scikits learn SVM - 1-dimensional Separating Hyperplane - python

How to plot the separating "hyperplane" for 1-dimensional data using scikit svm ?
I follow this guide for 2-dimensional data : http://scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html, but don't know how to make it works for 1-dimensional data
pos = np.random.randn(20, 1) + 1
neg = np.random.randn(20, 1) - 1
X = np.r_[pos, neg]
Y = [0] * 20 + [1] * 20
clf = svm.SVC(kernel='linear', C=0.05)
clf.fit(X, Y)
# how to get "hyperplane" and margins values ??
thanks

The separating hyperplane for two-dimensional data is a line, whereas for one-dimensional data the hyperplane boils down to a point. The easiest way to plot the separating hyperplane for one-dimensional data is a bit of a hack: the data are made two-dimensional by adding a second feature which takes the value 0 for all the samples. By doing so, the second component of the weight vector is zero, i.e. w = [w0, 0] (see the appendix at the end of this post). As w1 = 0 and w1 is in the denominator of the expression that defines the slope and the y-intercept term of the separating line (see appendix), both coefficients are ∞. In this case it is convenient to solve the equation of the separating hyperplane for x, which results in x = x0 = -b/w0. The margin turns out to be 2/w0 (see appendix for details).
The following script implements this approach:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
np.random.seed(0)
pos = np.hstack((np.random.randn(20, 1) + 1, np.zeros((20, 1))))
neg = np.hstack((np.random.randn(20, 1) - 1, np.zeros((20, 1))))
X = np.r_[pos, neg]
Y = [0] * 20 + [1] * 20
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)
w = clf.coef_[0]
x_0 = -clf.intercept_[0]/w[0]
margin = w[0]
plt.figure()
x_min, x_max = np.floor(X.min()), np.ceil(X.max())
y_min, y_max = -3, 3
yy = np.linspace(y_min, y_max)
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.predict(np.c_[XX.ravel(), np.zeros(XX.size)]).reshape(XX.shape)
plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired)
plt.plot(x_0*np.ones(shape=yy.shape), yy, 'k-')
plt.plot(x_0*np.ones(shape=yy.shape) - margin, yy, 'k--')
plt.plot(x_0*np.ones(shape=yy.shape) + margin, yy, 'k--')
plt.scatter(pos, np.zeros(shape=pos.shape), s=80, marker='o', facecolors='none')
plt.scatter(neg, np.zeros(shape=neg.shape), s=80, marker='^', facecolors='none')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.show()
Although the code above is self explanatory, here are some tips. X dimensions are 40 rows by 2 columns: the values in the first column are random numbers while all the elements of the second column are zeros. In the code, the weight vector w = [w0, 0] and the intercept b are clf_coef_[0] and clf.intercept_[0], respectively, wehre clf if the object returned by sklearn.svm.SVC.
And this is the plot you get when the script is run:
For the sake of clarity I'd suggest to tweak the code above by adding/subtracting a small constant to the second feature, for example:
plt.scatter(pos, .3 + np.zeros(shape=pos.shape), ...)
plt.scatter(neg, -.3 + np.zeros(shape=neg.shape), ...)
By doing so the visualization is significantly improved since the different classes are shown without overlap.
Appendix
The separating hyperplane is usually expressed as
where x is a n-dimensional vector, w is the weight vector and b is the bias or intercept. For n = 2 we have w0.x + w1.y + b = 0. After some algebra we obtain y = -(w0/w1).x + (-b/w1). It clearly emerges from this expression that the discriminant hyperplane in a 2D feature space is a line of equation y = a.x + y0, where the slope is given by a = -w0/w1 and the y-intercept term is y0 = -b/w1. In SVM, the margin of a separating hyperplane is 2/‖w‖, which for 2D reduces to

the .coef_ member of clf will return the "hyperplane," which, in one dimension, is just a point. Check out this post for info on how to plot points on a numberline.

Related

Dimensionality Reduction – PCA explanation

I don't think I have a good understanding of PCA, can someone help with my confusion below please?
Take iris dataset as an example, I have 4 covariates, x1:sepal length; x2:sepal width; x3:petal length; x4:petal width. And the formula can be seen below, a1,a2,a3,a4 are the weightings for the covariates. And PCA will try to maximise the variance using different linear transformations. While also follows the rule of a1^2 + a2^2 + a3^2 + a4^2=1. I'm interested in knowing the value of a1,a2,a3,a4.
a1*x1 + a2*x2 + a3*x3 + a4*x4
I have below code on python which I think is correct?
# load libraries
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import seaborn as sns
import pandas as pd
import numpy as np
iris = load_iris()
X = iris.data
df = pd.DataFrame(X,columns=iris.feature_names)
pca = decomposition.PCA(n_components = 4)
digits_pca_4 = pca.fit(X)
digits_pca_4.explained_variance_ratio_
And the result is
array([0.92461872, 0.05306648, 0.01710261, 0.00521218])
My question is:
Am I correct to assume that a1=sqrt(0.92), a2=sqrt(0.05), a3=sqrt(0.02), a4=sqrt(0.005)?
Second question:
And if I were to choose the linear combination of a1=a2=a3=a4=0.5, what's the variance of this compared to the variance from the PCA (I'm assuming it's less than the PCA result since PCA maximise the variance?)? How can I get the variance of when a1=a2=a3=a4=0.5 in python? And is the variance from PCA the code below?
pca.explained_variance_.sum()
Many thanks!
To answer directly your question: no, your initial interpretation is not correct.
Explanation
The actual projection done by PCA is a matrix multiplication Y = (X - u) W where u is the mean of X (u = X.mean(axis=0)) and W is the projection matrix found by PCA: a n x p orthonormal matrix, where n is the original data dimension and p the desired output dimensions. The expression you give (a1*x1 + a2*x2 + a3*x3 + a4*x4) does not mean anything with all values being scalars. At best, it could mean the calculation of a single component, using one column j of W below as the a_k: Y[i, j] == sum(W[k, j] * (X[i, k] - u[k]) for k in range(n)).
In any case, you can inspect all the variables of the result of pca = PCA.fit(...) with vars(pca). In particular, the projection matrix described above can be found as W = pca.components_.T. The following statements can be verified:
# projection
>>> u = pca.mean_
... W = pca.components_.T
... Y = (X - u).dot(W)
... np.allclose(Y, pca.transform(X))
True
>>> np.allclose(X.mean(axis=0), u)
True
# orthonormality
>>> np.allclose(W.T.dot(W), np.eye(W.shape[1]))
True
# explained variance is the sample variation (not population variance)
# of the projection (i.e. the variance along the proj axes)
>>> np.allclose(Y.var(axis=0, ddof=1), pca. explained_variance_)
True
Graphical demo
The simplest way to understand PCA is that it is purely a rotation in n-D (after mean removal) while retaining only the first p-dimensions. The rotation is such that your data's directions of largest variance become aligned with the natural axes in the projection.
Here is a little demo code to help you visualize what's going on. Please also read the Wikipedia page on PCA.
def pca_plot(V, W, idx, ax):
# plot only first 2 dimensions of W along with axes W
colors = ['k', 'r', 'b', 'g', 'c', 'm', 'y']
u = V.mean(axis=0) # n
axes_lengths = 1.5*(V - u).dot(W).std(axis=0)
axes = W * axes_lengths # n x p
axes = axes[:2].T # p x 2
ax.set_aspect('equal')
ax.scatter(V[:, 0], V[:, 1], alpha=.2)
ax.scatter(V[idx, 0], V[idx, 1], color='r')
hlen = np.max(np.linalg.norm((V - u)[:, :2], axis=1)) / 25
for k in range(axes.shape[0]):
ax.arrow(*u[:2], *axes[k], head_width=hlen/2, head_length=hlen, fc=colors[k], ec=colors[k])
def pca_demo(X, p):
n = X.shape[1] # input dimension
pca = PCA(n_components=p).fit(X)
u = pca.mean_
v = pca.explained_variance_
W = pca.components_.T
Y = pca.transform(X)
assert np.allclose((X - u).dot(W), Y)
# plot first 2D of both input space and output space
# for visual identification: select a point that's as far as possible
# in the direction of the diagonal of the axes cube, after normalization
# Z: variance-1 projection
Z = (X - u).dot(W/np.sqrt(v))
idx = np.argmax(Z.sum(axis=1) / np.sqrt(np.linalg.norm(Z, axis=1)))
fig, ax = plt.subplots(ncols=2, figsize=(12, 6))
# input space
pca_plot(X, W, idx, ax[0])
ax[0].set_title('input data (first 2D)')
# output space
pca_plot(Y, np.eye(p), idx, ax[1])
ax[1].set_title('projection (first 2D)')
return Y, W, u, pca
Examples
Iris data
# to better understand the shape of W, we project onto
# a space of dimension p=3
X = load_iris().data
Y, W, u, pca = pca_demo(X, 3)
Note that the projection is really just (X - u) W:
>>> np.allclose((X - u).dot(W), Y)
True
Synthetic ellipsoid data
A = np.array([
[20, 10, 7],
[-1, 3, 7],
[5, 1, 2],
])
X = np.random.normal(size=(1000, A.shape[0])).dot(A)
Y, W, u, pca = pca_demo(X, 3)

Inverse of numpy.gradient function

I need to create a function which would be the inverse of the np.gradient function.
Where the Vx,Vy arrays (Velocity component vectors) are the input and the output would be an array of anti-derivatives (Arrival Time) at the datapoints x,y.
I have data on a (x,y) grid with scalar values (time) at each point.
I have used the numpy gradient function and linear interpolation to determine the gradient vector Velocity (Vx,Vy) at each point (See below).
I have achieved this by:
#LinearTriInterpolator applied to a delaunay triangular mesh
LTI= LinearTriInterpolator(masked_triang, time_array)
#Gradient requested at the mesh nodes:
(Vx, Vy) = LTI.gradient(triang.x, triang.y)
The first image below shows the velocity vectors at each point, and the point labels represent the time value which formed the derivatives (Vx,Vy)
The next image shows the resultant scalar value of the derivatives (Vx,Vy) plotted as a colored contour graph with associated node labels.
So my challenge is:
I need to reverse the process!
Using the gradient vectors (Vx,Vy) or the resultant scalar value to determine the original Time-Value at that point.
Is this possible?
Knowing that the numpy.gradient function is computed using second order accurate central differences in the interior points and either first or second order accurate one-sides (forward or backwards) differences at the boundaries, I am sure there is a function which would reverse this process.
I was thinking that taking a line derivative between the original point (t=0 at x1,y1) to any point (xi,yi) over the Vx,Vy plane would give me the sum of the velocity components. I could then divide this value by the distance between the two points to get the time taken..
Would this approach work? And if so, which numpy integrate function would be best applied?
An example of my data can be found here [http://www.filedropper.com/calculatearrivaltimefromgradientvalues060820]
Your help would be greatly appreciated
EDIT:
Maybe this simplified drawing might help understand where I'm trying to get to..
EDIT:
Thanks to #Aguy who has contibuted to this code.. I Have tried to get a more accurate representation using a meshgrid of spacing 0.5 x 0.5m and calculating the gradient at each meshpoint, however I am not able to integrate it properly. I also have some edge affects which are affecting the results that I don't know how to correct.
import numpy as np
from scipy import interpolate
from matplotlib import pyplot
from mpl_toolkits.mplot3d import Axes3D
#Createmesh grid with a spacing of 0.5 x 0.5
stepx = 0.5
stepy = 0.5
xx = np.arange(min(x), max(x), stepx)
yy = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xx, yy)
grid_z1 = interpolate.griddata((x,y), Arrival_Time, (xgrid, ygrid), method='linear') #Interpolating the Time values
#Formatdata
X = np.ravel(xgrid)
Y= np.ravel(ygrid)
zs = np.ravel(grid_z1)
Z = zs.reshape(X.shape)
#Calculate Gradient
(dx,dy) = np.gradient(grid_z1) #Find gradient for points on meshgrid
Velocity_dx= dx/stepx #velocity ms/m
Velocity_dy= dy/stepx #velocity ms/m
Resultant = (Velocity_dx**2 + Velocity_dy**2)**0.5 #Resultant scalar value ms/m
Resultant = np.ravel(Resultant)
#Plot Original Data F(X,Y) on the meshgrid
fig = pyplot.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(x,y,Arrival_Time,color='r')
ax.plot_trisurf(X, Y, Z)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.set_zlabel('Time (ms)')
pyplot.show()
#Plot the Derivative of f'(X,Y) on the meshgrid
fig = pyplot.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(X,Y,Resultant,color='r',s=0.2)
ax.plot_trisurf(X, Y, Resultant)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.set_zlabel('Velocity (ms/m)')
pyplot.show()
#Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1)*stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0)*stepy
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum([dxintegral[0, len(xx) // 2],
dyintegral[i, len(yy) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
Now the np.gradient is applied at every meshnode (dx,dy) = np.gradient(grid_z1)
Now in my process I would analyse the gradient values above and make some adjustments (There is some unsual edge effects that are being create which I need to rectify) and would then integrate the values to get back to a surface which would be very similar to f(x,y) shown above.
I need some help adjusting the integration function:
#Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1)*stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0)*stepy
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum([dxintegral[0, len(xx) // 2],
dyintegral[i, len(yy) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
And now I need to calculate the new 'Time' values at the original (x,y) point locations.
UPDATE (08-09-20) : I am getting some promising results using the help from #Aguy. The results can be seen below (with the blue contours representing the original data, and the red contours representing the integrated values).
I am still working on an integration approach which can remove the inaccuarcies at the areas of min(y) and max(y)
from matplotlib.tri import (Triangulation, UniformTriRefiner,
CubicTriInterpolator,LinearTriInterpolator,TriInterpolator,TriAnalyzer)
import pandas as pd
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate
#-------------------------------------------------------------------------
# STEP 1: Import data from Excel file, and set variables
#-------------------------------------------------------------------------
df_initial = pd.read_excel(
r'C:\Users\morga\PycharmProjects\venv\Development\Trial'
r'.xlsx')
Inputdata can be found here link
df_initial = df_initial .sort_values(by='Delay', ascending=True) #Update dataframe and sort by Delay
x = df_initial ['X'].to_numpy()
y = df_initial ['Y'].to_numpy()
Arrival_Time = df_initial ['Delay'].to_numpy()
# Createmesh grid with a spacing of 0.5 x 0.5
stepx = 0.5
stepy = 0.5
xx = np.arange(min(x), max(x), stepx)
yy = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xx, yy)
grid_z1 = interpolate.griddata((x, y), Arrival_Time, (xgrid, ygrid), method='linear') # Interpolating the Time values
# Calculate Gradient (velocity ms/m)
(dy, dx) = np.gradient(grid_z1) # Find gradient for points on meshgrid
Velocity_dx = dx / stepx # x velocity component ms/m
Velocity_dy = dy / stepx # y velocity component ms/m
# Integrate to compare the original data input
dxintegral = np.nancumsum(Velocity_dx, axis=1) * stepx
dyintegral = np.nancumsum(Velocity_dy, axis=0) * stepy
valintegral = np.ma.zeros(dxintegral.shape) # Makes an array filled with 0's the same shape as dx integral
for i in range(len(yy)):
for j in range(len(xx)):
valintegral[i, j] = np.ma.sum(
[dxintegral[0, len(xx) // 2], dyintegral[i, len(xx) // 2], dxintegral[i, j], - dxintegral[i, len(xx) // 2]])
valintegral[np.isnan(dx)] = np.nan
min_value = np.nanmin(valintegral)
valintegral = valintegral + (min_value * -1)
##Plot Results
fig = plt.figure()
ax = fig.add_subplot()
ax.scatter(x, y, color='black', s=7, zorder=3)
ax.set_xlabel('X-Coordinates')
ax.set_ylabel('Y-Coordinates')
ax.contour(xgrid, ygrid, valintegral, levels=50, colors='red', zorder=2)
ax.contour(xgrid, ygrid, grid_z1, levels=50, colors='blue', zorder=1)
ax.set_aspect('equal')
plt.show()
TL;DR;
You have multiple challenges to address in this issue, mainly:
Potential reconstruction (scalar field) from its gradient (vector field)
But also:
Observation in a concave hull with non rectangular grid;
Numerical 2D line integration and numerical inaccuracy;
It seems it can be solved by choosing an adhoc interpolant and a smart way to integrate (as pointed out by #Aguy).
MCVE
In a first time, let's build a MCVE to highlight above mentioned key points.
Dataset
We recreate a scalar field and its gradient.
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
def f(x, y):
return x**2 + x*y + 2*y + 1
Nx, Ny = 21, 17
xl = np.linspace(-3, 3, Nx)
yl = np.linspace(-2, 2, Ny)
X, Y = np.meshgrid(xl, yl)
Z = f(X, Y)
zl = np.arange(np.floor(Z.min()), np.ceil(Z.max())+1, 2)
dZdy, dZdx = np.gradient(Z, yl, xl, edge_order=1)
V = np.hypot(dZdx, dZdy)
The scalar field looks like:
axe = plt.axes(projection='3d')
axe.plot_surface(X, Y, Z, cmap='jet', alpha=0.5)
axe.view_init(elev=25, azim=-45)
And, the vector field looks like:
axe = plt.contour(X, Y, Z, zl, cmap='jet')
axe.axes.quiver(X, Y, dZdx, dZdy, V, units='x', pivot='tip', cmap='jet')
axe.axes.set_aspect('equal')
axe.axes.grid()
Indeed gradient is normal to potential levels. We also plot the gradient magnitude:
axe = plt.contour(X, Y, V, 10, cmap='jet')
axe.axes.set_aspect('equal')
axe.axes.grid()
Raw field reconstruction
If we naively reconstruct the scalar field from the gradient:
SdZx = np.cumsum(dZdx, axis=1)*np.diff(xl)[0]
SdZy = np.cumsum(dZdy, axis=0)*np.diff(yl)[0]
Zhat = np.zeros(SdZx.shape)
for i in range(Zhat.shape[0]):
for j in range(Zhat.shape[1]):
Zhat[i,j] += np.sum([SdZy[i,0], -SdZy[0,0], SdZx[i,j], -SdZx[i,0]])
Zhat += Z[0,0] - Zhat[0,0]
We can see the global result is roughly correct, but levels are less accurate where the gradient magnitude is low:
Interpolated field reconstruction
If we increase the grid resolution and pick a specific interpolant (usual when dealing with mesh grid), we can get a finer field reconstruction:
r = np.stack([X.ravel(), Y.ravel()]).T
Sx = interpolate.CloughTocher2DInterpolator(r, dZdx.ravel())
Sy = interpolate.CloughTocher2DInterpolator(r, dZdy.ravel())
Nx, Ny = 200, 200
xli = np.linspace(xl.min(), xl.max(), Nx)
yli = np.linspace(yl.min(), yl.max(), Nx)
Xi, Yi = np.meshgrid(xli, yli)
ri = np.stack([Xi.ravel(), Yi.ravel()]).T
dZdxi = Sx(ri).reshape(Xi.shape)
dZdyi = Sy(ri).reshape(Xi.shape)
SdZxi = np.cumsum(dZdxi, axis=1)*np.diff(xli)[0]
SdZyi = np.cumsum(dZdyi, axis=0)*np.diff(yli)[0]
Zhati = np.zeros(SdZxi.shape)
for i in range(Zhati.shape[0]):
for j in range(Zhati.shape[1]):
Zhati[i,j] += np.sum([SdZyi[i,0], -SdZyi[0,0], SdZxi[i,j], -SdZxi[i,0]])
Zhati += Z[0,0] - Zhati[0,0]
Which definitely performs way better:
So basically, increasing the grid resolution with an adhoc interpolant may help you to get more accurate result. The interpolant also solve the need to get a regular rectangular grid from a triangular mesh to perform integration.
Concave and convex hull
You also have pointed out inaccuracy on the edges. Those are the result of the combination of the interpolant choice and the integration methodology. The integration methodology fails to properly compute the scalar field when it reach concave region with few interpolated points. The problem disappear when choosing a mesh-free interpolant able to extrapolate.
To illustrate it, let's remove some data from our MCVE:
q = np.full(dZdx.shape, False)
q[0:6,5:11] = True
q[-6:,-6:] = True
dZdx[q] = np.nan
dZdy[q] = np.nan
Then the interpolant can be constructed as follow:
q2 = ~np.isnan(dZdx.ravel())
r = np.stack([X.ravel(), Y.ravel()]).T[q2,:]
Sx = interpolate.CloughTocher2DInterpolator(r, dZdx.ravel()[q2])
Sy = interpolate.CloughTocher2DInterpolator(r, dZdy.ravel()[q2])
Performing the integration we see that in addition of classical edge effect we do have less accurate value in concave regions (swingy dot-dash lines where the hull is concave) and we have no data outside the convex hull as Clough Tocher is a mesh-based interpolant:
Vl = np.arange(0, 11, 1)
axe = plt.contour(X, Y, np.hypot(dZdx, dZdy), Vl, cmap='jet')
axe.axes.contour(Xi, Yi, np.hypot(dZdxi, dZdyi), Vl, cmap='jet', linestyles='-.')
axe.axes.set_aspect('equal')
axe.axes.grid()
So basically the error we are seeing on the corner are most likely due to integration issue combined with interpolation limited to the convex hull.
To overcome this we can choose a different interpolant such as RBF (Radial Basis Function Kernel) which is able to create data outside the convex hull:
Sx = interpolate.Rbf(r[:,0], r[:,1], dZdx.ravel()[q2], function='thin_plate')
Sy = interpolate.Rbf(r[:,0], r[:,1], dZdy.ravel()[q2], function='thin_plate')
dZdxi = Sx(ri[:,0], ri[:,1]).reshape(Xi.shape)
dZdyi = Sy(ri[:,0], ri[:,1]).reshape(Xi.shape)
Notice the slightly different interface of this interpolator (mind how parmaters are passed).
The result is the following:
We can see the region outside the convex hull can be extrapolated (RBF are mesh free). So choosing the adhoc interpolant is definitely a key point to solve your problem. But we still need to be aware that extrapolation may perform well but is somehow meaningless and dangerous.
Solving your problem
The answer provided by #Aguy is perfectly fine as it setups a clever way to integrate that is not disturbed by missing points outside the convex hull. But as you mentioned there is inaccuracy in concave region inside the convex hull.
If you wish to remove the edge effect you detected, you will have to resort to an interpolant able to extrapolate as well, or find another way to integrate.
Interpolant change
Using RBF interpolant seems to solve your problem. Here is the complete code:
df = pd.read_excel('./Trial-Wireup 2.xlsx')
x = df['X'].to_numpy()
y = df['Y'].to_numpy()
z = df['Delay'].to_numpy()
r = np.stack([x, y]).T
#S = interpolate.CloughTocher2DInterpolator(r, z)
#S = interpolate.LinearNDInterpolator(r, z)
S = interpolate.Rbf(x, y, z, epsilon=0.1, function='thin_plate')
N = 200
xl = np.linspace(x.min(), x.max(), N)
yl = np.linspace(y.min(), y.max(), N)
X, Y = np.meshgrid(xl, yl)
#Zp = S(np.stack([X.ravel(), Y.ravel()]).T)
Zp = S(X.ravel(), Y.ravel())
Z = Zp.reshape(X.shape)
dZdy, dZdx = np.gradient(Z, yl, xl, edge_order=1)
SdZx = np.nancumsum(dZdx, axis=1)*np.diff(xl)[0]
SdZy = np.nancumsum(dZdy, axis=0)*np.diff(yl)[0]
Zhat = np.zeros(SdZx.shape)
for i in range(Zhat.shape[0]):
for j in range(Zhat.shape[1]):
#Zhat[i,j] += np.nansum([SdZy[i,0], -SdZy[0,0], SdZx[i,j], -SdZx[i,0]])
Zhat[i,j] += np.nansum([SdZx[0,N//2], SdZy[i,N//2], SdZx[i,j], -SdZx[i,N//2]])
Zhat += Z[100,100] - Zhat[100,100]
lz = np.linspace(0, 5000, 20)
axe = plt.contour(X, Y, Z, lz, cmap='jet')
axe = plt.contour(X, Y, Zhat, lz, cmap='jet', linestyles=':')
axe.axes.plot(x, y, '.', markersize=1)
axe.axes.set_aspect('equal')
axe.axes.grid()
Which graphically renders as follow:
The edge effect is gone because of the RBF interpolant can extrapolate over the whole grid. You can confirm it by comparing the result of mesh-based interpolants.
Linear
Clough Tocher
Integration variable order change
We can also try to find a better way to integrate and mitigate the edge effect, eg. let's change the integration variable order:
Zhat[i,j] += np.nansum([SdZy[N//2,0], SdZx[N//2,j], SdZy[i,j], -SdZy[N//2,j]])
With a classic linear interpolant. The result is quite correct, but we still have an edge effect on the bottom left corner:
As you noticed the problem occurs at the middle of the axis in region where the integration starts and lacks a reference point.
Here is one approach:
First, in order to be able to do integration, it's good to be on a regular grid. Using here variable names x and y as short for your triang.x and triang.y we can first create a grid:
import numpy as np
n = 200 # Grid density
stepx = (max(x) - min(x)) / n
stepy = (max(y) - min(y)) / n
xspace = np.arange(min(x), max(x), stepx)
yspace = np.arange(min(y), max(y), stepy)
xgrid, ygrid = np.meshgrid(xspace, yspace)
Then we can interpolate dx and dy on the grid using the same LinearTriInterpolator function:
fdx = LinearTriInterpolator(masked_triang, dx)
fdy = LinearTriInterpolator(masked_triang, dy)
dxgrid = fdx(xgrid, ygrid)
dygrid = fdy(xgrid, ygrid)
Now comes the integration part. In principle, any path we choose should get us to the same value. In practice, since there are missing values and different densities, the choice of path is very important to get a reasonably accurate answer.
Below I choose to integrate over dxgrid in the x direction from 0 to the middle of the grid at n/2. Then integrate over dygrid in the y direction from 0 to the i point of interest. Then over dxgrid again from n/2 to the point j of interest. This is a simple way to make sure most of the path of integration is inside the bulk of available data by simply picking a path that goes mostly in the "middle" of the data range. Other alternative consideration would lead to different path selections.
So we do:
dxintegral = np.nancumsum(dxgrid, axis=1) * stepx
dyintegral = np.nancumsum(dygrid, axis=0) * stepy
and then (by somewhat brute force for clarity):
valintegral = np.ma.zeros(dxintegral.shape)
for i in range(n):
for j in range(n):
valintegral[i, j] = np.ma.sum([dxintegral[0, n // 2], dyintegral[i, n // 2], dxintegral[i, j], - dxintegral[i, n // 2]])
valintegral = valintegral * np.isfinite(dxintegral)
valintegral would be the result up to an arbitrary constant which can help put the "zero" where you want.
With your data shown here:
ax.tricontourf(masked_triang, time_array)
This is what I'm getting reconstructed when using this method:
ax.contourf(xgrid, ygrid, valintegral)
Hopefully this is somewhat helpful.
If you want to revisit the values at the original triangulation points, you can use interp2d on the valintegral regular grid data.
EDIT:
In reply to your edit, your adaptation above has a few errors:
Change the line (dx,dy) = np.gradient(grid_z1) to (dy,dx) = np.gradient(grid_z1)
In the integration loop change the dyintegral[i, len(yy) // 2] term to dyintegral[i, len(xx) // 2]
Better to replace the line valintegral = valintegral * np.isfinite(dxintegral) with valintegral[np.isnan(dx)] = np.nan

numpy polyfit passing through 0

Suppose I have x and y vectors with a weight vector wgt. I can fit a cubic curve (y = a x^3 + b x^2 + c x + d) by using np.polyfit as follows:
y_fit = np.polyfit(x, y, deg=3, w=wgt)
Now, suppose I want to do another fit, but this time, I want the fit to pass through 0 (i.e. y = a x^3 + b x^2 + c x, d = 0), how can I specify a particular coefficient (i.e. d in this case) to be zero?
Thanks
You can try something like the following:
Import curve_fit from scipy, i.e.
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
Define the curve fitting function. In your case,
def fit_func(x, a, b, c):
# Curve fitting function
return a * x**3 + b * x**2 + c * x # d=0 is implied
Perform the curve fitting,
# Curve fitting
params = curve_fit(fit_func, x, y)
[a, b, c] = params[0]
x_fit = np.linspace(x[0], x[-1], 100)
y_fit = a * x_fit**3 + b * x_fit**2 + c * x_fit
Plot the results if you please,
plt.plot(x, y, '.r') # Data
plt.plot(x_fit, y_fit, 'k') # Fitted curve
It does not answer the question in the sense that it uses numpy's polyfit function to pass through the origin, but it solves the problem.
Hope someone finds it useful :)
You can use np.linalg.lstsq and construct your coefficient matrix manually. To start, I'll create the example data x and y, and the "exact fit" y0:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(100)
y0 = 0.07 * x ** 3 + 0.3 * x ** 2 + 1.1 * x
y = y0 + 1000 * np.random.randn(x.shape[0])
Now I'll create a full cubic polynomial 'training' or 'independent variable' matrix that includes the constant d column.
XX = np.vstack((x ** 3, x ** 2, x, np.ones_like(x))).T
Let's see what I get if I compute the fit with this dataset and compare it to polyfit:
p_all = np.linalg.lstsq(X_, y)[0]
pp = np.polyfit(x, y, 3)
print np.isclose(pp, p_all).all()
# Returns True
Where I've used np.isclose because the two algorithms do produce very small differences.
You're probably thinking 'that's nice, but I still haven't answered the question'. From here, forcing the fit to have a zero offset is the same as dropping the np.ones column from the array:
p_no_offset = np.linalg.lstsq(XX[:, :-1], y)[0] # use [0] to just grab the coefs
Ok, let's see what this fit looks like compared to our data:
y_fit = np.dot(p_no_offset, XX[:, :-1].T)
plt.plot(x, y0, 'k-', linewidth=3)
plt.plot(x, y_fit, 'y--', linewidth=2)
plt.plot(x, y, 'r.', ms=5)
This gives this figure,
WARNING: When using this method on data that does not actually pass through (x,y)=(0,0) you will bias your estimates of your output solution coefficients (p) because lstsq will be trying to compensate for that fact that there is an offset in your data. Sort of a 'square peg round hole' problem.
Furthermore, you could also fit your data to a cubic only by doing:
p_ = np.linalg.lstsq(X_[:1, :], y)[0]
Here again the warning above applies. If your data contains quadratic, linear or constant terms the estimate of the cubic coefficient will be biased. There can be times when - for numerical algorithms - this sort of thing is useful, but for statistical purposes my understanding is that it is important to include all of the lower terms. If tests turn out to show that the lower terms are not statistically different from zero that's fine, but for safety's sake you should probably leave them in when you estimate your cubic.
Best of luck!

2D Gaussian Fit for intensities at certain coordinates in Python

I have a set of coordinates (x, y, z(x, y)) which describe intensities (z) at coordinates x, y. For a set number of these intensities at different coordinates, I need to fit a 2D Gaussian that minimizes the mean squared error.
The data is in numpy matrices and for each fitting session I will have either 4, 9, 16 or 25 coordinates. Ultimately I just need to get the central position of the gaussian (x_0, y_0) that has smallest MSE.
All of the examples that I have found use scipy.optimize.curve_fit but the input data they have is over an entire mesh rather than a few coordinates.
Any help would be appreciated.
Introduction
There are multiple ways to approach this. You can use non-linear methods (e.g. scipy.optimize.curve_fit), but they'll be slow and aren't guaranteed to converge. You can linearize the problem (fast, unique solution), but any noise in the "tails" of the distribution will cause issues. There are actually a few tricks you can apply to this particular case to avoid the latter issue. I'll show some examples, but I don't have time to demonstrate all of the "tricks" right now.
Just as a side note, a general 2D guassian has 6 parameters, so you won't be able to fully fit things with 4 points. However, it sounds like you might be assuming that there's no covariance between x and y and that the variances are the same in each direction (i.e. a perfectly "round" bell curve). If that's the case, then you only need four parameters. If you know the amplitude of the guassian, you'll only need three. However, I'm going to start with the general solution, and you can simplify it later on, if you want to.
For the moment, let's focus on solving this problem using non-linear methods (e.g. scipy.optimize.curve_fit).
The general equation for a 2D guassian is (directly from wikipedia):
where:
is essentially 0.5 over the covariance matrix, A is the amplitude,
and (X₀, Y₀) is the center
Generate simplified sample data
Let's write the equation above out:
import numpy as np
import matplotlib.pyplot as plt
def gauss2d(x, y, amp, x0, y0, a, b, c):
inner = a * (x - x0)**2
inner += 2 * b * (x - x0)**2 * (y - y0)**2
inner += c * (y - y0)**2
return amp * np.exp(-inner)
And then let's generate some example data. To start with, we'll generate some data that will be easy to fit:
np.random.seed(1977) # For consistency
x, y = np.random.random((2, 10))
x0, y0 = 0.3, 0.7
amp, a, b, c = 1, 2, 3, 4
zobs = gauss2d(x, y, amp, x0, y0, a, b, c)
fig, ax = plt.subplots()
scat = ax.scatter(x, y, c=zobs, s=200)
fig.colorbar(scat)
plt.show()
Note that we haven't added any noise, and the center of the distribution is within the range that we have data (i.e. center at 0.3, 0.7 and a scatter of x,y observations between 0 and 1). For the moment, let's stick with this, and then we'll see what happens when we add noise and shift the center.
Non-linear fitting
To start with, let's use scpy.optimize.curve_fit to preform a non-linear least-squares fit to the gaussian function. (On a side note, you can play around with the exact minimization algorithm by using some of the other functions in scipy.optimize.)
The scipy.optimize functions expect a slightly different function signature than the one we originally wrote above. We could write a wrapper to "translate", but let's just re-write the gauss2d function instead:
def gauss2d(xy, amp, x0, y0, a, b, c):
x, y = xy
inner = a * (x - x0)**2
inner += 2 * b * (x - x0)**2 * (y - y0)**2
inner += c * (y - y0)**2
return amp * np.exp(-inner)
All we did was have the function expect the independent variables (x & y) as a single 2xN array.
Now we need to make an initial guess at what the guassian curve's parameters actually are. This is optional (the default is all ones, if I recall correctly), but you're likely to have problems converging if 1, 1 is not particularly close to the "true" center of the gaussian curve. For that reason, we'll use the x and y values of our largest observed z-value as a starting point for the center. I'll leave the rest of the parameters as 1, but if you know that they're likely to consistently be significantly different, change them to something more reasonable.
Here's the full, stand-alone example:
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
def main():
x0, y0 = 0.3, 0.7
amp, a, b, c = 1, 2, 3, 4
true_params = [amp, x0, y0, a, b, c]
xy, zobs = generate_example_data(10, true_params)
x, y = xy
i = zobs.argmax()
guess = [1, x[i], y[i], 1, 1, 1]
pred_params, uncert_cov = opt.curve_fit(gauss2d, xy, zobs, p0=guess)
zpred = gauss2d(xy, *pred_params)
print 'True parameters: ', true_params
print 'Predicted params:', pred_params
print 'Residual, RMS(obs - pred):', np.sqrt(np.mean((zobs - zpred)**2))
plot(xy, zobs, pred_params)
plt.show()
def gauss2d(xy, amp, x0, y0, a, b, c):
x, y = xy
inner = a * (x - x0)**2
inner += 2 * b * (x - x0)**2 * (y - y0)**2
inner += c * (y - y0)**2
return amp * np.exp(-inner)
def generate_example_data(num, params):
np.random.seed(1977) # For consistency
xy = np.random.random((2, num))
zobs = gauss2d(xy, *params)
return xy, zobs
def plot(xy, zobs, pred_params):
x, y = xy
yi, xi = np.mgrid[:1:30j, -.2:1.2:30j]
xyi = np.vstack([xi.ravel(), yi.ravel()])
zpred = gauss2d(xyi, *pred_params)
zpred.shape = xi.shape
fig, ax = plt.subplots()
ax.scatter(x, y, c=zobs, s=200, vmin=zpred.min(), vmax=zpred.max())
im = ax.imshow(zpred, extent=[xi.min(), xi.max(), yi.max(), yi.min()],
aspect='auto')
fig.colorbar(im)
ax.invert_yaxis()
return fig
main()
In this case, we exactly(ish) recover our original "true" parameters.
True parameters: [1, 0.3, 0.7, 2, 3, 4]
Predicted params: [ 1. 0.3 0.7 2. 3. 4. ]
Residual, RMS(obs - pred): 1.01560615193e-16
As we'll see in a second, this won't always be the case...
Adding Noise
Let's add some noise to our observations. All I've done here is change the generate_example_data function:
def generate_example_data(num, params):
np.random.seed(1977) # For consistency
xy = np.random.random((2, num))
noise = np.random.normal(0, 0.3, num)
zobs = gauss2d(xy, *params) + noise
return xy, zobs
However, the result looks quite different:
And as far as the parameters go:
True parameters: [1, 0.3, 0.7, 2, 3, 4]
Predicted params: [ 1.129 0.263 0.750 1.280 32.333 10.103 ]
Residual, RMS(obs - pred): 0.152444640098
The predicted center hasn't changed much, but the b and c parameters have changed quite a bit.
If we change the center of the function to somewhere slightly outside of our scatter of points:
x0, y0 = -0.3, 1.1
We'll wind up with complete nonsense as a result in the presence of noise! (It still works correctly without noise.)
True parameters: [1, -0.3, 1.1, 2, 3, 4]
Predicted params: [ 0.546 -0.939 0.857 -0.488 44.069 -4.136]
Residual, RMS(obs - pred): 0.235664449826
This is a common problem when fitting a function that decays to zero. Any noise in the "tails" can result in a very poor result. There are a number of strategies to deal with this. One of the easiest is to weight the inversion by the observed z-values. Here's an example for the 1D case: (focusing on linearized the problem) How can I perform a least-squares fitting over multiple data sets fast? If I have time later, I'll add an example of this for the 2D case.

Plane fitting to 4 (or more) XYZ points

I have 4 points, which are very near to be at the one plane - it is the 1,4-Dihydropyridine cycle.
I need to calculate distance from C3 and N1 to the plane, which is made of C1-C2-C4-C5.
Calculating distance is OK, but fitting plane is quite difficult to me.
1,4-DHP cycle:
1,4-DHP cycle, another view:
from array import *
from numpy import *
from scipy import *
# coordinates (XYZ) of C1, C2, C4 and C5
x = [0.274791784, -1.001679346, -1.851320839, 0.365840754]
y = [-1.155674199, -1.215133985, 0.053119249, 1.162878076]
z = [1.216239624, 0.764265677, 0.956099579, 1.198231236]
# plane equation Ax + By + Cz = D
# non-fitted plane
abcd = [0.506645455682, -0.185724560275, -1.43998120646, 1.37626378129]
# creating distance variable
distance = zeros(4, float)
# calculating distance from point to plane
for i in range(4):
distance[i] = (x[i]*abcd[0]+y[i]*abcd[1]+z[i]*abcd[2]+abcd[3])/sqrt(abcd[0]**2 + abcd[1]**2 + abcd[2]**2)
print distance
# calculating squares
squares = distance**2
print squares
How to make sum(squares) minimized? I have tried least squares, but it is too hard for me.
That sounds about right, but you should replace the nonlinear optimization with an SVD. The following creates the moment of inertia tensor, M, and then SVD's it to get the normal to the plane. This should be a close approximation to the least-squares fit and be much faster and more predictable. It returns the point-cloud center and the normal.
def planeFit(points):
"""
p, n = planeFit(points)
Given an array, points, of shape (d,...)
representing points in d-dimensional space,
fit an d-dimensional plane to the points.
Return a point, p, on the plane (the point-cloud centroid),
and the normal, n.
"""
import numpy as np
from numpy.linalg import svd
points = np.reshape(points, (np.shape(points)[0], -1)) # Collapse trialing dimensions
assert points.shape[0] <= points.shape[1], "There are only {} points in {} dimensions.".format(points.shape[1], points.shape[0])
ctr = points.mean(axis=1)
x = points - ctr[:,np.newaxis]
M = np.dot(x, x.T) # Could also use np.cov(x) here.
return ctr, svd(M)[0][:,-1]
For example: Construct a 2D cloud at (10, 100) that is thin in the x direction and 100 times bigger in the y direction:
>>> pts = np.diag((.1, 10)).dot(randn(2,1000)) + np.reshape((10, 100),(2,-1))
The fit plane is very nearly at (10, 100) with a normal very nearly along the x axis.
>>> planeFit(pts)
(array([ 10.00382471, 99.48404676]),
array([ 9.99999881e-01, 4.88824145e-04]))
Least squares should fit a plane easily. The equation for a plane is: ax + by + c = z. So set up matrices like this with all your data:
x_0 y_0 1
A = x_1 y_1 1
...
x_n y_n 1
And
a
x = b
c
And
z_0
B = z_1
...
z_n
In other words: Ax = B. Now solve for x which are your coefficients. But since you have more than 3 points, the system is over-determined so you need to use the left pseudo inverse. So the answer is:
a
b = (A^T A)^-1 A^T B
c
And here is some simple Python code with an example:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
N_POINTS = 10
TARGET_X_SLOPE = 2
TARGET_y_SLOPE = 3
TARGET_OFFSET = 5
EXTENTS = 5
NOISE = 5
# create random data
xs = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
ys = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
zs = []
for i in range(N_POINTS):
zs.append(xs[i]*TARGET_X_SLOPE + \
ys[i]*TARGET_y_SLOPE + \
TARGET_OFFSET + np.random.normal(scale=NOISE))
# plot raw data
plt.figure()
ax = plt.subplot(111, projection='3d')
ax.scatter(xs, ys, zs, color='b')
# do fit
tmp_A = []
tmp_b = []
for i in range(len(xs)):
tmp_A.append([xs[i], ys[i], 1])
tmp_b.append(zs[i])
b = np.matrix(tmp_b).T
A = np.matrix(tmp_A)
fit = (A.T * A).I * A.T * b
errors = b - A * fit
residual = np.linalg.norm(errors)
print("solution: %f x + %f y + %f = z" % (fit[0], fit[1], fit[2]))
print("errors:")
print(errors)
print("residual: {}".format(residual))
# plot plane
xlim = ax.get_xlim()
ylim = ax.get_ylim()
X,Y = np.meshgrid(np.arange(xlim[0], xlim[1]),
np.arange(ylim[0], ylim[1]))
Z = np.zeros(X.shape)
for r in range(X.shape[0]):
for c in range(X.shape[1]):
Z[r,c] = fit[0] * X[r,c] + fit[1] * Y[r,c] + fit[2]
ax.plot_wireframe(X,Y,Z, color='k')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
The solution for your points:
0.143509 x + 0.057196 y + 1.129595 = z
The fact that you are fitting to a plane is only slightly relevant here. What you are trying to do is minimize a particular function starting from a guess. For that use scipy.optimize. Note that there is no guarantee that this is the globally optimal solution, only locally optimal. A different initial condition may converge to a different result, this works well if you start close to the local minima you are seeking.
I've taken the liberty to clean up your code by taking advantage of numpy's broadcasting:
import numpy as np
# coordinates (XYZ) of C1, C2, C4 and C5
XYZ = np.array([
[0.274791784, -1.001679346, -1.851320839, 0.365840754],
[-1.155674199, -1.215133985, 0.053119249, 1.162878076],
[1.216239624, 0.764265677, 0.956099579, 1.198231236]])
# Inital guess of the plane
p0 = [0.506645455682, -0.185724560275, -1.43998120646, 1.37626378129]
def f_min(X,p):
plane_xyz = p[0:3]
distance = (plane_xyz*X.T).sum(axis=1) + p[3]
return distance / np.linalg.norm(plane_xyz)
def residuals(params, signal, X):
return f_min(X, params)
from scipy.optimize import leastsq
sol = leastsq(residuals, p0, args=(None, XYZ))[0]
print("Solution: ", sol)
print("Old Error: ", (f_min(XYZ, p0)**2).sum())
print("New Error: ", (f_min(XYZ, sol)**2).sum())
This gives:
Solution: [ 14.74286241 5.84070802 -101.4155017 114.6745077 ]
Old Error: 0.441513295404
New Error: 0.0453564286112
This returns the 3D plane coefficients along with the RMSE of the fit.
The plane is provided in a homogeneous coordinate representation, meaning its dot product with the homogeneous coordinates of a point produces the distance between the two.
def fit_plane(points):
assert points.shape[1] == 3
centroid = points.mean(axis=0)
x = points - centroid[None, :]
U, S, Vt = np.linalg.svd(x.T # x)
normal = U[:, -1]
origin_distance = normal # centroid
rmse = np.sqrt(S[-1] / len(points))
return np.hstack([normal, -origin_distance]), rmse
Minor note: the SVD can also be directly applied to the points instead of the outer product matrix, but I found it to be slower with NumPy's SVD implementation.
U, S, Vt = np.linalg.svd(x.T, full_matrices=False)
rmse = S[-1] / np.sqrt(len(points))
Another way aside from svd to quickly reach a solution while dealing with outliers ( when you have a large data set ) is ransac :
def fit_plane(voxels, iterations=50, inlier_thresh=10): # voxels : x,y,z
inliers, planes = [], []
xy1 = np.concatenate([voxels[:, :-1], np.ones((voxels.shape[0], 1))], axis=1)
z = voxels[:, -1].reshape(-1, 1)
for _ in range(iterations):
random_pts = voxels[np.random.choice(voxels.shape[0], voxels.shape[1] * 10, replace=False), :]
plane_transformation, residual = fit_pts_to_plane(random_pts)
inliers.append(((z - np.matmul(xy1, plane_transformation)) <= inlier_thresh).sum())
planes.append(plane_transformation)
return planes[np.array(inliers).argmax()]
def fit_pts_to_plane(voxels): # x y z (m x 3)
# https://math.stackexchange.com/questions/99299/best-fitting-plane-given-a-set-of-points
xy1 = np.concatenate([voxels[:, :-1], np.ones((voxels.shape[0], 1))], axis=1)
z = voxels[:, -1].reshape(-1, 1)
fit = np.matmul(np.matmul(np.linalg.inv(np.matmul(xy1.T, xy1)), xy1.T), z)
errors = z - np.matmul(xy1, fit)
residual = np.linalg.norm(errors)
return fit, residual
Here's one way. If your points are P[1]..P[n] then compute the mean M of these and subtract it from each, getting points p[1]..p[n]. Then compute C = Sum{ p[i]*p[i]'} (the "covariance" matrix of the points). Next diagonalise C, that is find orthogonal U and diagonal E so that C = U*E*U'. If your points are indeed on a plane then one of the eigenvalues (ie the diagonal entries of E) will be very small (with perfect arithmetic it would be 0). In any case if the j'th one of these is the smallest, then let the j'th column of U be (A,B,C) and compute D = -M'*N. These parameters define the "best" plane, the one such that the sum of the squares of the distances from the P[] to the plane is least.

Categories