(k=1)"
self._to_power = [1 - self._beta1/self.beta[i] for i in range(self.n)]
def _get_delta(self,k):
if(len(self._delta)<=k):
# Then we create it :
n = len(self._delta)
self._lgam_mod.extend([np.sum([self.alpha[i] * mp.power(self._to_power[i], j + 1) for i in range(self.n)])for j in range(n,k+1)])
self._delta.extend([np.sum([self._lgam_mod[i] * self._delta[j - 1 - i] for i in range(j)])/j for j in range(n, k+1)])
return self._delta[k]
def coga(self, x, type='pdf'):
if x < 0:
return 0
k = 0
out = 0
if type=='pdf':
func = gamma_density
if type=='cdf':
func = gamma_cdf
while True:
step = self._get_delta(k) * func(x, self._rho + k, self._beta1)
if mp.isinf(step) or mp.isnan(step):
print('inf or nan happened, the algorithm did not converge')
break
out += step
if mp.almosteq(step, 0):
break
k += 1
out *= self._c
return out
def pdf(self,x):
return self.coga(x, 'pdf')
def cdf(self,x):
return self.coga(x, 'cdf')
if __name__ == "__main__":
mp.mp.dps = 20
# some particular exemples values that 'approximates' a lognormal.
alpha = np.array([mp.mpf(28.51334751960197301778147509487793953959733053134799171090326516406790428180220147416519532643017308),
mp.mpf(11.22775884868121894986129015315963173419663023710308189240288960305130268927466536233373438048018254),
mp.mpf(6.031218085515218207945488717293490366342446718306869797877975835997607997369075273734516467130527887),
mp.mpf(3.566976340452999300401949508136750700482567798832918933344685923750679570986611068640936818600783319),
mp.mpf(2.11321149019108276673514744052403419069919543373601000373799419309581402519772983291547041971629247),
mp.mpf(1.13846760415283260768713745745968197587694610126298554688258480795156541979045502458925706173497129),
mp.mpf(0.4517330810577715647869261976064157403882011767087065171431053299996540080549312203533542184738086012),
mp.mpf(0.07749235677493576352946436194914173772169589371740264101530548860132559560092370430079007024964728383),
mp.mpf(0.002501284133093294545540492059111705453529784044424054717786717782803430937621102255478670439562804153),
mp.mpf(0.000006144939533164067887819376779035687994761732668244591993428755735056093784306786937652351425833352728)])
beta = np.array([mp.mpf(391.6072818187915081052155152400534191999174250784251976117131780922742055385769343508047998043722828),
mp.mpf(77.21898445771279675063405017644417196454232681648725486524482168571564310062495549360709158314560647),
mp.mpf(31.76440960907061013049029007869346161467203121003911885547576503605957915202107379956314233702891246),
mp.mpf(17.44293394293412500742344752991577287098138329678954573112349659319428017788092621396034528552305827),
mp.mpf(11.23444737858955404891602233256282644042451542694693191750203254839756772074776087387688524524329672),
mp.mpf(8.050341288822160015292746577166226701992193848793662515696372301333563919247892899484012106343185691),
mp.mpf(6.255867387720061672816524328464895459610937299629691008594802004659480037331191722532939009895028284),
mp.mpf(5.146993307537222489735861088512006440481952536952402160831342266591666243011939270854579656683779017),
mp.mpf(4.285958039399903253267350243950743396496148339434605882255896571795493305652009075308916145669650666),
mp.mpf(3.455673251219567018227405844933725014914508519853860295284610094904914286228770061300477809395436033)])
dist = GammaConvolution(alpha, beta)
print(sc_dist.lognorm(s=0.25).cdf(1))
import cProfile
pr = cProfile.Profile()
pr.enable()
print(dist.cdf(1))
print(sc_dist.lognorm(s=0.25).cdf(1))
pr.disable()
# after your program ends
import pstats
pstats.Stats(pr).strip_dirs().sort_stats('cumtime').print_stats(20)
Can you help me making it faster ? The problem is clearly if the _get_delta function.
I have two Python classes: Agent and Group...
Each Group has a centerGroup property, plus a static list of groups, i.e. GroupList
Here is a brief overview of the Group class:
import Agent
class Group(object):
"""description of class"""
GroupIdentifier = 1
GroupThreshold = 10
GroupList = []
def __init__(self, agentList = None ,groupCenter = None, gruopIdentifier = None):
global GroupIdentifier
global GroupList
self.groupIdentifier = GroupIdentifier
Group.GroupIdentifier += 1
Group.GroupList.append(self)
self.groupCenter = groupCenter
self.agentList = agentList
Furthermore, within the Agent class, I am going to find the minimum euclidean distance of a typical agent from all centerGroup properties corresponding to the groups in the groupList... (There is an offset, is which GAMMA_TRESHOLD)...
One can depict the related part of Agent class, as below snippet:
import Group
class Agent(object):
"""description of class"""
GAMMA_TRESHOLD = 20
def __init__(self, point = None, groupId = None):
self.locationX = point.x
self.locationY = point.y
self.groupId = 0
def get_agent_distance_from_groupCenter(self, object):
return math.sqrt(math.pow(self.locationX - point.x, 2) +
math.pow(self.locationY - point.y, 2))
def gamma_condition(self):
#I KNOW THIS IMPLEMENTATION IS WRONG... JUST GOTTA SHOW THE TARGET!
return Group.Group.GroupList[Group.Group.GroupList.index(min(get_agent_distance_from_groupCenter(agent, group.groupCenter) - GAMMA_TRESHOLD))]
From a mathematical manner perspective, the problem is minimizing the below norm and introducing the group, which its centerGroup is nearest to the agent:
min \norm{centerGroup_{i} - agent - TRESHOLD}
Would you please helping me to write such query (valid processing for gamma_condition method) by list comprehension of Python?!
All in all, with due attention to lack of any better idea from the other people, my investigations lead to below solution for this problem:
def gamma_condition(self):
temp = []
maxValue = 0
temp = [[item.groupIdentifier, JOIN_TRESHOLD - self.get_agent_distance_from_groupCenter(item.groupCenter)] for item in Group.Group.GroupList]
for item in temp:
maxValue = max(float(i) for i in item[1])
if maxValue > 0:
index = temp.index(maxValue)
NearestGroupIdToJoin = temp[index][0]
return NearestGroupIdToJoin
else:
return None
I have a list of 9 elements. The first three represent positions, the next velocities, the next forces.
Sometimes I require forces from the array, other times velocities, and other times positions.
So I wrote a function as follows:
def Extractor(alist,quantity):
if quantity=='positions':
x = alist[0]
y = alist[1]
z = alist[2]
return (x,y,z)
elif quantity=='velocities':
vx = alist[3]
vy = alist[4]
vz = alist[5]
tot_v = np.sqrt(vx**2 + vy**2 + vz**2)
return (vx,vy,vz,tot_v)
elif quantity=='forces':
fx = alist[6]
fy = alist[7]
fz = alist[8]
tot_f = np.sqrt(fx**2 + fy**2 + fz**2)
return (fx,fy,fz,tot_f)
else:
print "Do not recognise quantity: not one of positions, velocities, force"
However, this seems like a massive code smell to me due to duplicate code. Is there a nicer, more pythonic way to do this? I'm quite new to OOP, but could I use some kind of class inheritance utilising polymorphism?
Your method violates the Single Responsibility Principle. Consider splitting it like this:
def positionExtractor(alist):
return tuple(alist[0:3])
def velocityExtractor(alist):
velocity = tuple(alist[3:6])
return velocity + (np.sqrt(sum(x**2 for x in velocity)),)
def forcesExtractor(alist):
forces = tuple(alist[6:9])
return forces + (np.sqrt(sum(x**2 for x in forces)),)
You can put them in a dictionary:
extractors = {
'position' : positionExtractor,
'velocity' : velocityExtractor,
'forces' : forcesExtractor}
and use:
result = extractors[quantity](alist)
Here is an example with inheritance. It seems to be over-engineering for such a simple task though:
import numpy as np
class Extractor:
def extract(self, alist):
raise NotImplementedError()
class IndexRangeExtractor(Extractor):
def __init__(self, fromIndex, toIndex):
self.fromIndex = fromIndex
self.toIndex = toIndex
def extract(self, alist):
return tuple(alist[self.fromIndex:self.toIndex])
class EuclideanDistanceExtractorDecorator(Extractor):
def __init__(self, innerExtractor):
self.innerExtractor = innerExtractor
def extract(self, alist):
innerResult = self.innerExtractor.extract(alist)
distance = np.sqrt(sum(x**2 for x in innerResult))
return innerResult + (distance,)
#...
class ExtractorFactory:
def __init__(self):
self.extractors = {
'position':IndexRangeExtractor(0, 3),
'velocity':EuclideanDistanceExtractorDecorator(
IndexRangeExtractor(3, 6)),
'forces':EuclideanDistanceExtractorDecorator(
IndexRangeExtractor(6, 9))}
def createExtractor(self, quantity):
return self.extractors[quantity]
alist = [1,2,3,4,5,6,7,8,9]
ef = ExtractorFactory()
e1 = ef.createExtractor('position')
e2 = ef.createExtractor('velocity')
e3 = ef.createExtractor('forces')
print e1.extract(alist)
print e2.extract(alist)
print e3.extract(alist)
You can start by using an offset to pick out the elements; all but positions need a formula applied too:
_slices = {'positions': slice(3), 'velocities': slice(3, 6), 'forces': slice(6, 9)}
def Extractor(alist, quantity):
try:
a, b, c = alist[_slices[quantity]]
tot = np.sqrt(a**2 + b**2 + c**2)
return a, b, c, tot
except KeyError:
raise ValueError(
"Do not recognise quantity: "
"not one of {}".format(', '.join(_slices)))
This returns a consistent number of values; if calculating the square root for positions is not possible, I'd return 0.0 for the total:
tot = np.sqrt(a**2 + b**2 + c**2) if quantity != 'positions' else 0.0
Why not try something like this:
def extract_position(x,y,z):
return (x, y, z)
def extract_velocities(x,y,z):
return (x, y, z, np.sqrt(x**2 + y**2 + z**2))
def extract_forces(x,y,z):
return (x, y, z, np.sqrt(x**2 + y**2 + z**2))
extractor = { 'positions': extract_position,
'velocities': extract_velocities,
'forces': extract_forces }
try:
print extractor['positions'](1,2,3)
print extractor['unknown'](4,5,6)
except KeyError:
print "Do not recognise quantity: not one of positions, velocities, force"
I prefer to use function pointers to tie data to arbitrary calculations. Also, the dictionary replaced the switch style syntax so this at least feels similar to what you were looking for.
Also you have the same calculation for determining velocities and forces, so you could condense that as well.
Maybe something like:
from operator import itemgetter
def extract(sequence, quantity):
try:
a, b, c = {
'positions': itemgetter(0, 1, 2),
'velocities': itemgetter(3, 4, 5),
'forces': itemgetter(6, 7, 8)
}[quantity](sequence)
return a, b, c, np.sqrt(a**2 + b**2, c**2)
except KeyError as e:
pass # handle no suitable quantity found here
Note that a calculation is always performed instead... keeps the return value consistent as a 4-tuple... unless it's a really expensive calculation, this shouldn't be an issue.
I need to operate on two separate infinite list of numbers, but could not find a way to generate, store and operate on it in python.
Can any one please suggest me a way to handle infinite Arithmetic Progession or any series and how to operate on them considering the fact the minimal use of memory and time.
Thanks every one for their suggestions in advance.
You are looking for a python generator instead:
def infinitenumbers():
count = 0
while True:
yield count
count += 1
The itertools package comes with a pre-built count generator.
>>> import itertools
>>> c = itertools.count()
>>> next(c)
0
>>> next(c)
1
>>> for i in itertools.islice(c, 5):
... print i
...
2
3
4
5
6
This is where the iterator comes in. You can't have an infinite list of numbers, but you can have an infinite iterator.
import itertools
arithmetic_progression = itertools.count(start,step) #from the python docs
The docs for Python2 can be found here
I have another python3 solution (read SICP chapter 3.5)
class Stream:
def __init__(self, head, tail):
self.head = head
self.tail = tail
self.memory = None
self.isDone = False
def car(self):
return self.head
def cdr(self):
if self.isDone:
return self.memory
self.memory = self.tail()
self.isDone = True
return self.memory
def __getitem__(self, pullFrom):
if pullFrom < 1 or self.memory == []:
return []
return [self.car()] + self.cdr()[pullFrom - 1]
def __repr__(self):
return "[" + repr(self.car()) + " x " + repr(self.tail) + "]"
def map(self, func):
if self.memory == []:
return []
return Stream(func(self.car()), lambda: Stream.map(self.cdr(), func))
def from_list(lst):
if lst == []:
return []
return Stream(lst[0], lambda:
Stream.from_list(lst[1:]))
def filter(self, pred):
if self.memory == []:
return []
elif pred(self.car()):
return Stream(self.car(), lambda: Stream.filter(self.cdr(), pred))
else:
return self.cdr().filter(pred)
def sieve(self):
return Stream(self.car(), lambda: self.cdr().filter(lambda n: n % self.car() > 0).sieve())
def foreach(self, action, pull = None):
if pull is None:
action(self.car())
self.cdr().foreach(action, pull)
elif pull <= 0:
return
else:
action(self.car())
self.cdr().foreach(action, pull-1)and run:
a = Stream(0, lambda: a.map((lambda x: x + 1)))
print(a[10])
which returns:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] .
But streams are lazily evaluated, so:
>>> a = Stream(0, lambda: a.map((lambda x: x + 1)))
>>> print(a)
prints:
[0 x [...]]
To create an object that acts like a "mutable" infinite list, you can overload the __getitem__ and __setitem__ methods in a class:
class infinite_list():
def __init__(self, func):
self.func = func
self.assigned_items = {}
def __getitem__(self, key):
if key in self.assigned_items:
return self.assigned_items[key]
else:
return self.func(key)
def __setitem__(self, key , value):
self.assigned_items[key] = value
Then, you can initialize the "infinite list" with a lambda expression and modify an item in the list:
infinite_thing = infinite_list(lambda a: a*2)
print(infinite_thing[1]) #prints "2"
infinite_thing[1] = infinite_thing[2]
print(infinite_thing[1]) #prints "4"
Similarly, it is possible to create an "infinite dictionary" that provides a default value for each missing key.
Perhaps the natural way to generate an infinite series is using a generator:
def arith(a, d):
while True:
yield a
a += d
This can be used like so:
print list(itertools.islice(arith(10, 2), 100))
My solution is:
from hofs import *
def cons_stream(head,tail):
return [head,tail,False,False]
def stream_cdr(strm):
if strm[2]:
return strm[3]
strm[3] = strm[1]()
strm[2] = True
return strm[3]
def show_stream(stream, num = 10):
if empty(stream):
return []
if num == 0:
return []
return adjoin(stream[0], show_stream(stream_cdr(stream), num - 1))
def add_streams(a , b):
if empty(a):
return b
if empty(b):
return a
return cons_stream(a[0] + b[0] , lambda : add_streams( stream_cdr(a), stream_cdr(b)))
def stream_filter( pred , stream ):
if empty(stream):
return []
if pred(stream[0]):
return cons_stream(stream[0], lambda : stream_filter(pred, stream_cdr(stream)))
else:
return stream_filter( pred , stream_cdr( stream ))
def sieve(stream):
return cons_stream(stream[0] , lambda : sieve(stream_filter(lambda x : x % stream[0] > 0 , stream_cdr(stream))))
ones = cons_stream(1, lambda : ones)
integers = cons_stream(1, lambda : add_streams(ones, integers))
primes = sieve(stream_cdr(integers))
print(show_stream(primes))
Copy the Python code above.
When I tried it, i got [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] which is 10 of an infinite list of primes.
You need hofs.py to be
def empty(data):
return data == []
def adjoin(value,data):
result = [value]
result.extend(data)
return result
def map(func, data):
if empty(data):
return []
else:
return adjoin(func(data[0]), map(func, data[1:]))
def keep(pred, data):
if empty(data):
return []
elif pred(data[0]):
return adjoin( data[0] , keep(pred, data[1:]))
else:
return keep(pred, data[1:])
I assume you want a list of infinite numbers within a range. I have a similar problem, and here is my solution:
c = 0
step = 0.0001 # the difference between the numbers
limit = 100 # The upper limit
myInfList = []
while c <= limit:
myInfList.append(c)
c = c + step
print(myInfList)