List index out of range with Panda read_csv - python

I'm trying to read large data (thousands of rows) through a python script from csv files which look like this:
.....
2015-11-03 20:16:28,000;63,62;
2015-11-03 20:16:29,000;63,75;
2015-11-03 20:16:30,000;63,86;
2015-11-03 20:16:31,000;64,25;
but it appears that one of the files has extra empty rows that have 196541465 blank spaces — then the code crashes when reading it with read_csv of pandas lib.
File "/usr/lib/python2.7/dist-packages/pandas/core/frame.py", line 4221, in append
elif isinstance(other, list) and not isinstance(other[0], DataFrame):
IndexError: list index out of range
I'm using the folowing command:
data = pd.read_csv(input_file,skiprows = [0],usecols=[0,1,2],delimiter=';',decimal=',', names = [ 'date','angle','Unnamed'],na_filter = False,parse_dates = [0],date_parser = reformat_date,error_bad_lines = False,skip_blank_lines=True)#,nrows = 8191)
the culprit row is the 8192'th, when limiting rows (by rows = 8191) it works just fine. I've tried many options from the doc but it doesn't seem to work! Any idea?

I got this error because I was trying to read a CSV file that had too few headers vs. the number of columns (e.g. 10 columns, but only 8 headers. If you set index_col=False, pandas doesn't know what to do with the extra columns)

Edited according to Mitjas comment below.
I just had the same issue and index_col = False didn't work. I had 19 columns and only 17 headers. Solved it with reading columns and headers separately and then adding the header names.
dfcolumns = pd.read_csv('file.csv',
nrows = 1)
df = pd.read_csv('file.csv',
header = None,
skiprows = 1,
usecols = list(range(len(dfcolumns.columns))),
names = dfcolumns.columns)

Related

Changing Headers in .csv files

Right now I am trying to read in data which is provided in a messy to read-in format. Here is an example
#Name,
#Comment,""
#ExtComment,""
#Source,
[Data]
1,2
3,4
5,6
#[END_OF_FILE]
When working with one or two of these files, I have manually changed the ['DATA'] header to ['x', 'y'] and am able to read in data just fine by skipping the first few rows and not reading the last line.
However, right now I have 30+ files, split between two different folders and I am trying to figure out the best way to read in the files and change the header of each file from ['DATA'] to ['x', 'y'].
The excel files are in a folder one path lower than the file that is supposed to read them (i.e. folder 1 contains set of code below, and folder 2 contains the excel files, folder 1 contains folder 2)
Here is what I have right now:
#sets - refers to the set containing the name of each file (i.e. [file1, file2])
#df - the dataframe which you are going to store the data in
#dataLabels - the headers you want to search for within the .csv file
#skip - the number of rows you want to skip
#newHeader - what you want to change the column headers to be
#pathName - provide path where files are located
def reader (sets, df, dataLabels, skip, newHeader, pathName):
for i in range(len(sets)):
df_temp = pd.read_csv(glob.glob(pathName+ sets[i]+".csv"), sep=r'\s*,', skiprows = skip, engine = 'python')[:-1]
df_temp.column.value[0] = [newHeader]
for j in range(len(dataLabels)):
df_temp[dataLabels[j]] = pd.to_numeric(df_temp[dataLabels[j]],errors = 'coerce')
df.append(df_temp)
return df
When I run my code, I run into the error:
No columns to parse from file
I am not quite sure why - I have tried skipping past the [DATA] header and I still receive that error.
Note, for this example I would like the headers to be 'x', 'y' - I am trying to make a universal function so that I could change it to something more useful depending on what I am measuring.
If the #[DATA] row is to be replaced regardless, just ignore it. You can just tell pandas to ignore lines that start with # and then specify your own names:
import pandas as pd
df = pd.read_csv('test.csv', comment='#', names=['x', 'y'])
which gives
x y
0 1 2
1 3 4
2 5 6
Expanding Kraigolas's answer, to do this with multiple files you can use a list comprehension:
files = [glob.glob(f"{pathName}{set_num}.csv") for set_num in sets]
df = pd.concat([pd.read_csv(file, comment="#", names = ["x", "y"]) for file in files])
If you're lucky, you can use Kraigolas' answer to treat those lines as comments.
In other cases you may be able to use the skiprows argument to skip header columns:
df= pd.read_csv(path,skiprows=10,skipfooter=2,names=["x","y"])
And yes, I do have an unfortunate file with a 10-row heading and 2 rows of totals.
Unfortunately I also have very unfortunate files where the number of headings change.
In this case I used the following code to iterate until I find the first "good" row, then create a new dataframe from the rest of the rows. The names in this case are taken from the first "good" row and the types from the first data row
This is certainly not fast, it's a last resort solution. If I had a better solution I'd use it:
data = df
if(first_col not in df.columns):
# Skip rows until we find the first col header
for i, row in df.iterrows():
if row[0] == first_col:
data = df.iloc[(i + 1):].reset_index(drop=True)
# Read the column names
series = df.iloc[i]
series = series.str.strip()
data.columns = list(series)
# Use only existing column types
types = {k: v for k, v in dtype.items() if k in data.columns}
# Apply the column types again
data = data.astype(dtype=types)
break
return data
In this case the condition is finding the first column name (first_col) in the first cell.
This can be adopted to use different conditions, eg looking for the first numeric cell:
columns = ["x", "y"]
dtypes = {"x":"float64", "y": "float64"}
data = df
# Skip until we find the first numeric value
for i, row in df.iterrows():
if row[0].isnumeric():
data = df.iloc[(i + 1):].reset_index(drop=True)
# Apply names and types
data.columns = columns
data = data.astype(dtype=dtypes)
break
return data

Reading header containing dates in Python pandas

I have an excel sheet:
31-12-2019 31-01-2020 28-02-2020 *(which btw is formatted as: 31-Dec-19, 31-Jan-20, etc. not sure if relevant)*
1 -0,36% 0,12% -0,09%
2 -0,18% 0,06% -0,07%
3 0,05% 0,04% 0,14%
To be clear, the problem is not in reading the file, but the issue below.
I want to read this file with pandas in python and have the dates in the header as strings. So that later i can to refer to any column with something like df['31-12-2019'].
When I read the excel now, I get a keyerror message, because the formats of the dates in the header are changed. I read it like this now:
curve = pd.read_excel("Monthly curves.xlsx", sheet_name = "swap", skiprows = 1, index_col = 0)
I receive the error when selecting for instance column 31-12-2019: "Keyerror: '31-12-2019'. Any help would be much appreciated!
Also, the first column does not have a header, how can I name it myself as 'years'?
It worked when I used this:
import pandas as pnd
file = 'excelfile.xlsx'
df = pnd.read_excel(file,sheet_name=0,index_col=0)
df.head()
I don't know about naming the headers though...
I worked around my problem by reading the file as follows:
curve = pd.read_excel("Monthly Curves.xlsx", sheet_name = "swap", index_col = 0, skiprows = 2, header = None)
Then to select for instance the 91th column I used .loc (because .ix is deprecated), and I did that in the following way:
M12 = curve.loc[:, 91]
Hope that helps others as well!

How can I fix "Error tokenizing data" on pandas csv reader?

I'm trying to read a csv file with pandas.
This file actually has only one row but it causes an error whenever I try to read it.
Something wrong seems happening in line 8 but I could hardly find the 8th line since there's clearly only one row on it.
I do like:
with codecs.open("path_to_file", "rU", "Shift-JIS", "ignore") as file:
df = pd.read_csv(file, header=None, sep="\t")
df
Then I get:
ParserError: Error tokenizing data. C error: Expected 1 fields in line 8, saw 3
I don't get what's really going on, so any of your advice will be appreciated.
I struggled with this almost a half day , I opened the csv with notepad and noticed that separate is TAB not comma and then tried belo combination.
df = pd.read_csv('C:\\myfile.csv',sep='\t', lineterminator='\r')
Try df = pd.read_csv(file, header=None, error_bad_lines=False)
The existing answer will not include these additional lines in your dataframe. If you'd like your dataframe to be as wide as its widest point, you can use the following:
delimiter = ','
max_columns = max(open(path_name, 'r'), key = lambda x: x.count(delimiter)).count(delimiter)
df = pd.read_csv(path_name, header = None, skiprows = 1, names = list(range(0,max_columns)))
Set skiprows = 1 if there's actually a header, you can always retrieve the header column names later.
You can also identify rows that have more columns populated than the number of column names in the original header.

Selectin Dataframe columns name from a csv file

I have a .csv to read into a DataFrame and the names of the columns are in the same .csv file in the previos rows. Usually I drop all the 'unnecesary' rows to create the DataFrame and then hardcode the names of each dataframe
Trigger time,2017-07-31,10:45:38
CH,Signal name,Input,Range,Filter,Span
CH1, "Tin_MIX_Air",TEMP,PT,Off,2000.000000,-200.000000,degC
CH2, "Tout_Fan2b",TEMP,PT,Off,2000.000000,-200.000000,degC
CH3, "Tout_Fan2a",TEMP,PT,Off,2000.000000,-200.000000,degC
CH4, "Tout_Fan1a",TEMP,PT,Off,2000.000000,-200.000000,degC
Here you can see the rows where the columns names are in double quotes "TinMix","Tout..",etc there are exactly 16 rows with names
Logic/Pulse,Off
Data
Number,Date&Time,ms,CH1,CH2,CH3,CH4,CH5,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16,CH20,Alarm1-10,Alarm11-20,AlarmOut
NO.,Time,ms,degC,degC,degC,degC,degC,degC,%RH,%RH,degC,degC,degC,degC,degC,Pa,Pa,A,A1234567890,A1234567890,A1234
1,2017-07-31 10:45:38,000,+25.6,+26.2,+26.1,+26.0,+26.3,+25.7,+43.70,+37.22,+25.6,+25.3,+25.1,+25.3,+25.3,+0.25,+0.15,+0.00,LLLLLLLLLL,LLLLLLLLLL,LLLL
And here the values of each variables start.
What I need to do is create a Dataframe from this .csv and place these names in the columns names. I'm new to Python and I'm not very sure how to do it
import pandas as pd
path = r'path-to-file.csv'
data=pd.DataFrame()
with open(path, 'r') as f:
for line in f:
data = pd.concat([data, pd.DataFrame([tuple(line.strip().split(','))])], ignore_index=True)
data.drop(data.index[range(0,29)],inplace=True)
x=len(data.iloc[0])
data.drop(data.columns[[0,1,2,x-1,x-2,x-3]],axis=1,inplace=True)
data.reset_index(drop=True,inplace=True)
data = data.T.reset_index(drop=True).T
data = data.apply(pd.to_numeric)
This is what I've done so far to get my dataframe with the usefull data, I'm dropping all the other columns that arent useful to me and keeping only the values. Last three lines are to reset row/column indexes and to transform the whole df to floats. What I would like is to name the columns with each of the names I showed in the first piece of coding as a I said before I'm doing this manually as:
data.columns = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p']
But I would like to get them from the .csv file since theres a possibility on changing the CH# - "Name" combination
Thank you very much for the help!
Comment: possible for it to work within the other "OPEN " loop that I have?
Assume Column Names from Row 2 up to 6, Data from Row 7 up to EOF.
For instance (untested code)
data = None
columns = []
with open (path) as fh:
for row, line in enumerate (fh, 1):
if row > 2 and row <= 6:
ch, name = line.split(',')[:2]
columns.append(name)
else:
row_data = [tuple(line.strip().split(','))]
if not data:
data = pd.DataFrame(row_data, columns=columns, ignore_index=True)
else:
data.append(row_data)
Question: ... I would like to get them from the .csv file
Start with:
with open (path) as fh:
for row, line in enumerate (fh, 1):
if row > 2:
ch, name = line.split(',')[:2]

Having trouble removing headers when using pd.read_csv

I have a .csv that contains contains column headers and is displayed below. I need to suppress the column labeling when I ingest the file as a data frame.
date,color,id,zip,weight,height,locale
11/25/2013,Blue,122468,1417464,3546600,254,7
When I issue the following command:
df = pd.read_csv('c:/temp1/test_csv.csv', usecols=[4,5], names = ["zip","weight"], header = 0, nrows=10)
I get:
zip weight
0 1417464 3546600
I have tried various manipulations of header=True and header=0. If I don't use header=0, then the columns will all print out on top of the rows like so:
zip weight
height locale
0 1417464 3546600
I have tried skiprows= 0 and 1 but neither removes the headers. However, the command works by skipping the line specified.
I could really use some additional insight or a solve. Thanks in advance for any assistance you could provide.
Tiberius
Using the example of #jezrael, if you want to skip the header and suppress de column labeling:
import pandas as pd
import numpy as np
import io
temp=u"""date,color,id,zip,weight,height,locale
11/25/2013,Blue,122468,1417464,3546600,254,7"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), usecols=[4,5], header=None, skiprows=1)
print df
4 5
0 3546600 254
I'm not sure I entirely understand why you want to remove the headers, but you could comment out the header line as follows as long as you don't have any other rows that begin with 'd':
>>> df = pd.read_csv('test.csv', usecols=[3,4], header=None, comment='d') # comments out lines beginning with 'date,color' . . .
>>> df
3 4
0 1417464 3546600
It would be better to comment out the line in the csv file with the crosshatch character (#) and then use the same approach (again, as long as you have not commented out any other lines with a crosshatch):
>>> df = pd.read_csv('test.csv', usecols=[3,4], header=None, comment='#') # comments out lines with #
>>> df
3 4
0 1417464 3546600
I think you are right.
So you can change column names to a and b:
import pandas as pd
import numpy as np
import io
temp=u"""date,color,id,zip,weight,height,locale
11/25/2013,Blue,122468,1417464,3546600,254,7"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), usecols=[4,5], names = ["a","b"], header = 0 , nrows=10)
print df
a b
0 3546600 254
Now these columns have new names instead of weight and height.
df = pd.read_csv(io.StringIO(temp), usecols=[4,5], header = 0 , nrows=10)
print df
weight height
0 3546600 254
You can check docs read_csv (bold by me):
header : int, list of ints, default ‘infer’
Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

Categories