Average of numpy array ignoring specified value - python

I have a number of 1-dimensional numpy ndarrays containing the path length between a given node and all other nodes in a network for which I would like to calculate the average. The matter is complicated though by the fact that if no path exists between two nodes the algorithm returns a value of 2147483647 for that given connection. If I leave this value untreated it would obviously grossly inflate my average as a typical path length would be somewhere between 1 and 3 in my network.
One option of dealing with this would be to loop through all elements of all arrays and replace 2147483647 with NaN and then use numpy.nanmean to find the average though that is probably not the most efficient method of going about it. Is there a way of calculating the average with numpy just ignoring all values of 2147483647?
I should add that, I could have up to several million arrays with several million values to average over so any performance gain in how the average is found will make a real difference.

Why not using your usual numpy filtering for this?
m = my_array[my_array != 2147483647].mean()
By the way, if you really want speed, your whole algorithm description seems certainly naive and could be improved by a lot.
Oh and I guess that you are calculating the mean because you have rigorously checked that the underlying distribution is normal so that it means something, aren't you?

np.nanmean(np.where(my_array == 2147483647, np.nan, my_array))
Timings
a = np.random.randn(100000)
a[::10] = 2147483647
%timeit np.nanmean(np.where(a == 2147483647, np.nan, a))
1000 loops, best of 3: 639 µs per loop
%timeit a[a != 2147483647].mean()
1000 loops, best of 3: 259 µs per loop
import pandas as pd
%timeit pd.Series(a).ne(2147483647).mean()
1000 loops, best of 3: 493 µs per loop

One way would be to get the sum for all elements in one go and then removing the contribution from the invalid ones. Finally, we need to get the average value itself, divide by the number of valid elements. So, we would have an implementation like so -
def mean_ignore_num(arr,num):
# Get count of invalid ones
invc = np.count_nonzero(arr==num)
# Get the average value for all numbers and remove contribution from num
return (arr.sum() - invc*num)/float(arr.size-invc)
Verify results -
In [191]: arr = np.full(10,2147483647).astype(np.int32)
...: arr[1] = 5
...: arr[4] = 4
...:
In [192]: arr.max()
Out[192]: 2147483647
In [193]: arr.sum() # Extends beyond int32 max limit, so no overflow
Out[193]: 17179869185
In [194]: arr[arr != 2147483647].mean()
Out[194]: 4.5
In [195]: mean_ignore_num(arr,2147483647)
Out[195]: 4.5
Runtime test -
In [38]: arr = np.random.randint(0,9,(10000))
In [39]: arr[arr != 7].mean()
Out[39]: 3.6704609489462414
In [40]: mean_ignore_num(arr,7)
Out[40]: 3.6704609489462414
In [41]: %timeit arr[arr != 7].mean()
10000 loops, best of 3: 102 µs per loop
In [42]: %timeit mean_ignore_num(arr,7)
10000 loops, best of 3: 36.6 µs per loop

Related

Numpy searchsorted along many dimensions? [duplicate]

Assume that I have two arrays A and B, where both A and B are m x n. My goal is now, for each row of A and B, to find where I should insert the elements of row i of A in the corresponding row of B. That is, I wish to apply np.digitize or np.searchsorted to each row of A and B.
My naive solution is to simply iterate over the rows. However, this is far too slow for my application. My question is therefore: is there a vectorized implementation of either algorithm that I haven't managed to find?
We can add each row some offset as compared to the previous row. We would use the same offset for both arrays. The idea is to use np.searchsorted on flattened version of input arrays thereafter and thus each row from b would be restricted to find sorted positions in the corresponding row in a. Additionally, to make it work for negative numbers too, we just need to offset for the minimum numbers as well.
So, we would have a vectorized implementation like so -
def searchsorted2d(a,b):
m,n = a.shape
max_num = np.maximum(a.max() - a.min(), b.max() - b.min()) + 1
r = max_num*np.arange(a.shape[0])[:,None]
p = np.searchsorted( (a+r).ravel(), (b+r).ravel() ).reshape(m,-1)
return p - n*(np.arange(m)[:,None])
Runtime test -
In [173]: def searchsorted2d_loopy(a,b):
...: out = np.zeros(a.shape,dtype=int)
...: for i in range(len(a)):
...: out[i] = np.searchsorted(a[i],b[i])
...: return out
...:
In [174]: # Setup input arrays
...: a = np.random.randint(11,99,(10000,20))
...: b = np.random.randint(11,99,(10000,20))
...: a = np.sort(a,1)
...: b = np.sort(b,1)
...:
In [175]: np.allclose(searchsorted2d(a,b),searchsorted2d_loopy(a,b))
Out[175]: True
In [176]: %timeit searchsorted2d_loopy(a,b)
10 loops, best of 3: 28.6 ms per loop
In [177]: %timeit searchsorted2d(a,b)
100 loops, best of 3: 13.7 ms per loop
The solution provided by #Divakar is ideal for integer data, but beware of precision issues for floating point values, especially if they span multiple orders of magnitude (e.g. [[1.0, 2,0, 3.0, 1.0e+20],...]). In some cases r may be so large that applying a+r and b+r wipes out the original values you're trying to run searchsorted on, and you're just comparing r to r.
To make the approach more robust for floating-point data, you could embed the row information into the arrays as part of the values (as a structured dtype), and run searchsorted on these structured dtypes instead.
def searchsorted_2d (a, v, side='left', sorter=None):
import numpy as np
# Make sure a and v are numpy arrays.
a = np.asarray(a)
v = np.asarray(v)
# Augment a with row id
ai = np.empty(a.shape,dtype=[('row',int),('value',a.dtype)])
ai['row'] = np.arange(a.shape[0]).reshape(-1,1)
ai['value'] = a
# Augment v with row id
vi = np.empty(v.shape,dtype=[('row',int),('value',v.dtype)])
vi['row'] = np.arange(v.shape[0]).reshape(-1,1)
vi['value'] = v
# Perform searchsorted on augmented array.
# The row information is embedded in the values, so only the equivalent rows
# between a and v are considered.
result = np.searchsorted(ai.flatten(),vi.flatten(), side=side, sorter=sorter)
# Restore the original shape, decode the searchsorted indices so they apply to the original data.
result = result.reshape(vi.shape) - vi['row']*a.shape[1]
return result
Edit: The timing on this approach is abysmal!
In [21]: %timeit searchsorted_2d(a,b)
10 loops, best of 3: 92.5 ms per loop
You would be better off just just using map over the array:
In [22]: %timeit np.array(list(map(np.searchsorted,a,b)))
100 loops, best of 3: 13.8 ms per loop
For integer data, #Divakar's approach is still the fastest:
In [23]: %timeit searchsorted2d(a,b)
100 loops, best of 3: 7.26 ms per loop

what is the most efficient way to find the position of the first np.nan value?

consider the array a
a = np.array([3, 3, np.nan, 3, 3, np.nan])
I could do
np.isnan(a).argmax()
But this requires finding all np.nan just to find the first.
Is there a more efficient way?
I've been trying to figure out if I can pass a parameter to np.argpartition such that np.nan get's sorted first as opposed to last.
EDIT regarding [dup].
There are several reasons this question is different.
That question and answers addressed equality of values. This is in regards to isnan.
Those answers all suffer from the same issue my answer faces. Note, I provided a perfectly valid answer but highlighted it's inefficiency. I'm looking to fix the inefficiency.
EDIT regarding second [dup].
Still addressing equality and question/answers are old and very possibly outdated.
It might also be worth to look into numba.jit; without it, the vectorized version will likely beat a straight-forward pure-Python search in most scenarios, but after compiling the code, the ordinary search will take the lead, at least in my testing:
In [63]: a = np.array([np.nan if i % 10000 == 9999 else 3 for i in range(100000)])
In [70]: %paste
import numba
def naive(a):
for i in range(len(a)):
if np.isnan(a[i]):
return i
def short(a):
return np.isnan(a).argmax()
#numba.jit
def naive_jit(a):
for i in range(len(a)):
if np.isnan(a[i]):
return i
#numba.jit
def short_jit(a):
return np.isnan(a).argmax()
## -- End pasted text --
In [71]: %timeit naive(a)
100 loops, best of 3: 7.22 ms per loop
In [72]: %timeit short(a)
The slowest run took 4.59 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 37.7 µs per loop
In [73]: %timeit naive_jit(a)
The slowest run took 6821.16 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 6.79 µs per loop
In [74]: %timeit short_jit(a)
The slowest run took 395.51 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 144 µs per loop
Edit: As pointed out by #hpaulj in their answer, numpy actually ships with an optimized short-circuited search whose performance is comparable with the JITted search above:
In [26]: %paste
def plain(a):
return a.argmax()
#numba.jit
def plain_jit(a):
return a.argmax()
## -- End pasted text --
In [35]: %timeit naive(a)
100 loops, best of 3: 7.13 ms per loop
In [36]: %timeit plain(a)
The slowest run took 4.37 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 7.04 µs per loop
In [37]: %timeit naive_jit(a)
100000 loops, best of 3: 6.91 µs per loop
In [38]: %timeit plain_jit(a)
10000 loops, best of 3: 125 µs per loop
I'll nominate
a.argmax()
With #fuglede's test array:
In [1]: a = np.array([np.nan if i % 10000 == 9999 else 3 for i in range(100000)])
In [2]: np.isnan(a).argmax()
Out[2]: 9999
In [3]: np.argmax(a)
Out[3]: 9999
In [4]: a.argmax()
Out[4]: 9999
In [5]: timeit a.argmax()
The slowest run took 29.94 ....
10000 loops, best of 3: 20.3 µs per loop
In [6]: timeit np.isnan(a).argmax()
The slowest run took 7.82 ...
1000 loops, best of 3: 462 µs per loop
I don't have numba installed, so can compare that. But my speedup relative to short is greater than #fuglede's 6x.
I'm testing in Py3, which accepts <np.nan, while Py2 raises a runtime warning. But the code search suggests this isn't dependent on that comparison.
/numpy/core/src/multiarray/calculation.c PyArray_ArgMax plays with axes (moving the one of interest to the end), and delegates the action to arg_func = PyArray_DESCR(ap)->f->argmax, a function that depends on the dtype.
In numpy/core/src/multiarray/arraytypes.c.src it looks like BOOL_argmax short circuits, returning as soon as it encounters a True.
for (; i < n; i++) {
if (ip[i]) {
*max_ind = i;
return 0;
}
}
And #fname#_argmax also short circuits on maximal nan. np.nan is 'maximal' in argmin as well.
#if #isfloat#
if (#isnan#(mp)) {
/* nan encountered; it's maximal */
return 0;
}
#endif
Comments from experienced c coders are welcomed, but it appears to me that at least for np.nan, a plain argmax will be as fast you we can get.
Playing with the 9999 in generating a shows that the a.argmax time depends on that value, consistent with short circuiting.
Here is a pythonic approach using itertools.takewhile():
from itertools import takewhile
sum(1 for _ in takewhile(np.isfinite, a))
Benchmark with generator_expression_within_next approach: 1
In [118]: a = np.repeat(a, 10000)
In [120]: %timeit next(i for i, j in enumerate(a) if np.isnan(j))
100 loops, best of 3: 12.4 ms per loop
In [121]: %timeit sum(1 for _ in takewhile(np.isfinite, a))
100 loops, best of 3: 11.5 ms per loop
But still (by far) slower than numpy approach:
In [119]: %timeit np.isnan(a).argmax()
100000 loops, best of 3: 16.8 µs per loop
1. The problem with this approach is using enumerate function. Which returns an enumerate object from the numpy array first (which is an iterator like object) and calling the generator function and next attribute of the iterator will take time.
When looking for the first match in various scenarios, we could iterate through and look for the first match and exit out on the first match rather than going/processing the entire array. So, we would have an approach using Python's next function , like so -
next((i for i, val in enumerate(a) if np.isnan(val)))
Sample runs -
In [192]: a = np.array([3, 3, np.nan, 3, 3, np.nan])
In [193]: next((i for i, val in enumerate(a) if np.isnan(val)))
Out[193]: 2
In [194]: a[2] = 10
In [195]: next((i for i, val in enumerate(a) if np.isnan(val)))
Out[195]: 5

Pandas: Efficient way to get first row with element that is smaller than a given value

I'm wondering if there's an efficient way to do this in pandas: Given a dataframe, what is the first row that is smaller than a given value? For example, given:
addr
0 4196656
1 4197034
2 4197075
3 4197082
4 4197134
What is the first value that is smaller than 4197080? I want it to return just the row with 4197075.
A solution would be to first filter by 4197080 and then take the last row, but that looks like to be an extremely slow O(N) operation (first building a dataframe and then taking its last row), while a binary search would take O(logN).
df.addr[ df.addr < 4197080].tail(1)
I timed it, and creating df.addr[ df.addr < 4197080] more or less takes the same as df.addr[ df.addr < 4197080].tail(1), strongly hinting that internally it's building an entire df first.
num = np.random.randint(0, 10**8, 10**6)
num.sort()
df = pd.DataFrame({'addr':num})
df = df.set_index('addr', drop=False)
df = df.sort_index()
Getting the first smaller value is very slow:
%timeit df.addr[ df.addr < 57830391].tail(1)
100 loops, best of 3: 7.9 ms per loop
Using lt improves things a bit:
%timeit df.lt(57830391)[-1:]
1000 loops, best of 3: 853 µs per loop
But still nowhere near as fast as a binary search:
%timeit bisect(num, 57830391, 0, len(num))
100000 loops, best of 3: 6.53 µs per loop
Is there any better way?
This requires 0.14.0
Note that the frame IS NOT SORTED.
In [16]: s = df['addr']
Find biggest value lower than required
In [18]: %timeit s[s<5783091]
100 loops, best of 3: 9.01 ms per loop
In [19]: %timeit s[s<5783091].nlargest(1)
100 loops, best of 3: 11 ms per loop
So this is faster than actuallying performing a full-sort, then indexing.
The .copy is to avoid biasing the inplace sort.
In [32]: x = np.random.randint(0, 10**8, 10**6)
In [33]: def f(x):
....: x.copy().sort()
....:
In [35]: %timeit f(x)
10 loops, best of 3: 67.2 ms per loop
If you are simply searching an ALREADY SORTED series, then use searchsorted. Note that you must use the numpy version (e.g. operate on .values. The series version will be defined in 0.14.1)
In [41]: %timeit s.values.searchsorted(5783091)
100000 loops, best of 3: 2.5 µs per loop

Numpy subset array between first and last occurence of logical expression match

I have a numpy array, which is a vector (1 by n). I want to subset it between the first and last occurence of where it meets a boolean expression (greater than some number).
I.E. something along the lines of:
positions = numpy.where(myArray >= value)[0]
subset = myArray[positions[0]:positions[-1]+1]
This is one solution, but as I understand it, this will involve searching through the entire array twice to retrieve the positions result. myArray can be very large, so are there any other solutions?
Lets list some methods:
def original(arr, val):
pos = np.where(arr>=val)[0]
return arr[pos[0]:pos[-1]+1]
def with_argmax(arr, val):
pos = (arr>=val)
return arr[pos.argmax():-pos[::-1].argmax() or None]
Setup with a medium sized array and few values to clip:
arr = np.ones(1E5)
arr[:300] = 0; arr[-300:]=0
Timings:
%timeit original(arr,1)
1000 loops, best of 3: 504 µs per loop
%timeit with_argmax(arr,1)
1000 loops, best of 3: 297 µs per loop
Same array size with more values to clip:
arr = np.ones(1E5)
arr[:2E4] = 0; arr[-2E4:]=0
Timings:
%timeit original(arr,1)
1000 loops, best of 3: 528 µs per loop
%timeit with_argmax(arr,1)
1000 loops, best of 3: 296 µs per loop
What you really want is a "find first nonzero element" routine which is not currently in numpy, but aimed for numpy 2.0. More info can be found here.

Fast check for NaN in NumPy

I'm looking for the fastest way to check for the occurrence of NaN (np.nan) in a NumPy array X. np.isnan(X) is out of the question, since it builds a boolean array of shape X.shape, which is potentially gigantic.
I tried np.nan in X, but that seems not to work because np.nan != np.nan. Is there a fast and memory-efficient way to do this at all?
(To those who would ask "how gigantic": I can't tell. This is input validation for library code.)
Ray's solution is good. However, on my machine it is about 2.5x faster to use numpy.sum in place of numpy.min:
In [13]: %timeit np.isnan(np.min(x))
1000 loops, best of 3: 244 us per loop
In [14]: %timeit np.isnan(np.sum(x))
10000 loops, best of 3: 97.3 us per loop
Unlike min, sum doesn't require branching, which on modern hardware tends to be pretty expensive. This is probably the reason why sum is faster.
edit The above test was performed with a single NaN right in the middle of the array.
It is interesting to note that min is slower in the presence of NaNs than in their absence. It also seems to get slower as NaNs get closer to the start of the array. On the other hand, sum's throughput seems constant regardless of whether there are NaNs and where they're located:
In [40]: x = np.random.rand(100000)
In [41]: %timeit np.isnan(np.min(x))
10000 loops, best of 3: 153 us per loop
In [42]: %timeit np.isnan(np.sum(x))
10000 loops, best of 3: 95.9 us per loop
In [43]: x[50000] = np.nan
In [44]: %timeit np.isnan(np.min(x))
1000 loops, best of 3: 239 us per loop
In [45]: %timeit np.isnan(np.sum(x))
10000 loops, best of 3: 95.8 us per loop
In [46]: x[0] = np.nan
In [47]: %timeit np.isnan(np.min(x))
1000 loops, best of 3: 326 us per loop
In [48]: %timeit np.isnan(np.sum(x))
10000 loops, best of 3: 95.9 us per loop
I think np.isnan(np.min(X)) should do what you want.
There are two general approaches here:
Check each array item for nan and take any.
Apply some cumulative operation that preserves nans (like sum) and check its result.
While the first approach is certainly the cleanest, the heavy optimization of some of the cumulative operations (particularly the ones that are executed in BLAS, like dot) can make those quite fast. Note that dot, like some other BLAS operations, are multithreaded under certain conditions. This explains the difference in speed between different machines.
import numpy as np
import perfplot
def min(a):
return np.isnan(np.min(a))
def sum(a):
return np.isnan(np.sum(a))
def dot(a):
return np.isnan(np.dot(a, a))
def any(a):
return np.any(np.isnan(a))
def einsum(a):
return np.isnan(np.einsum("i->", a))
b = perfplot.bench(
setup=np.random.rand,
kernels=[min, sum, dot, any, einsum],
n_range=[2 ** k for k in range(25)],
xlabel="len(a)",
)
b.save("out.png")
b.show()
Even there exist an accepted answer, I'll like to demonstrate the following (with Python 2.7.2 and Numpy 1.6.0 on Vista):
In []: x= rand(1e5)
In []: %timeit isnan(x.min())
10000 loops, best of 3: 200 us per loop
In []: %timeit isnan(x.sum())
10000 loops, best of 3: 169 us per loop
In []: %timeit isnan(dot(x, x))
10000 loops, best of 3: 134 us per loop
In []: x[5e4]= NaN
In []: %timeit isnan(x.min())
100 loops, best of 3: 4.47 ms per loop
In []: %timeit isnan(x.sum())
100 loops, best of 3: 6.44 ms per loop
In []: %timeit isnan(dot(x, x))
10000 loops, best of 3: 138 us per loop
Thus, the really efficient way might be heavily dependent on the operating system. Anyway dot(.) based seems to be the most stable one.
If you're comfortable with numba it allows to create a fast short-circuit (stops as soon as a NaN is found) function:
import numba as nb
import math
#nb.njit
def anynan(array):
array = array.ravel()
for i in range(array.size):
if math.isnan(array[i]):
return True
return False
If there is no NaN the function might actually be slower than np.min, I think that's because np.min uses multiprocessing for large arrays:
import numpy as np
array = np.random.random(2000000)
%timeit anynan(array) # 100 loops, best of 3: 2.21 ms per loop
%timeit np.isnan(array.sum()) # 100 loops, best of 3: 4.45 ms per loop
%timeit np.isnan(array.min()) # 1000 loops, best of 3: 1.64 ms per loop
But in case there is a NaN in the array, especially if it's position is at low indices, then it's much faster:
array = np.random.random(2000000)
array[100] = np.nan
%timeit anynan(array) # 1000000 loops, best of 3: 1.93 µs per loop
%timeit np.isnan(array.sum()) # 100 loops, best of 3: 4.57 ms per loop
%timeit np.isnan(array.min()) # 1000 loops, best of 3: 1.65 ms per loop
Similar results may be achieved with Cython or a C extension, these are a bit more complicated (or easily avaiable as bottleneck.anynan) but ultimatly do the same as my anynan function.
use .any()
if numpy.isnan(myarray).any()
numpy.isfinite maybe better than isnan for checking
if not np.isfinite(prop).all()
Related to this is the question of how to find the first occurrence of NaN. This is the fastest way to handle that that I know of:
index = next((i for (i,n) in enumerate(iterable) if n!=n), None)
Adding to #nico-schlömer and #mseifert 's answers, I computed the performance of a numba-test has_nan with early stops, compared to some of the functions that will parse the full array.
On my machine, for an array without nans, the break-even happens for ~10^4 elements.
import perfplot
import numpy as np
import numba
import math
def min(a):
return np.isnan(np.min(a))
def dot(a):
return np.isnan(np.dot(a, a))
def einsum(a):
return np.isnan(np.einsum("i->", a))
#numba.njit
def has_nan(a):
for i in range(a.size - 1):
if math.isnan(a[i]):
return True
return False
def array_with_missing_values(n, p):
""" Return array of size n, p : nans ( % of array length )
Ex : n=1e6, p=1 : 1e4 nan assigned at random positions """
a = np.random.rand(n)
p = np.random.randint(0, len(a), int(p*len(a)/100))
a[p] = np.nan
return a
#%%
perfplot.show(
setup=lambda n: array_with_missing_values(n, 0),
kernels=[min, dot, has_nan],
n_range=[2 ** k for k in range(20)],
logx=True,
logy=True,
xlabel="len(a)",
)
What happens if the array has nans ? I investigated the impact of the nan-coverage of the array.
For arrays of length 1,000,000, has_nan becomes a better option is there are ~10^-3 % nans (so ~10 nans) in the array.
#%%
N = 1000000 # 100000
perfplot.show(
setup=lambda p: array_with_missing_values(N, p),
kernels=[min, dot, has_nan],
n_range=np.array([2 ** k for k in range(20)]) / 2**20 * 0.01,
logy=True,
xlabel=f"% of nan in array (N = {N})",
)
If in your application most arrays have nan and you're looking for ones without, then has_nan is the best approach.
Else; dot seems to be the best option.

Categories