How to give sns.clustermap a precomputed distance matrix? - python

Usually when I do dendrograms and heatmaps, I use a distance matrix and do a bunch of SciPy stuff. I want to try out Seaborn but Seaborn wants my data in rectangular form (rows=samples, cols=attributes, not a distance matrix)?
I essentially want to use seaborn as the backend to compute my dendrogram and tack it on to my heatmap. Is this possible? If not, can this be a feature in the future.
Maybe there are parameters I can adjust so it can take a distance matrix instead of a rectangular matrix?
Here's the usage:
seaborn.clustermap¶
seaborn.clustermap(data, pivot_kws=None, method='average', metric='euclidean',
z_score=None, standard_scale=None, figsize=None, cbar_kws=None, row_cluster=True,
col_cluster=True, row_linkage=None, col_linkage=None, row_colors=None,
col_colors=None, mask=None, **kwargs)
My code below:
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
DF = pd.DataFrame(X, index = ["iris_%d" % (i) for i in range(X.shape[0])], columns = iris.feature_names)
I don't think my method is correct below because I'm giving it a precomputed distance matrix and NOT a rectangular data matrix as it requests. There's no examples of how to use a correlation/distance matrix with clustermap but there is for https://stanford.edu/~mwaskom/software/seaborn/examples/network_correlations.html but the ordering is not clustered w/ the plain sns.heatmap func.
DF_corr = DF.T.corr()
DF_dism = 1 - DF_corr
sns.clustermap(DF_dism)

You can pass the precomputed distance matrix as linkage to clustermap():
import pandas as pd, seaborn as sns
import scipy.spatial as sp, scipy.cluster.hierarchy as hc
from sklearn.datasets import load_iris
sns.set(font="monospace")
iris = load_iris()
X, y = iris.data, iris.target
DF = pd.DataFrame(X, index = ["iris_%d" % (i) for i in range(X.shape[0])], columns = iris.feature_names)
DF_corr = DF.T.corr()
DF_dism = 1 - DF_corr # distance matrix
linkage = hc.linkage(sp.distance.squareform(DF_dism), method='average')
sns.clustermap(DF_dism, row_linkage=linkage, col_linkage=linkage)
For clustermap(distance_matrix) (i.e., without linkage passed), the linkage is calculated internally based on pairwise distances of the rows and columns in the distance matrix (see note below for full details) instead of using the elements of the distance matrix directly (the correct solution). As a result, the output is somewhat different from the one in the question:
Note: if no row_linkage is passed to clustermap(), the row linkage is determined internally by considering each row a "point" (observation) and calculating the pairwise distances between the points. So the row dendrogram reflects row similarity. Analogous for col_linkage, where each column is considered a point. This explanation should likely be added to the docs. Here the docs's first example modified to make the internal linkage calculation explicit:
import seaborn as sns; sns.set()
import scipy.spatial as sp, scipy.cluster.hierarchy as hc
flights = sns.load_dataset("flights")
flights = flights.pivot("month", "year", "passengers")
row_linkage, col_linkage = (hc.linkage(sp.distance.pdist(x), method='average')
for x in (flights.values, flights.values.T))
g = sns.clustermap(flights, row_linkage=row_linkage, col_linkage=col_linkage)
# note: this produces the same plot as "sns.clustermap(flights)", where
# clustermap() calculates the row and column linkages internally

Related

Principle Component Analysis, add a line to the 3d graph showing the first principal component

I am conducting PCA on a dataset. I am attempting to add a line in my 3d graph which shows the first principal component. I have tried a few methods but have not been able to display the first principal component as a line in my 3d graph. Any help is greatly appreciated. My code is as follows:
import numpy as np
np.set_printoptions (suppress=True, precision=5, linewidth=150)
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
file_name = 'C:/Users/data'
input_data = pd.read_csv (file_name + '.csv', header=0, index_col=0)
A = input_data.A.values.astype(float)
B = input_data.B.values.astype(float)
C = input_data.C.values.astype(float)
D = input_data.D.values.astype(float)
E = input_data.E.values.astype(float)
F = input_data.F.values.astype(float)
X = np.column_stack((A, B, C, D, E, F))
ncompo = int (input ("Number of components to study: "))
print("")
pca = PCA (n_components = ncompo)
pcafit = pca.fit(X)
cov_mat = np.cov(X, rowvar=0)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
perc = pcafit.explained_variance_ratio_
perc_x = range(1, len(perc)+1)
plt.plot(perc_x, perc)
plt.xlabel('Components')
plt.ylabel('Percentage of Variance Explained')
plt.show()
#3d Graph
plt.clf()
le = LabelEncoder()
le.fit(input_data.Grade)
number = le.transform(input_data.Grade)
colormap = np.array(['green', 'blue', 'red', 'yellow'])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(D, E, F, c=colormap[number])
ax.set_xlabel('D')
ax.set_ylabel('E')
ax.set_zlabel('F')
plt.title('PCA')
plt.show()
Some remarks to begin with:
You are computing PCA twice! To compute PCA is to compute eigen values and eigen vectors of the covariance matrix. So, either you use the sklearn function pca.fit, either you do it yourself. But you don't need to do both, unless you want to discover pca.fit and see for yourself that it does exactly what you expect it to do (if this is what you wanted, fine. It is a good thing to do that king of checking. I did this once also). Of course pca.fit has another advantage: once you have it, it also provides pca.predict to project points in the components space. But that also is simply a base change using eigenvectors matrix (that is matrix to change base)
pca object let you get the eigenvectors (pca.components_) and eigen values (pca.explained_variance_)
pca.fit is a 'inplace' method. It does not return a new PCA object. It just fit the one you have. So, no need to get pcafit and use it.
This is not a minimal reproducible exemple as required on SO. We should be able to copy and paste it, and run it, so see exactly your problem. Not to guess what kind of secret data you have. And in the meantime, it should be minimal. So, contains data example generation (it doesn't matter if those data doesn't make sense. Sometimes it is even better, since it allows some testing. In my following code, I generate my own noisy data along an axis, which allow me to verify that, indeed, I am able to "guess" what was that axis). Plus, since your problem concerns only 3d plot, there is no need to include ploting of explained variance here. That part is not part of your question.
Now, to print the principal component, well, you already did the hard part. Twice. That is to compute it. It is the eigenvector associated with the highest eigenvalue.
With pca object no need to search for it, they are already sorted. So it is simply pca.components_[0]. And since you want to plot in the space D,E,F, you simply need to draw vector pca.components_[0][3:].
With correct scaling.
You can do that with plot providing just 2 points (first and last)
Here is my version (which, by the way, shows also what a minimal reproducible example is)
import numpy as np
np.set_printoptions (suppress=True, precision=5, linewidth=150)
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# Generation of random data along a given vector
vec=np.array([1, -1, 0.5, -0.5, 0.75, 0.75]).reshape(-1,1)
# 10000 random data, that are U[0,10]×vec + gaussian noise std=1
X=(vec*np.random.rand(10000)*10 + np.random.normal(0,1,(6,10000))).T
(A,B,C,D,E,F)=X.T
input_data = pd.DataFrame({'A':A,'B':B,'C':C,'D':D,'E':E, 'F':F, 'Grade':np.random.randint(1,5, (10000,))})
ncompo=6
pca = PCA (n_components = ncompo)
pca.fit(X)
# Redundant
cov_mat = np.cov(X, rowvar=0)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
# See
print("Eigen values")
print(eig_vals)
print(pca.explained_variance_)
print("Eigen vec")
print(eig_vecs)
print(pca.components_)
# Note, compare first components to
print("Main component")
print(vec/np.linalg.norm(vec))
print(pca.components_[0])
#3d Graph
le = LabelEncoder()
le.fit(input_data.Grade)
number = le.transform(input_data.Grade)
fig = plt.figure()
colormap = np.array(['green', 'blue', 'red', 'yellow'])
ax = fig.add_subplot(111, projection='3d')
ax.scatter(D, E, F, c=colormap[number])
U=pca.components_[0]
sc1=max(D)/U[3]
sc2=min(D)/U[3]
# Draw the 1st principal component as a blue line
ax.plot([sc1*U[3],sc2*U[3]], [sc1*U[4], sc2*U[4]], [sc1*U[5], sc2*U[5]], linewidth=3)
ax.set_xlabel('D')
ax.set_ylabel('E')
ax.set_zlabel('F')
plt.title('PCA')
plt.show()
My example is not that minimal, because I took advantage of it to illustrate my first remark, and also computed PCA twice, to compare both result.
So, here I print, eigenvalues
Eigen values
[30.88941 1.01334 0.99512 0.96493 0.97692 0.98101]
[30.88941 1.01334 0.99512 0.98101 0.97692 0.96493]
(1st being your computation by diagonalisation of covariance matrix, 2nd pca.explained_variance_)
As you can see, they are the same, except sorting for the 1st one
Like wise,
Eigen vec
[[-0.52251 -0.27292 0.40863 -0.06321 0.26699 0.6405 ]
[ 0.52521 0.07577 -0.34211 0.27583 -0.04161 0.72357]
[-0.26266 -0.41332 -0.60091 0.38027 0.47573 -0.16779]
[ 0.26354 -0.52548 0.47284 0.59159 -0.24029 -0.15204]
[-0.39493 0.63946 0.07496 0.64966 -0.08619 0.00252]
[-0.3959 -0.25276 -0.35452 -0.0572 -0.79718 0.12217]]
[[ 0.52251 -0.52521 0.26266 -0.26354 0.39493 0.3959 ]
[-0.27292 0.07577 -0.41332 -0.52548 0.63946 -0.25276]
[-0.40863 0.34211 0.60091 -0.47284 -0.07496 0.35452]
[-0.6405 -0.72357 0.16779 0.15204 -0.00252 -0.12217]
[-0.26699 0.04161 -0.47573 0.24029 0.08619 0.79718]
[-0.06321 0.27583 0.38027 0.59159 0.64966 -0.0572 ]]
Also the same, but for sorting and transpose.
Eigen vectors are presented column wise when you diagonalize a matrix.
Where as for pca.components_ each line is an eigen vector.
But you can see that in the 1st matrix, the eigen vector associated to the biggest eigen value, that is, since biggest eigen value was the 1st one, the 1st column (-0.52, 0.52, etc.)
is also the same as the first line of pca.components_.
Like wise, the 4th biggest eigen value in your diagonalisation was the last one.
And if you look at the last column of your eigen vectors (0.64, 0.72, -0.76...), it is the same as the 4th line of pca.components_ (with a irrelevant ×-1 factor)
So, long story short, you already have eigenvals in pca.explained_variance_ sorted from the biggest to the smallest. And eigen vectors in pca_components_, in the same order.
Last thing I print here, is comparison between the first component (pca.components_[0]) and the vector I used to generate the data in the first place (my data are all colinear to a vector vec, + a gaussian noise).
Main component
[[ 0.52523]
[-0.52523]
[ 0.26261]
[-0.26261]
[ 0.39392]
[ 0.39392]]
[ 0.52251 -0.52521 0.26266 -0.26354 0.39493 0.3959 ]
As expected, PCA did find correctly that main axis.
So, that was just side comments.
What is really what you were looking for is
ax.plot([sc1*U[3],sc2*U[3]], [sc1*U[4], sc2*U[4]], [sc1*U[5], sc2*U[5]], linewidth=3)
sc1 and sc2 being just scaling factors (here I choose it so that it scales approx like the data. Another way would have been to set ax.set_xlim, ax.set_ylim, ax.set_zlim from D.min(), D.max(), E.min(), E.max(), etc.
And then just use big values for sc1 and sc2, like
sc1=1000
sc2=-1000

Implementation of Principal Component Analysis from Scratch Orients the Data Differently than scikit-learn

Based on the guide Implementing PCA in Python, by Sebastian Raschka I am building the PCA algorithm from scratch for my research purpose. The class definition is:
import numpy as np
class PCA(object):
"""Dimension Reduction using Principal Component Analysis (PCA)
It is the procces of computing principal components which explains the
maximum variation of the dataset using fewer components.
:type n_components: int, optional
:param n_components: Number of components to consider, if not set then
`n_components = min(n_samples, n_features)`, where
`n_samples` is the number of samples, and
`n_features` is the number of features (i.e.,
dimension of the dataset).
Attributes
==========
:type covariance_: np.ndarray
:param covariance_: Coviarance Matrix
:type eig_vals_: np.ndarray
:param eig_vals_: Calculated Eigen Values
:type eig_vecs_: np.ndarray
:param eig_vecs_: Calculated Eigen Vectors
:type explained_variance_: np.ndarray
:param explained_variance_: Explained Variance of Each Principal Components
:type cum_explained_variance_: np.ndarray
:param cum_explained_variance_: Cumulative Explained Variables
"""
def __init__(self, n_components : int = None):
"""Default Constructor for Initialization"""
self.n_components = n_components
def fit_transform(self, X : np.ndarray):
"""Fit the PCA algorithm into the Dataset"""
if not self.n_components:
self.n_components = min(X.shape)
self.covariance_ = np.cov(X.T)
# calculate eigens
self.eig_vals_, self.eig_vecs_ = np.linalg.eig(self.covariance_)
# explained variance
_tot_eig_vals = sum(self.eig_vals_)
self.explained_variance_ = np.array([(i / _tot_eig_vals) * 100 for i in sorted(self.eig_vals_, reverse = True)])
self.cum_explained_variance_ = np.cumsum(self.explained_variance_)
# define `W` as `d x k`-dimension
self.W_ = self.eig_vecs_[:, :self.n_components]
print(X.shape, self.W_.shape)
return X.dot(self.W_)
Consider the iris-dataset as a test case, PCA is achieved and visualized as follows:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# loading iris data, and normalize
from sklearn.datasets import load_iris
iris = load_iris()
from sklearn.preprocessing import MinMaxScaler
X, y = iris.data, iris.target
X = MinMaxScaler().fit_transform(X)
# using the PCA function (defined above)
# to fit_transform the X value
# naming the PCA object as dPCA (d = defined)
dPCA = PCA()
principalComponents = dPCA.fit_transform(X)
# creating a pandas dataframe for the principal components
# and visualize the data using scatter plot
PCAResult = pd.DataFrame(principalComponents, columns = [f"PCA-{i}" for i in range(1, dPCA.n_components + 1)])
PCAResult["target"] = y # possible as original order does not change
sns.scatterplot(x = "PCA-1", y = "PCA-2", data = PCAResult, hue = "target", s = 50)
plt.show()
The output is as:
Now, I wanted to verify the output, for which I used sklearn library, and the output is as follows:
from sklearn.decomposition import PCA # note the same name
sPCA = PCA() # consider all the components
principalComponents_ = sPCA.fit_transform(X)
PCAResult_ = pd.DataFrame(principalComponents_, columns = [f"PCA-{i}" for i in range(1, 5)])
PCAResult_["target"] = y # possible as original order does not change
sns.scatterplot(x = "PCA-1", y = "PCA-2", data = PCAResult_, hue = "target", s = 50)
plt.show()
I don't understand why the output is oriented differently, with a minor different value. I studied numerous codes [1, 2, 3], all of which have the same issue. My questions:
What is different in sklearn, that the plot is different? I've tried with a different dataset too - the same problem.
Is there a way to fix this issue?
I was not able to study the sklearn.decompose.PCA algorithm, as I am new to OOPs concept with python.
Output in the blog post by Sebastian Raschka also has a minor variation in output. Figure below:
When calculating an eigenvector you may change its sign and the solution will also be a valid one.
So any PCA axis can be reversed and the solution will be valid.
Nevertheless, you may wish to impose a positive correlation of a PCA axis with one of the original variables in the dataset, inverting the axis if needed.
The difference in values comes from PCA from sklearn using svd decomposition. In sklearn there's a function svd_flip used to flip the PCs, which explains why you see this flip
More details on the help page:
It uses the LAPACK implementation of the full SVD or a randomized
truncated SVD by the method of Halko et al. 2009, depending on the
shape of the input data and the number of components to extract.
You can read about the relation here
We first run your example dataset:
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from sklearn.utils.extmath import svd_flip
import pandas as pd
import numpy as np
import scipy
iris = load_iris()
X, y = iris.data, iris.target
X = MinMaxScaler().fit_transform(X)
n_components = 4
sPCA = PCA(n_components,svd_solver="full")
sklearnPCs = pd.DataFrame(sPCA.fit_transform(X))
We now perform SVD on your centered matrix:
U,S,Vt = scipy.linalg.svd(X - X.mean(axis=0))
U = U[:,:n_components]
U, Vt = svd_flip(U, Vt)
svdPCs = pd.DataFrame(U*S)
The results:
0 1 2 3
0 -0.630703 0.107578 -0.018719 -0.007307
1 -0.622905 -0.104260 -0.049142 -0.032359
2 -0.669520 -0.051417 0.019644 -0.007434
3 -0.654153 -0.102885 0.023219 0.020114
4 -0.648788 0.133488 0.015116 0.011786
.. ... ... ... ...
145 0.551462 0.059841 0.086283 -0.110092
146 0.407146 -0.171821 -0.004102 -0.065241
147 0.447143 0.037560 0.049546 -0.032743
148 0.488208 0.149678 0.239209 0.002864
149 0.312066 -0.031130 0.118672 0.052505
svdPCs
0 1 2 3
0 -0.630703 0.107578 -0.018719 -0.007307
1 -0.622905 -0.104260 -0.049142 -0.032359
2 -0.669520 -0.051417 0.019644 -0.007434
3 -0.654153 -0.102885 0.023219 0.020114
4 -0.648788 0.133488 0.015116 0.011786
.. ... ... ... ...
145 0.551462 0.059841 0.086283 -0.110092
146 0.407146 -0.171821 -0.004102 -0.065241
147 0.447143 0.037560 0.049546 -0.032743
148 0.488208 0.149678 0.239209 0.002864
149 0.312066 -0.031130 0.118672 0.052505
You can implement without the flip. The values will be the same and your PCA will be valid as noted in the other answer.

How to calculate covariance on 2 columns out of multiple columns in python?

I've provided a sample data below. It contains 8x10 matrix which contains two-dimensional normal distribution. For ex, col1 and col2 is 1 set, col3/col4 is another and so on. I'm trying to calculate covariance of the individual set in python. So far, I've been unsuccessful and i'm new to python. However, below is what I've tried:
import pandas
import numpy
import matplotlib.pyplot as plg
data = pandas.read_excel("testfile.xlsx", header=None)
dataNpy = pandas.DataFrame.to_numpy(data)
mean = numpy.mean(dataNpy, axis=0)
dataAWithoutMean = dataNpy - mean
covB = numpy.cov(dataAWithoutMean)
print("cov is: " + str(covB))
I've been tasked to calculate 4 separate covariance matrices and plot the covariance value for each set. In addition, plot the variance of each set.
dataset:
5.583566716 -0.441667252 -0.663300181 -1.249623134 -6.530464227 -4.984165997 2.594874802 2.646629654
6.129721509 2.374902708 -2.583949571 -2.224729817 0.279965502 -0.850298098 -1.542499771 -2.686894831
5.793226266 1.133844629 -1.939493549 1.570726544 -2.125423302 -1.33966397 -0.42901856 -0.09814741
3.413049714 -0.1133744 -0.032092831 -0.122147373 2.063549449 0.685517481 5.887909556 4.056242954
-2.639701885 -0.716557389 -0.851273969 -0.522784614 -7.347432606 -2.653482175 1.043389849 0.774192416
-1.84827484 -0.636893709 -2.223488277 -1.227420764 0.253999505 0.540299783 -1.593071594 -0.70980532
0.754029441 1.427571018 5.486147486 2.956320758 2.054346142 1.939929175 -3.559875405 -3.074861749
2.009806308 1.916796155 7.820990369 2.953681659 2.071682641 0.105056782 -1.120995825 -0.036335483
1.875128481 1.785216268 -2.607698929 0.244415372 -0.793431956 -1.598343481 -2.120852679 -2.777871862
0.168442246 0.324606905 0.53741174 0.274617158 -2.99037756 -3.323958514 -3.288399345 -2.482277047
Thanks for helping in advance :)
Is this what you need?
import pandas
import numpy
import matplotlib.pyplot as plt
data = pandas.read_excel("Book1.xlsx", header=None)
mean = data.mean(axis=0)
dataAWithoutMean = data - mean
# Variance of each set
dataAWithoutMean.var()
# Covariance matrix
cov = dataAWithoutMean.cov()
plt.matshow(cov)
plt.show()

Output K-Means to CSV with SciKit Learn - give cluster names

I have the below scikit learn script which outputs a nice chart (below) with each of the clusters.
I have a couple of questions:
- How can I export this to CSV - with a cluster name or ID?
- How can I name the clusters?
- How can I make sure the clusters are always named the same thing? For example, I want to call the top right segment 'high spenders' how do I so that where it will always be correct?
Thanks!
#import the required libraries
# - matplotlib is a charting library
# - Seaborn builds on top of Matplotlib and introduces additional plot types. It also makes your traditional Matplotlib plots look a bit prettier.
# - Numpy is numerical Python
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans
#Generate sample data, with distinct clusters for testing
#n_samples = the number of datapoints, equally split across each clusters
#centers = The number of centers to generate (number of clusters) - a center is the arithmetic mean of all the points belonging to the cluster.
#cluster_std = the standard deviation of the clusters - a quantity expressing by how much the members of a group differ from the mean value for the group (how tight is the cluster going to be)
#random_state = controls the random number generator being used. If you don't mention the random_state in the code, then whenever you execute your code a new random value is generated and the train and test datasets would have different values each time. However, if you use a particular value for random_state(random_state = 1 or any other value) everytime the result will be same,i.e, same values in train and test datasets.
#make_blobs generates "isotropic Gaussian blobs" - X is a numpy array with two columns which contain the (x, y) Gaussian coordinates of these points, whereas y contains the list of categories for each.
#X, y = simply means that the output of make_blobs() has two elements, that are assigned to X and y.
X, y = make_blobs(n_samples=300, centers=4,
cluster_std=0.50, random_state=0)
#X now looks like this - column zero becomes the X axis, column1 becomes the Y axis
array([[ 1.85219907, 1.10411295],
[-1.27582283, 7.76448722],
[ 1.0060939 , 4.43642592],
[-1.20998253, 7.83203579],
[ 1.92461484, 1.06347673],
[ 2.28565919, 0.79166208],
[-1.57379043, 2.69773813],
[ 1.04917913, 4.31668562],
[-1.07436851, 7.93489945],
[-1.15872975, 7.97295642]
#The below statement, will enable us to visualise matplotlib charts, even in ipython
#Using matplotlib backend: MacOSX
#Populating the interactive namespace from numpy and matplotlib
%pylab
#plot the chart
#s = the sizer of the points.
#X[:, 0] is the numpy coordinates way of selecting every row entry for column 0 - i.e. a single column from the numpy array.
#X[:, 1] is the numpy coordinates way of selecting every row entry for column 1 - i.e. a single column from the numpy array.
plt.scatter(X[:, 0], X[:, 1], s=50);
#now, I am definining that I want to find 4 clusters within the data. The general rule I follow is, I will have 7 times less clusters than datapoints.
kmeans = KMeans(n_clusters=4)
#build the model, based on X with the number of clusters defined above
kmeans.fit(X)
#now we're going to find clusters in the randomly generated dataset
predict = kmeans.predict(X)
#now we can plot the prediction
#c = colour, which is based on the predict variable we defined above
#s = the size of the plots
#X[:, 0] is the numpy coordinates way of selecting every row entry for column 0 - i.e. a single column from the numpy array.
#X[:, 1] is the numpy coordinates way of selecting every row entry for column 1 - i.e. a single column from the numpy array.
plt.scatter(X[:, 0], X[:, 1], c=predict, s=50)
Based on your code the following worked for me. You can certainly stay with numpy for storing the CSV but I simply prefer pandas. The sorting line should give you the same results everytime you run the code. However, since the initliazation of the clusters can have an impact I would also set a seed in your code, e.g. np.random.seed(42) and call the kmeans function with the random_state parameter, e.g. kmeans = KMeans(n_clusters=4, random_state=42)
# transform to dataframe
import pandas as pd
import seaborn as sns
df = pd.DataFrame(X)
df.columns = ["var1", "var2"]
df["cluster"] = predict
colors = sns.color_palette()[0:4]
df = df.sort_values("cluster")
# check plot
sns.scatterplot(df["var1"], df["var2"], hue=df["cluster"], palette=colors)
plt.show()
# define rename schema
mynames = {"0": "center_left", "1": "top_left", "2": "bot_right", "3": "center"}
df["cluster_name"] = [mynames[str(i)] for i in df.cluster]
# plot again to verify order
sns.scatterplot(df["var1"], df["var2"], hue=df["cluster_name"],
palette=colors)
sns.despine()
plt.show()
# save dataframe as CSV
df.to_csv("myoutput.csv")
The first plot looks like this:
The second plot looks like this:
The CSV will look like this:

How to get the optimal number of clusters using hierarchical cluster analysis automatically in python?

I want to use hierarchical cluster analysis to get the optimal number (K) of clusters automatically, then apply this K to K-means clustering in python.
After studying many article, I know some methods tell us that we can plot the graph to determine K, but have any methods can output a real number automatically in python?
The hierarchical clustering method is based on dendrogram to determine the optimal number of clusters. Plot the dendrogram using a code similar to the following:
# General imports
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Special imports
from scipy.cluster.hierarchy import dendrogram, linkage
# Load data, fill in appropriately
X = []
# How to cluster the data, single is minimal distance between clusters
linked = linkage(X, 'single')
# Plot dendrogram
plt.figure(figsize=(10, 7))
dendrogram(linked,
orientation='top',
labels=labelList,
distance_sort='descending',
show_leaf_counts=True)
plt.show()
In the dendrogram locate the largest vertical difference between nodes, and in the middle pass an horizontal line. The number of vertical lines intersecting it is the optimal number of clusters (when affinity is calculated using the method set in linkage).
See example here: https://stackabuse.com/hierarchical-clustering-with-python-and-scikit-learn/
How to automatically read a dendrogram and extract that number is something I would also like to know.
Added in edit:
There is a way to do so using SK Learn package. See the following example:
#==========================================================================
# Hierarchical Clustering - Automatic determination of number of clusters
#==========================================================================
# General imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from os import path
# Special imports
from scipy.cluster.hierarchy import dendrogram, linkage
import scipy.cluster.hierarchy as shc
from sklearn.cluster import AgglomerativeClustering
# %matplotlib inline
print("============================================================")
print(" Hierarchical Clustering demo - num of clusters ")
print("============================================================")
print(" ")
folder = path.dirname(path.realpath(__file__)) # set current folder
# Load data
customer_data = pd.read_csv( path.join(folder, "hierarchical-clustering-with-python-and-scikit-learn-shopping-data.csv"))
# print(customer_data.shape)
print("In this data there should be 5 clusters...")
# Retain only the last two columns
data = customer_data.iloc[:, 3:5].values
# # Plot dendrogram using SciPy
# plt.figure(figsize=(10, 7))
# plt.title("Customer Dendograms")
# dend = shc.dendrogram(shc.linkage(data, method='ward'))
# plt.show()
# Initialize hiererchial clustering method, in order for the algorithm to determine the number of clusters
# put n_clusters=None, compute_full_tree = True,
# best distance threshold value for this dataset is distance_threshold = 200
cluster = AgglomerativeClustering(n_clusters=None, affinity='euclidean', linkage='ward', compute_full_tree=True, distance_threshold=200)
# Cluster the data
cluster.fit_predict(data)
print(f"Number of clusters = {1+np.amax(cluster.labels_)}")
# Display the clustering, assigning cluster label to every datapoint
print("Classifying the points into clusters:")
print(cluster.labels_)
# Display the clustering graphically in a plot
plt.scatter(data[:,0],data[:,1], c=cluster.labels_, cmap='rainbow')
plt.title(f"SK Learn estimated number of clusters = {1+np.amax(cluster.labels_)}")
plt.show()
print(" ")
The data was taken from here: https://stackabuse.s3.amazonaws.com/files/hierarchical-clustering-with-python-and-scikit-learn-shopping-data.csv
I found a solution I am using in my code. It involves color_list that counts amount of numbers of "connections". If one wants to extract the number of "leaves" (clusters) just decrease the number by 1:
https://www.youtube.com/watch?v=4DInt3H2UNE

Categories