How to make a matrix out of existing xyz data - python

I want to use matplotlib.pyplot.pcolormesh to plot a depth plot.
What I have is a xyz file
Three columns i.e. x(lat), y(lon), z(dep).
All columns are of equal length
pcolormesh require matrices as input.
So using numpy.meshgrid I can transform the x and y into matrices:
xx,yy = numpy.meshgrid(x_data,y_data)
This works great...However, I don't know how to create Matrix of my depth (z) data...
How do I create a matrix for my z_data that corresponds to my x_data and y_data matrices?

Depending on whether you're generating z or not, you have at least two different options.
If you're generating z (e.g. you know the formula for it) it's very easy (see method_1() below).
If you just have just a list of (x,y,z) tuples, it's harder (see method_2() below, and maybe method_3()).
Constants
# min_? is minimum bound, max_? is maximum bound,
# dim_? is the granularity in that direction
min_x, max_x, dim_x = (-10, 10, 100)
min_y, max_y, dim_y = (-10, 10, 100)
Method 1: Generating z
# Method 1:
# This works if you are generating z, given (x,y)
def method_1():
x = np.linspace(min_x, max_x, dim_x)
y = np.linspace(min_y, max_y, dim_y)
X,Y = np.meshgrid(x,y)
def z_function(x,y):
return math.sqrt(x**2 + y**2)
z = np.array([z_function(x,y) for (x,y) in zip(np.ravel(X), np.ravel(Y))])
Z = z.reshape(X.shape)
plt.pcolormesh(X,Y,Z)
plt.show()
Which generates the following graph:
This is relatively easy, since you can generate z at whatever points you want.
If you don't have that ability, and are given a fixed (x,y,z). You could do the following. First, I define a function that generates fake data:
def gen_fake_data():
# First we generate the (x,y,z) tuples to imitate "real" data
# Half of this will be in the + direction, half will be in the - dir.
xy_max_error = 0.2
# Generate the "real" x,y vectors
x = np.linspace(min_x, max_x, dim_x)
y = np.linspace(min_y, max_y, dim_y)
# Apply an error to x,y
x_err = (np.random.rand(*x.shape) - 0.5) * xy_max_error
y_err = (np.random.rand(*y.shape) - 0.5) * xy_max_error
x *= (1 + x_err)
y *= (1 + y_err)
# Generate fake z
rows = []
for ix in x:
for iy in y:
z = math.sqrt(ix**2 + iy**2)
rows.append([ix,iy,z])
mat = np.array(rows)
return mat
Here, the returned matrix looks like:
mat = [[x_0, y_0, z_0],
[x_1, y_1, z_1],
[x_2, y_2, z_2],
...
[x_n, y_n, z_n]]
Method 2: Interpolating given z points over a regular grid
# Method 2:
# This works if you have (x,y,z) tuples that you're *not* generating, and (x,y) points
# may not fall evenly on a grid.
def method_2():
mat = gen_fake_data()
x = np.linspace(min_x, max_x, dim_x)
y = np.linspace(min_y, max_y, dim_y)
X,Y = np.meshgrid(x, y)
# Interpolate (x,y,z) points [mat] over a normal (x,y) grid [X,Y]
# Depending on your "error", you may be able to use other methods
Z = interpolate.griddata((mat[:,0], mat[:,1]), mat[:,2], (X,Y), method='nearest')
plt.pcolormesh(X,Y,Z)
plt.show()
This method produces the following graphs:
error = 0.2
error = 0.8
Method 3: No Interpolation (constraints on sampled data)
There's a third option, depending on how your (x,y,z) is set up. This option requires two things:
The number of different x sample positions equals the number of different y sample positions.
For every possible unique (x,y) pair, there is a corresponding (x,y,z) in your data.
From this, it follows that the number of (x,y,z) pairs must be equal to the square of the number of unique x points (where the number of unique x positions equals the number of unique y positions).
In general, with sampled data, this will not be true. But if it is, you can avoid having to interpolate:
def method_3():
mat = gen_fake_data()
x = np.unique(mat[:,0])
y = np.unique(mat[:,1])
X,Y = np.meshgrid(x, y)
# I'm fairly sure there's a more efficient way of doing this...
def get_z(mat, x, y):
ind = (mat[:,(0,1)] == (x,y)).all(axis=1)
row = mat[ind,:]
return row[0,2]
z = np.array([get_z(mat,x,y) for (x,y) in zip(np.ravel(X), np.ravel(Y))])
Z = z.reshape(X.shape)
plt.pcolormesh(X,Y,Z)
plt.xlim(min(x), max(x))
plt.ylim(min(y), max(y))
plt.show()
error = 0.2
error = 0.8

Related

How can I find the area inside two unsorted x,y arrays?

I want to find the are inside the region limited by two unsorted arrays (x and y).
If they were sorted, I could just follow this example:
theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
x = np.sin(theta)
y = np.cos(theta)
answer = np.trapz(y, x=x)
In which the x and y array are correctly sorted in a way that allows trapz to correctly function (even if endpoint=False).
However, in my data x and y are not sorted. I would like to find the area enclosed by x and y as given in the following example:
theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
ii = np.arange(len(x))
np.random.shuffle(ii)
x = np.sin(theta)[ii]
y = np.cos(theta)[ii]
answer = np.trapz(y, x=x) #This no longer gives the correct integral.
Is there a way to find the area enclosed by the arrays without sorting by angular position? It doesn't have to be using trampz. Thank you
I have yet to try Convex Hull, but ended up simply sorting the points by angular position and (under the assumption that points actually enclose a surface) just integrated using trapz. I include in this answer the method I used.
def integrate_contours(x,y):
xx = x - x.mean()
yy = y - y.mean()
theta_2 = np.arctan2(xx,yy)
yy = yy[np.argsort(theta_2)]
xx = xx[np.argsort(theta_2)]
return np.abs(np.trapz(yy, x=xx))

How to convert a cartesian problem in a cylindrical problem?

I display a gyroid structure (TPMS) in a cartesian system using Pyvista. I try now to display the structure in cylindrical coordinates. Pyvista displays something cylindrical indeed but it seems that the unit cell length is not uniform (while there is no reason to change this my parameter "a" being steady. This change seems to appear especially along z but I don't understand why (see image).
I have this:
Here is a part of my code.
Thank you for your help.
import pyvista as pv
import numpy as np
from numpy import cos, sin, pi
from random import uniform
lattice_par = 1.0 # Unit cell length
a = (2*pi)/lattice_par
res = 200j
r, theta, z = np.mgrid[0:2:res, 0:2*pi:res, 0:4:res]
# consider using non-equidistant r for uniformity
def GyroidCyl(r, theta, z, b=0.8):
return (sin(a*(r*cos(theta) - 1))*cos(a*(r*sin(theta) - 1))
+ sin(a*(r*sin(theta) - 1))*cos(a*(z - 1))
+ sin(a*(z - 1))*cos(a*(r*cos(theta) - 1))
- b)
vol3 = GyroidCyl(r, theta, z)
# compute Cartesian coordinates for grid points
x = r * cos(theta)
y = r * sin(theta)
grid = pv.StructuredGrid(x, y, z)
grid["vol3"] = vol3.flatten()
contours3 = grid.contour([0]) # Isosurface = 0
pv.set_plot_theme('document')
p = pv.Plotter()
p.add_mesh(contours3, scalars=contours3.points[:, 2], show_scalar_bar=False, interpolate_before_map=True,
show_edges=False, smooth_shading=False, render=True)
p.show_axes_all()
p.add_floor()
p.show_grid()
p.add_title('Gyroid in cylindrical coordinates')
p.add_text('Volume Fraction Parameter = ' + str(b))
p.show(window_size=[2040, 1500])
So you've noted in comments that you're trying to replicate something like the strategy explained in this paper. What they do is take a regular gyroid unit cell, and then transform it to build a cylindrical shell. If igloos were cylindrical, then a gyroid cell would be a single piece of snow brick. Put them next to one another and stack them in a column, and you get a cylinder.
Since I can't use figures from the paper we'll have to recreate some ourselves. So you have to start from a regular gyroid defined by the implicit function
cos(x) sin(y) + cos(y) sin(z) + cos(z) sin(x) = 0
(or some variation thereof). Here's how a single unit cell looks:
import pyvista as pv
import numpy as np
res = 100j
a = 2*np.pi
x, y, z = np.mgrid[0:a:res, 0:a:res, 0:a:res]
def Gyroid(x, y, z):
return np.cos(x)*np.sin(y) + np.cos(y)*np.sin(z) + np.cos(z)*np.sin(x)
# compute implicit function
fun_values = Gyroid(x, y, z)
# create grid for contouring
grid = pv.StructuredGrid(x, y, z)
grid["vol3"] = fun_values.ravel('F')
contours3 = grid.contour([0]) # isosurface for 0
# plot the contour, i.e. the gyroid
pv.set_plot_theme('document')
plotter = pv.Plotter()
plotter.add_mesh(contours3, scalars=contours3.points[:, -1],
show_scalar_bar=False)
plotter.add_bounding_box()
plotter.enable_terrain_style()
plotter.show_axes()
plotter.show()
Using the "unit cell" term implies there's an underlying infinite lattice, which can be built by stacking these (rectangular) unit cells neatly next to one another. With some imagination we can convince ourselves that this is true. Or we can look at the formula and note that due to the trigonometric functions the function is periodic in x, y and z, with period 2*pi. This also tells us that we can transform the unit cell to have arbitrary rectangular dimensions by introducing lattice parameters a, b and c:
cos(kx x) sin(ky y) + cos(ky y) sin(kz z) + cos(kz z) sin(kx x) = 0, where
kx = 2 pi/a
ky = 2 pi/b
kz = 2 pi/c
(These kx, ky and kz quantities are called wave vectors in solid state physics.)
The corresponding change only affects the header:
res = 100j
a, b, c = lattice_params = 1, 2, 3
kx, ky, kz = [2*np.pi/lattice_param for lattice_param in lattice_params]
x, y, z = np.mgrid[0:a:res, 0:b:res, 0:c:res]
def Gyroid(x, y, z):
return ( np.cos(kx*x)*np.sin(ky*y)
+ np.cos(ky*y)*np.sin(kz*z)
+ np.cos(kz*z)*np.sin(kx*x))
This is where we start. What we have to do is take this unit cell, bend it so that it corresponds to a 30-degree circular arc on a cylinder, and stack the cylinder using this unit. According to the paper, they used 12 unit cells to create a circle in a plane (hence the 30-degree magic number), and stacked three such circular bands on top of each other to build the cylinder.
The actual mapping is also fairly clearly explained in the paper. Whereas your original x, y and z parameters of the function essentially interpolated between [0, a], [0, b] and [0, c], respectively, in the new setup x interpolates in the radius range [r1, r2], y interpolates in the angular range [0, pi/6] and z is just z. (In the paper x and y seem to be reversed with respect to this convention, but this shouldn't matter. If it matters, that's left as an exercise to the reader.)
So what we need to do is more or less keep the current grid points, but transform the corresponding x, y and z grid points so that they lie on a cylinder instead. Here's one take:
import pyvista as pv
import numpy as np
res = 100j
a, b, c = lattice_params = 1, 1, 1
kx, ky, kz = [2*np.pi/lattice_param for lattice_param in lattice_params]
r_aux, phi, z = np.mgrid[0:a:res, 0:b:res, 0:3*c:res]
# convert r_aux range to actual radii
r1, r2 = 1.5, 2
r = r2/a*r_aux + r1/a*(1 - r_aux)
def Gyroid(x, y, z):
return ( np.cos(kx*x)*np.sin(ky*y)
+ np.cos(ky*y)*np.sin(kz*z)
+ np.cos(kz*z)*np.sin(kx*x))
# compute data for cylindrical gyroid
# r_aux is x, phi / 12 is y and z is z
fun_values = Gyroid(r_aux, phi * 12, z)
# compute Cartesian coordinates for grid points
x = r * np.cos(phi*ky)
y = r * np.sin(phi*ky)
grid = pv.StructuredGrid(x, y, z)
grid["vol3"] = fun_values.ravel('F')
contours3 = grid.contour([0])
# plot cylindrical gyroid
pv.set_plot_theme('document')
plotter = pv.Plotter()
plotter.add_mesh(contours3, scalars=contours3.points[:, -1],
show_scalar_bar=False)
plotter.add_bounding_box()
plotter.show_axes()
plotter.enable_terrain_style()
plotter.show()
If you want to look at a single transformed unit cell in the cylindrical setting, use a single domain of phi and z for the function and only convert to 1/12 a full circle for the grid points:
fun_values = Gyroid(r_aux, phi, z/3)
# compute Cartesian coordinates for grid points
x = r * np.cos(phi*ky/12)
y = r * np.sin(phi*ky/12)
grid = pv.StructuredGrid(x, y, z/3)
But it's not easy to see the curvature in the (no longer a) unit cell:

Generating random points in a box

I want to generate random points in a box (a=0.2m, b=0.2m, c=1m). This points should have random distance between each other but minimum distance between two points is should be 0.03m, for this I used random.choice. When I run my code it generates random points but distance management is so wrong. Also my float converting approximation is terrible because I don't want to change random values which I generate before but I couldn't find any other solution. I'm open to suggestions.
Images
graph1
graph2
import random
import matplotlib.pyplot as plt
# BOX a = 0.2m b=0.2m h=1m
save = 0 #for saving 3 different plot.
for k in range(3):
pointsX = [] #information of x coordinates of points
pointsY = [] #information of y coordinates of points
pointsZ = [] #information of z coordinates of points
for i in range(100): #number of the points
a = random.uniform(0.0,0.00001) #for the numbers generated below are float.
x = random.choice(range(3, 21,3)) #random coordinates for x
x1 = x/100 + a
pointsX.append(x1)
y = random.choice(range(3, 21,3)) #random coordinates for y
y1 = y/100 + a
pointsY.append(y1)
z = random.choice(range(3, 98,3)) #random coordinates for z
z1 = z/100 + a
pointsZ.append(z1)
new_pointsX = list(set(pointsX)) # deleting if there is a duplicates
new_pointsY = list(set(pointsY))
new_pointsZ = list(set(pointsZ))
# i wonder max and min values it is or not between borders.
print("X-Min", min(new_pointsX))
print("X-Max", max(new_pointsX))
print("Y-Min", min(new_pointsY))
print("Y-Max", max(new_pointsY))
print("Z-Min", min(new_pointsZ))
print("Z-Max", max(new_pointsZ))
if max(new_pointsX) >= 0.2 or max(new_pointsY) >= 0.2:
print("MAX VALUE GREATER THAN 0.2")
if max(new_pointsZ) >= 0.97:
print("MAX VALUE GREATER THAN 0.97")
#3D graph
fig = plt.figure(figsize=(18,9))
ax = plt.axes(projection='3d')
ax.set_xlim([0, 0.2])
ax.set_ylim([0, 0.2])
ax.set_zlim([0, 1])
ax.set_title('title',fontsize=18)
ax.set_xlabel('X',fontsize=14)
ax.set_ylabel('Y',fontsize=14)
ax.set_zlabel('Z',fontsize=14)
ax.scatter3D(new_pointsX, new_pointsY, new_pointsZ);
save += 1
plt.savefig("graph" + str(save) + ".png", dpi=900)
As mentioned in the comments by #user3431635, you can check each point with all previous points before appending that new point to the list. I would do that something like this:
import random
import numpy as np
import matplotlib.pyplot as plt
plt.close("all")
a = 0.2 # x bound
b = 0.2 # y bound
c = 1.0 # z bound
N = 1000 # number of points
def distance(p, points, min_distance):
"""
Determines if any points in the list are less than the minimum specified
distance apart.
Parameters
----------
p : tuple
`(x,y,z)` point.
points : ndarray
Array of points to check against. `x, y, z` points are columnwise.
min_distance : float
Minimum allowable distance between any two points.
Returns
-------
bool
True if point `p` is at least `min_distance` from all points in `points`.
"""
distances = np.sqrt(np.sum((p+points)**2, axis=1))
distances = np.where(distances < min_distance)
return distances[0].size < 1
points = np.array([]) # x, y, z columnwise
while points.shape[0] < 1000:
x = random.choice(np.linspace(0, a, 100000))
y = random.choice(np.linspace(0, b, 100000))
z = random.choice(np.linspace(0, c, 100000))
p = (x,y,z)
if len(points) == 0: # add first point blindly
points = np.array([p])
elif distance(p, points, 0.03): # ensure the minimum distance is met
points = np.vstack((points, p))
fig = plt.figure(figsize=(18,9))
ax = plt.axes(projection='3d')
ax.set_xlim([0, a])
ax.set_ylim([0, b])
ax.set_zlim([0, c])
ax.set_title('title',fontsize=18)
ax.set_xlabel('X',fontsize=14)
ax.set_ylabel('Y',fontsize=14)
ax.set_zlabel('Z',fontsize=14)
ax.scatter(points[:,0], points[:,1], points[:,2])
Note, this might not be the randomness you're looking for. I have written it to take the range of x, y, and z values and split it into 100000 increments; a new x, y, or z point is then chosen from those values.

Inverse of numpy.gradient function

I need to create a function which would be the inverse of the np.gradient function.
Where the Vx,Vy arrays (Velocity component vectors) are the input and the output would be an array of anti-derivatives (Arrival Time) at the datapoints x,y.
I have data on a (x,y) grid with scalar values (time) at each point.
I have used the numpy gradient function and linear interpolation to determine the gradient vector Velocity (Vx,Vy) at each point (See below).
I have achieved this by:
#LinearTriInterpolator applied to a delaunay triangular mesh
LTI= LinearTriInterpolator(masked_triang, time_array)
#Gradient requested at the mesh nodes:
(Vx, Vy) = LTI.gradient(triang.x, triang.y)
The first image below shows the velocity vectors at each point, and the point labels represent the time value which formed the derivatives (Vx,Vy)
The next image shows the resultant scalar value of the derivatives (Vx,Vy) plotted as a colored contour graph with associated node labels.
So my challenge is:
I need to reverse the process!
Using the gradient vectors (Vx,Vy) or the resultant scalar value to determine the original Time-Value at that point.
Is this possible?
Knowing that the numpy.gradient function is computed using second order accurate central differences in the interior points and either first or second order accurate one-sides (forward or backwards) differences at the boundaries, I am sure there is a function which would reverse this process.
I was thinking that taking a line derivative between the original point (t=0 at x1,y1) to any point (xi,yi) over the Vx,Vy plane would give me the sum of the velocity components. I could then divide this value by the distance between the two points to get the time taken..
Would this approach work? And if so, which numpy integrate function would be best applied?
An example of my data can be found here [http://www.filedropper.com/calculatearrivaltimefromgradientvalues060820]
Your help would be greatly appreciated
EDIT:
Maybe this simplified drawing might help understand where I'm trying to get to..
EDIT:
Thanks to #Aguy who has contibuted to this code.. I Have tried to get a more accurate representation using a meshgrid of spacing 0.5 x 0.5m and calculating the gradient at each meshpoint, however I am not able to integrate it properly. I also have some edge affects which are affecting the results that I don't know how to correct.
import numpy as np
from scipy import interpolate
from matplotlib import pyplot
from mpl_toolkits.mplot3d import Axes3D
#Createmesh grid with a spacing of 0.5 x 0.5
stepx = 0.5
stepy = 0.5
xx = np.arange(min(x), max(x), stepx)
yy = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xx, yy)
grid_z1 = interpolate.griddata((x,y), Arrival_Time, (xgrid, ygrid), method='linear') #Interpolating the Time values
#Formatdata
X = np.ravel(xgrid)
Y= np.ravel(ygrid)
zs = np.ravel(grid_z1)
Z = zs.reshape(X.shape)
#Calculate Gradient
(dx,dy) = np.gradient(grid_z1) #Find gradient for points on meshgrid
Velocity_dx= dx/stepx #velocity ms/m
Velocity_dy= dy/stepx #velocity ms/m
Resultant = (Velocity_dx**2 + Velocity_dy**2)**0.5 #Resultant scalar value ms/m
Resultant = np.ravel(Resultant)
#Plot Original Data F(X,Y) on the meshgrid
fig = pyplot.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(x,y,Arrival_Time,color='r')
ax.plot_trisurf(X, Y, Z)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.set_zlabel('Time (ms)')
pyplot.show()
#Plot the Derivative of f'(X,Y) on the meshgrid
fig = pyplot.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(X,Y,Resultant,color='r',s=0.2)
ax.plot_trisurf(X, Y, Resultant)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.set_zlabel('Velocity (ms/m)')
pyplot.show()
#Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1)*stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0)*stepy
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum([dxintegral[0, len(xx) // 2],
dyintegral[i, len(yy) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
Now the np.gradient is applied at every meshnode (dx,dy) = np.gradient(grid_z1)
Now in my process I would analyse the gradient values above and make some adjustments (There is some unsual edge effects that are being create which I need to rectify) and would then integrate the values to get back to a surface which would be very similar to f(x,y) shown above.
I need some help adjusting the integration function:
#Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1)*stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0)*stepy
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum([dxintegral[0, len(xx) // 2],
dyintegral[i, len(yy) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
And now I need to calculate the new 'Time' values at the original (x,y) point locations.
UPDATE (08-09-20) : I am getting some promising results using the help from #Aguy. The results can be seen below (with the blue contours representing the original data, and the red contours representing the integrated values).
I am still working on an integration approach which can remove the inaccuarcies at the areas of min(y) and max(y)
from matplotlib.tri import (Triangulation, UniformTriRefiner,
CubicTriInterpolator,LinearTriInterpolator,TriInterpolator,TriAnalyzer)
import pandas as pd
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate
#-------------------------------------------------------------------------
# STEP 1: Import data from Excel file, and set variables
#-------------------------------------------------------------------------
df_initial = pd.read_excel(
r'C:\Users\morga\PycharmProjects\venv\Development\Trial'
r'.xlsx')
Inputdata can be found here link
df_initial = df_initial .sort_values(by='Delay', ascending=True) #Update dataframe and sort by Delay
x = df_initial ['X'].to_numpy()
y = df_initial ['Y'].to_numpy()
Arrival_Time = df_initial ['Delay'].to_numpy()
# Createmesh grid with a spacing of 0.5 x 0.5
stepx = 0.5
stepy = 0.5
xx = np.arange(min(x), max(x), stepx)
yy = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xx, yy)
grid_z1 = interpolate.griddata((x, y), Arrival_Time, (xgrid, ygrid), method='linear') # Interpolating the Time values
# Calculate Gradient (velocity ms/m)
(dy, dx) = np.gradient(grid_z1) # Find gradient for points on meshgrid
Velocity_dx = dx / stepx # x velocity component ms/m
Velocity_dy = dy / stepx # y velocity component ms/m
# Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1) * stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0) * stepy
valintegral = np.ma.zeros(dxintegral.shape) # Makes an array filled with 0's the same shape as dx integral
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum(
[dxintegral[0, len(xx) // 2], dyintegral[i, len(xx) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral[np.isnan(dx)] = np.nan
min_value = np.nanmin(valintegral)
valintegral = valintegral + (min_value * -1)
##Plot Results
fig = plt.figure()
ax = fig.add_subplot()
ax.scatter(x, y, color='black', s=7, zorder=3)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.contour(xgrid, ygrid, valintegral, levels=50, colors='red', zorder=2)
ax.contour(xgrid, ygrid, grid_z1, levels=50, colors='blue', zorder=1)
ax.set_aspect('equal')
plt.show()
TL;DR;
You have multiple challenges to address in this issue, mainly:
Potential reconstruction (scalar field) from its gradient (vector field)
But also:
Observation in a concave hull with non rectangular grid;
Numerical 2D line integration and numerical inaccuracy;
It seems it can be solved by choosing an adhoc interpolant and a smart way to integrate (as pointed out by #Aguy).
MCVE
In a first time, let's build a MCVE to highlight above mentioned key points.
Dataset
We recreate a scalar field and its gradient.
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
def f(x, y):
return x**2 + x*y + 2*y + 1
Nx, Ny = 21, 17
xl = np.linspace(-3, 3, Nx)
yl = np.linspace(-2, 2, Ny)
X, Y = np.meshgrid(xl, yl)
Z = f(X, Y)
zl = np.arange(np.floor(Z.min()), np.ceil(Z.max())+1, 2)
dZdy, dZdx = np.gradient(Z, yl, xl, edge_order=1)
V = np.hypot(dZdx, dZdy)
The scalar field looks like:
axe = plt.axes(projection='3d')
axe.plot_surface(X, Y, Z, cmap='jet', alpha=0.5)
axe.view_init(elev=25, azim=-45)
And, the vector field looks like:
axe = plt.contour(X, Y, Z, zl, cmap='jet')
axe.axes.quiver(X, Y, dZdx, dZdy, V, units='x', pivot='tip', cmap='jet')
axe.axes.set_aspect('equal')
axe.axes.grid()
Indeed gradient is normal to potential levels. We also plot the gradient magnitude:
axe = plt.contour(X, Y, V, 10, cmap='jet')
axe.axes.set_aspect('equal')
axe.axes.grid()
Raw field reconstruction
If we naively reconstruct the scalar field from the gradient:
SdZx = np.cumsum(dZdx, axis=1)*np.diff(xl)[0]
SdZy = np.cumsum(dZdy, axis=0)*np.diff(yl)[0]
Zhat = np.zeros(SdZx.shape)
for i in range(Zhat.shape[0]):
for j in range(Zhat.shape[1]):
Zhat[i,j] += np.sum([SdZy[i,0], -SdZy[0,0], SdZx[i,j], -SdZx[i,0]])
Zhat += Z[0,0] - Zhat[0,0]
We can see the global result is roughly correct, but levels are less accurate where the gradient magnitude is low:
Interpolated field reconstruction
If we increase the grid resolution and pick a specific interpolant (usual when dealing with mesh grid), we can get a finer field reconstruction:
r = np.stack([X.ravel(), Y.ravel()]).T
Sx = interpolate.CloughTocher2DInterpolator(r, dZdx.ravel())
Sy = interpolate.CloughTocher2DInterpolator(r, dZdy.ravel())
Nx, Ny = 200, 200
xli = np.linspace(xl.min(), xl.max(), Nx)
yli = np.linspace(yl.min(), yl.max(), Nx)
Xi, Yi = np.meshgrid(xli, yli)
ri = np.stack([Xi.ravel(), Yi.ravel()]).T
dZdxi = Sx(ri).reshape(Xi.shape)
dZdyi = Sy(ri).reshape(Xi.shape)
SdZxi = np.cumsum(dZdxi, axis=1)*np.diff(xli)[0]
SdZyi = np.cumsum(dZdyi, axis=0)*np.diff(yli)[0]
Zhati = np.zeros(SdZxi.shape)
for i in range(Zhati.shape[0]):
for j in range(Zhati.shape[1]):
Zhati[i,j] += np.sum([SdZyi[i,0], -SdZyi[0,0], SdZxi[i,j], -SdZxi[i,0]])
Zhati += Z[0,0] - Zhati[0,0]
Which definitely performs way better:
So basically, increasing the grid resolution with an adhoc interpolant may help you to get more accurate result. The interpolant also solve the need to get a regular rectangular grid from a triangular mesh to perform integration.
Concave and convex hull
You also have pointed out inaccuracy on the edges. Those are the result of the combination of the interpolant choice and the integration methodology. The integration methodology fails to properly compute the scalar field when it reach concave region with few interpolated points. The problem disappear when choosing a mesh-free interpolant able to extrapolate.
To illustrate it, let's remove some data from our MCVE:
q = np.full(dZdx.shape, False)
q[0:6,5:11] = True
q[-6:,-6:] = True
dZdx[q] = np.nan
dZdy[q] = np.nan
Then the interpolant can be constructed as follow:
q2 = ~np.isnan(dZdx.ravel())
r = np.stack([X.ravel(), Y.ravel()]).T[q2,:]
Sx = interpolate.CloughTocher2DInterpolator(r, dZdx.ravel()[q2])
Sy = interpolate.CloughTocher2DInterpolator(r, dZdy.ravel()[q2])
Performing the integration we see that in addition of classical edge effect we do have less accurate value in concave regions (swingy dot-dash lines where the hull is concave) and we have no data outside the convex hull as Clough Tocher is a mesh-based interpolant:
Vl = np.arange(0, 11, 1)
axe = plt.contour(X, Y, np.hypot(dZdx, dZdy), Vl, cmap='jet')
axe.axes.contour(Xi, Yi, np.hypot(dZdxi, dZdyi), Vl, cmap='jet', linestyles='-.')
axe.axes.set_aspect('equal')
axe.axes.grid()
So basically the error we are seeing on the corner are most likely due to integration issue combined with interpolation limited to the convex hull.
To overcome this we can choose a different interpolant such as RBF (Radial Basis Function Kernel) which is able to create data outside the convex hull:
Sx = interpolate.Rbf(r[:,0], r[:,1], dZdx.ravel()[q2], function='thin_plate')
Sy = interpolate.Rbf(r[:,0], r[:,1], dZdy.ravel()[q2], function='thin_plate')
dZdxi = Sx(ri[:,0], ri[:,1]).reshape(Xi.shape)
dZdyi = Sy(ri[:,0], ri[:,1]).reshape(Xi.shape)
Notice the slightly different interface of this interpolator (mind how parmaters are passed).
The result is the following:
We can see the region outside the convex hull can be extrapolated (RBF are mesh free). So choosing the adhoc interpolant is definitely a key point to solve your problem. But we still need to be aware that extrapolation may perform well but is somehow meaningless and dangerous.
Solving your problem
The answer provided by #Aguy is perfectly fine as it setups a clever way to integrate that is not disturbed by missing points outside the convex hull. But as you mentioned there is inaccuracy in concave region inside the convex hull.
If you wish to remove the edge effect you detected, you will have to resort to an interpolant able to extrapolate as well, or find another way to integrate.
Interpolant change
Using RBF interpolant seems to solve your problem. Here is the complete code:
df = pd.read_excel('./Trial-Wireup 2.xlsx')
x = df['X'].to_numpy()
y = df['Y'].to_numpy()
z = df['Delay'].to_numpy()
r = np.stack([x, y]).T
#S = interpolate.CloughTocher2DInterpolator(r, z)
#S = interpolate.LinearNDInterpolator(r, z)
S = interpolate.Rbf(x, y, z, epsilon=0.1, function='thin_plate')
N = 200
xl = np.linspace(x.min(), x.max(), N)
yl = np.linspace(y.min(), y.max(), N)
X, Y = np.meshgrid(xl, yl)
#Zp = S(np.stack([X.ravel(), Y.ravel()]).T)
Zp = S(X.ravel(), Y.ravel())
Z = Zp.reshape(X.shape)
dZdy, dZdx = np.gradient(Z, yl, xl, edge_order=1)
SdZx = np.nancumsum(dZdx, axis=1)*np.diff(xl)[0]
SdZy = np.nancumsum(dZdy, axis=0)*np.diff(yl)[0]
Zhat = np.zeros(SdZx.shape)
for i in range(Zhat.shape[0]):
for j in range(Zhat.shape[1]):
#Zhat[i,j] += np.nansum([SdZy[i,0], -SdZy[0,0], SdZx[i,j], -SdZx[i,0]])
Zhat[i,j] += np.nansum([SdZx[0,N//2], SdZy[i,N//2], SdZx[i,j], -SdZx[i,N//2]])
Zhat += Z[100,100] - Zhat[100,100]
lz = np.linspace(0, 5000, 20)
axe = plt.contour(X, Y, Z, lz, cmap='jet')
axe = plt.contour(X, Y, Zhat, lz, cmap='jet', linestyles=':')
axe.axes.plot(x, y, '.', markersize=1)
axe.axes.set_aspect('equal')
axe.axes.grid()
Which graphically renders as follow:
The edge effect is gone because of the RBF interpolant can extrapolate over the whole grid. You can confirm it by comparing the result of mesh-based interpolants.
Linear
Clough Tocher
Integration variable order change
We can also try to find a better way to integrate and mitigate the edge effect, eg. let's change the integration variable order:
Zhat[i,j] += np.nansum([SdZy[N//2,0], SdZx[N//2,j], SdZy[i,j], -SdZy[N//2,j]])
With a classic linear interpolant. The result is quite correct, but we still have an edge effect on the bottom left corner:
As you noticed the problem occurs at the middle of the axis in region where the integration starts and lacks a reference point.
Here is one approach:
First, in order to be able to do integration, it's good to be on a regular grid. Using here variable names x and y as short for your triang.x and triang.y we can first create a grid:
import numpy as np
n = 200 # Grid density
stepx = (max(x) - min(x)) / n
stepy = (max(y) - min(y)) / n
xspace = np.arange(min(x), max(x), stepx)
yspace = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xspace, yspace)
Then we can interpolate dx and dy on the grid using the same LinearTriInterpolator function:
fdx = LinearTriInterpolator(masked_triang, dx)
fdy = LinearTriInterpolator(masked_triang, dy)
dxgrid = fdx(xgrid, ygrid)
dygrid = fdy(xgrid, ygrid)
Now comes the integration part. In principle, any path we choose should get us to the same value. In practice, since there are missing values and different densities, the choice of path is very important to get a reasonably accurate answer.
Below I choose to integrate over dxgrid in the x direction from 0 to the middle of the grid at n/2. Then integrate over dygrid in the y direction from 0 to the i point of interest. Then over dxgrid again from n/2 to the point j of interest. This is a simple way to make sure most of the path of integration is inside the bulk of available data by simply picking a path that goes mostly in the "middle" of the data range. Other alternative consideration would lead to different path selections.
So we do:
dxintegral = np.nancumsum(dxgrid, axis=1) * stepx
dyintegral = np.nancumsum(dygrid, axis=0) * stepy
and then (by somewhat brute force for clarity):
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(n):
for j in range(n):
valintegral[i, j] = np.ma.sum([dxintegral[0, n // 2], dyintegral[i, n // 2], dxintegral[i, j], - dxintegral[i, n // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
valintegral would be the result up to an arbitrary constant which can help put the "zero" where you want.
With your data shown here:
ax.tricontourf(masked_triang, time_array)
This is what I'm getting reconstructed when using this method:
ax.contourf(xgrid, ygrid, valintegral)
Hopefully this is somewhat helpful.
If you want to revisit the values at the original triangulation points, you can use interp2d on the valintegral regular grid data.
EDIT:
In reply to your edit, your adaptation above has a few errors:
Change the line (dx,dy) = np.gradient(grid_z1) to (dy,dx) = np.gradient(grid_z1)
In the integration loop change the dyintegral[i, len(yy) // 2] term to dyintegral[i, len(xx) // 2]
Better to replace the line valintegral = valintegral * np.isfinite(dxintegral) with valintegral[np.isnan(dx)] = np.nan

Generate profiles through a 2D array at an angle without altering pixels

I'd like to plot two profiles through the highest intensity point in a 2D numpy array, which is an image of a blob (i.e. a line through the semi-major axis, and another line through the semi-minor axis). The blob is rotated at an angle theta counterclockwise from the standard x-axis and is asymmetric.
It is a 600x600 array with a max intensity of 1 (at only one pixel) that is located right at the center at (300, 300). The angle rotation from the x-axis (which then gives the location of the semi-major axis when rotated by that angle) is theta = 89.54 degrees. I do not want to use scipy.ndimage.rotate because it uses spline interpolation, and I do not want to change any of my pixel values. But I suppose a nearest-neighbor interpolation method would be okay.
I tried generating lines corresponding to the major and minor axes across the image, but the result was not right at all (the peak was far less than 1), so maybe I did something wrong. The code for this is below:
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
def profiles_at_angle(image, axis, theta):
theta = np.deg2rad(theta)
if axis == 'major':
x_0, y_0 = 0, 300-300*np.tan(theta)
x_1, y_1 = 599, 300+300*np.tan(theta)
elif axis=='minor':
x_0, y_0 = 300-300*np.tan(theta), 599
x_1, y_1 = 300+300*np.tan(theta), -599
num = 600
x, y = np.linspace(x_0, x_1, num), np.linspace(y_0, y_1, num)
z = ndimage.map_coordinates(image, np.vstack((x,y)))
fig, axes = plt.subplots(nrows=2)
axes[0].imshow(image, cmap='gray')
axes[0].axis('image')
axes[1].plot(z)
plt.xlim(250,350)
plt.show()
profiles_at_angle(image, 'major', theta)
Did I do something obviously wrong in my code above? Or how else can I accomplish this? Thank you.
Edit: Here are some example images. Sorry for the bad quality; my browser crashed every time I tried uploading them anywhere so I had to take photos of the screen.
Figure 1: This is the result of my code above, which is clearly wrong since the peak should be at 1. I'm not sure what I did wrong though.
Figure 2: I made this plot below by just taking the profiles through the standard x and y axes, ignoring any rotation (this only looks good coincidentally because the real angle of rotation is so close to 90 degrees, so I was able to just switch the labels and get this). I want my result to look something like this, but taking the correction rotation angle into account.
Edit: It could be useful to run tests on this method using data very much like my own (it's a 2D Gaussian with nearly the same parameters):
image = np.random.random((600,600))
def generate(data_set):
xvec = np.arange(0, np.shape(data_set)[1], 1)
yvec = np.arange(0, np.shape(data_set)[0], 1)
X, Y = np.meshgrid(xvec, yvec)
return X, Y
def gaussian_func(xy, x0, y0, sigma_x, sigma_y, amp, theta, offset):
x, y = xy
a = (np.cos(theta))**2/(2*sigma_x**2) + (np.sin(theta))**2/(2*sigma_y**2)
b = -np.sin(2*theta)/(4*sigma_x**2) + np.sin(2*theta)/(4*sigma_y**2)
c = (np.sin(theta))**2/(2*sigma_x**2) + (np.cos(theta))**2/(2*sigma_y**2)
inner = a * (x-x0)**2
inner += 2*b*(x-x0)*(y-y0)
inner += c * (y-y0)**2
return (offset + amp * np.exp(-inner)).ravel()
xx, yy = generate(image)
image = gaussian_func((xx.ravel(), yy.ravel()), 300, 300, 5, 4, 1, 1.56, 0)
image = np.reshape(image, (600, 600))
This should do it for you. You just did not properly compute your lines.
theta = 65
peak = np.argwhere(image==1)[0]
x = np.linspace(peak[0]-100,peak[0]+100,1000)
y = lambda x: (x-peak[1])*np.tan(np.deg2rad(theta))+peak[0]
y_maj = np.linspace(y(peak[1]-100),y(peak[1]+100),1000)
y = lambda x: -(x-peak[1])/np.tan(np.deg2rad(theta))+peak[0]
y_min = np.linspace(y(peak[1]-100),y(peak[1]+100),1000)
del y
z_min = scipy.ndimage.map_coordinates(image, np.vstack((x,y_min)))
z_maj = scipy.ndimage.map_coordinates(image, np.vstack((x,y_maj)))
fig, axes = plt.subplots(nrows=2)
axes[0].imshow(image)
axes[0].plot(x,y_maj)
axes[0].plot(x,y_min)
axes[0].axis('image')
axes[1].plot(z_min)
axes[1].plot(z_maj)
plt.show()

Categories