Lasagne/Theano mnist example issue - python

I'm trying to slightly change the code from github here to a toy example of reading a simpler two dimensional data. My toy data set has the following structure
x-coordinate, y-coordinate, class
Some example data points are
1,1
3,1
4,1
4,2
6,2
1,3
and their corresponding classes
0
1
1
1
1
0
I'm able to read the data and create my custom mlp. However when I try to run the training part, I get the following error
(5, 2)
(5,)
Traceback (most recent call last):
File "./t.py", line 78, in <module>
train_err += train_fn(inputs, targets)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 786, in __call__
allow_downcast=s.allow_downcast)
File "/usr/local/lib/python2.7/dist-packages/theano/tensor/type.py", line 177, in filter
data.shape))
TypeError: ('Bad input argument to theano function with name "./t.py:67" at index 0(0-based)', 'Wrong number of dimensions: expected 4, got 2 with shape (5, 2).')
This has clearly something to do with the shapes of the arrays I'm passing. But what I can't seem to figure out is why is my case any different from the mnist dataset which is also a two dimensional array of an image.
My entire code is the following.
def build_mlp(input_var=None):
l_in = lasagne.layers.InputLayer(shape=(None,1,1,2),input_var = input_var)
l_h1 = lasagne.layers.DropoutLayer(l_in,p = 0.2)
l_hid1 = lasagne.layers.DenseLayer(
l_h1,num_units = 10,
nonlinearity = lasagne.nonlinearities.rectify,
W = lasagne.init.GlorotUniform())
l_h2 = lasagne.layers.DropoutLayer(l_hid1,p = 0.2)
l_hid2 = lasagne.layers.DenseLayer(
l_h2,num_units = 10,
nonlinearity = lasagne.nonlinearities.rectify,
W = lasagne.init.GlorotUniform())
l_out = lasagne.layers.DenseLayer(
l_hid2,num_units = 5,
nonlinearity = lasagne.nonlinearities.softmax,
W = lasagne.init.GlorotUniform())
return l_out
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
x_data = np.genfromtxt('a.csv',delimiter=',')
y_data = np.genfromtxt('b.csv',delimiter=',')
x_train, x_test, y_train, y_test = train_test_split(x_data,y_data,test_size = 0.33)
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')
network = build_mlp(input_var)
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.01, momentum=0.4)
test_prediction = lasagne.layers.get_output(network, deterministic=True)
test_loss = lasagne.objectives.categorical_crossentropy(test_prediction,
target_var)
test_loss = test_loss.mean()
test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),
dtype=theano.config.floatX)
train_fn = theano.function([input_var, target_var], loss, updates=updates)
val_fn = theano.function([input_var, target_var], [test_loss, test_acc])
num_epochs = 100
for epoch in range(num_epochs):
train_err = 0
start_time = time.time()
for batch in iterate_minibatches(x_train, y_train, 5, shuffle=True):
inputs, targets = batch
print inputs.shape
print targets.shape
train_err += train_fn(inputs, targets)
val_err = 0
val_acc = 0
val_batches = 0
for batch in iterate_minibatches(x_train, y_train, 5, shuffle=False):
inputs, targets = batch
err, acc = val_fn(inputs, targets)
val_err += err
val_acc += acc
val_batches += 1
print 'Epoch %d of %d took {:%0.3f}s' % (epoch + 1, num_epochs, time.time() - start_time)
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" validation loss:\t\t{:.6f}".format(val_err / val_batches))
print(" validation accuracy:\t\t{:.2f} %".format(val_acc / val_batches * 100))
Could someone point to me what I'm doing off here please?

You're declaring input_var as a 4d tensor, but the error message suggests that you're passing a data matrix of size (5,2) as input. Based on the shape of your input layer, this should be (5, 1, 1, 2) (assuming the 5 corresponds to the number of training examples in a minibatch and the 2 corresponds to your x and y coordinates).

Related

Pytorch Runtime Error: "nll_loss_forward_reduce_cuda_kernel_2d_index" not implemented for 'Int':

I am trying to implement the TGCN model in this github repo. I have installed all the necessary libraries and packages and my PyTorch is built with CUDA and can detect my Nvidia GPU properly. However, whenever I try and train the model on my local machine I get this error:
Traceback (most recent call last):
File "C:\slproject\code\TGCN\train_tgcn.py", line 123, in <module>
run(split_file=split_file, configs=configs, pose_data_root=pose_data_root)
File "C:\slproject\code\TGCN\train_tgcn.py", line 64, in run
train_losses, train_scores, train_gts, train_preds = train(log_interval, model,
File "C:\slproject\code\TGCN\train_utils.py", line 27, in train
loss = compute_loss(out, y)
File "C:\slproject\code\TGCN\train_utils.py", line 146, in compute_loss
ce_loss = F.cross_entropy(out, gt)
File "C:\Users\user\anaconda3\lib\site-packages\torch\nn\functional.py", line 3026, in cross_entropy
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
RuntimeError: "nll_loss_forward_reduce_cuda_kernel_2d_index" not implemented for 'Int'
I believe the error is happening because the cross_entropy function is not not implemented for integer inputs, or something related to that, but I am confused why this only happens on my local machine. It works totally fine on Colab environment, so what could be the issue here and how do I fix it?
Here's the train_utils.py file where the error happens:
import os
import numpy as np
import torch
import torch.nn.functional as F
from sklearn.metrics import accuracy_score
def train(log_interval, model, train_loader, optimizer, epoch):
# set model as training mode
losses = []
scores = []
train_labels = []
train_preds = []
N_count = 0 # counting total trained sample in one epoch
for batch_idx, data in enumerate(train_loader):
X, y, video_ids = data
# distribute data to device
X, y = X.cuda(), y.cuda().view(-1, )
N_count += X.size(0)
optimizer.zero_grad()
out = model(X) # output has dim = (batch, number of classes)
loss = compute_loss(out, y)
# loss = F.cross_entropy(output, y)
losses.append(loss.item())
# to compute accuracy
y_pred = torch.max(out, 1)[1] # y_pred != output
step_score = accuracy_score(y.cpu().data.squeeze().numpy(), y_pred.cpu().data.squeeze().numpy())
# collect prediction labels
train_labels.extend(y.cpu().data.squeeze().tolist())
train_preds.extend(y_pred.cpu().data.squeeze().tolist())
scores.append(step_score) # computed on CPU
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=6)
#
# for p in model.parameters():
# param_norm = p.grad.data.norm(2)
# total_norm += param_norm.item() ** 2
# total_norm = total_norm ** (1. / 2)
#
# print(total_norm)
optimizer.step()
# show information
if (batch_idx + 1) % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, Accu: {:.6f}%'.format(
epoch + 1, N_count, len(train_loader.dataset), 100. * (batch_idx + 1) / len(train_loader), loss.item(),
100 * step_score))
return losses, scores, train_labels, train_preds
def validation(model, test_loader, epoch, save_to):
# set model as testing mode
model.eval()
val_loss = []
all_y = []
all_y_pred = []
all_video_ids = []
all_pool_out = []
num_copies = 4
with torch.no_grad():
for batch_idx, data in enumerate(test_loader):
# distribute data to device
X, y, video_ids = data
X, y = X.cuda(), y.cuda().view(-1, )
all_output = []
stride = X.size()[2] // num_copies
for i in range(num_copies):
X_slice = X[:, :, i * stride: (i+1) * stride]
output = model(X_slice)
all_output.append(output)
all_output = torch.stack(all_output, dim=1)
output = torch.mean(all_output, dim=1)
# output = model(X) # output has dim = (batch, number of classes)
# loss = F.cross_entropy(pool_out, y, reduction='sum')
loss = compute_loss(output, y)
val_loss.append(loss.item()) # sum up batch loss
y_pred = output.max(1, keepdim=True)[1] # (y_pred != output) get the index of the max log-probability
# collect all y and y_pred in all batches
all_y.extend(y)
all_y_pred.extend(y_pred)
all_video_ids.extend(video_ids)
all_pool_out.extend(output)
# this computes the average loss on the BATCH
val_loss = sum(val_loss) / len(val_loss)
# compute accuracy
all_y = torch.stack(all_y, dim=0)
all_y_pred = torch.stack(all_y_pred, dim=0).squeeze()
all_pool_out = torch.stack(all_pool_out, dim=0).cpu().data.numpy()
# log down incorrectly labelled instances
incorrect_indices = torch.nonzero(all_y - all_y_pred).squeeze().data
incorrect_video_ids = [(vid, int(all_y_pred[i].data)) for i, vid in enumerate(all_video_ids) if
i in incorrect_indices]
all_y = all_y.cpu().data.numpy()
all_y_pred = all_y_pred.cpu().data.numpy()
# top-k accuracy
top1acc = accuracy_score(all_y, all_y_pred)
top3acc = compute_top_n_accuracy(all_y, all_pool_out, 3)
top5acc = compute_top_n_accuracy(all_y, all_pool_out, 5)
top10acc = compute_top_n_accuracy(all_y, all_pool_out, 10)
top30acc = compute_top_n_accuracy(all_y, all_pool_out, 30)
# show information
print('\nVal. set ({:d} samples): Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(len(all_y), val_loss,
100 * top1acc))
if save_to:
# save Pytorch models of best record
torch.save(model.state_dict(),
os.path.join(save_to, 'gcn_epoch{}.pth'.format(epoch + 1))) # save spatial_encoder
print("Epoch {} model saved!".format(epoch + 1))
return val_loss, [top1acc, top3acc, top5acc, top10acc, top30acc], all_y.tolist(), all_y_pred.tolist(), incorrect_video_ids
def compute_loss(out, gt):
ce_loss = F.cross_entropy(out, gt)
return ce_loss
def compute_top_n_accuracy(truths, preds, n):
best_n = np.argsort(preds, axis=1)[:, -n:]
ts = truths
successes = 0
for i in range(ts.shape[0]):
if ts[i] in best_n[i, :]:
successes += 1
return float(successes) / ts.shape[0]
I would really appreciate if someone could help me fix this to run on my local machine, thanks!

loss: nan using Keras vs non-nan (working) output using tensorflow

I am trying to replicate old code that I had in tensorflow but in Keras format. For some reason my loss is always nan. I think the error is in the loss that I am using ('categorical_crossentropy' in keras vs 'tf.nn.softmax_cross_entropy_with_logits' in tensorflow)
Keras code:
import keras
from keras.models import Sequential
from keras.layers import Dropout, Dense, Activation
from keras.regularizers import l2
from keras.layers.normalization import BatchNormalization
# Keras items
from keras.optimizers import Adam, Nadam
from keras.activations import relu, elu
from keras.losses import binary_crossentropy, categorical_crossentropy
from keras import metrics
import pandas as pd
import numpy as np
x_main = pd.read_csv("glioma DB X.csv")
y_main = pd.read_csv("glioma DB Y.csv")
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_main, y_main, test_size=0.3)
x_test, x_val, y_test, y_val = train_test_split(x_test, y_test, test_size=0.5)
# train shape
np.shape(x_train), np.shape(y_train)
((132, 47), (132, 1))
# Normalize training data; will want to have the same mu and sigma for test
def normalize_features(dataset):
mu = np.mean(dataset, axis = 0) # columns
sigma = np.std(dataset, axis = 0)
norm_parameters = {'mu': mu,
'sigma': sigma}
return (dataset-mu)/(sigma+1e-10), norm_parameters
# Normal X data; using same mu and sigma from test set;
x_train, norm_parameters = normalize_features(x_train)
x_val = (x_val-norm_parameters['mu'])/(norm_parameters['sigma']+1e-10)
x_test = (x_test-norm_parameters['mu'])/(norm_parameters['sigma']+1e-10)
params = {'lr': 0.001,
'batch_size': 30,
'epochs': 8000,
'dropout': 0.5,
'weight_regulizer':['l2'],
'optimizer': 'adam',
'losses': 'categorical_crossentropy',
'activation':'relu',
'last_activation': 'softmax'}
from keras.utils.np_utils import to_categorical
#categorical_labels = to_categorical(int_labels, num_classes=None)
if params['losses']=='categorical_crossentropy':
y_train = to_categorical(y_train,num_classes=4)
y_val = to_categorical(y_val,num_classes=4)
y_test = to_categorical(y_test,num_classes=4)
model = Sequential()
# layer 1
model.add(Dense(30, input_dim=x_train.shape[1],
W_regularizer=l2(0.01),
kernel_initializer='he_uniform'))
model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True))
model.add(Activation(params['activation']))
model.add(Dropout(params['dropout']))
# layer 2
model.add(Dense(20, W_regularizer=l2(0.01),
kernel_initializer='he_uniform'))
model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True))
model.add(Activation(params['activation']))
model.add(Dropout(params['dropout']))
# if we want to also test for number of layers and shapes, that's possible
#hidden_layers(model, params, 1)
# Last layer
model.add(Dense(4, activation=params['last_activation'],
kernel_initializer='he_uniform'))
model.compile(loss=params['losses'],
optimizer=keras.optimizers.adam(lr=params['lr']),
metrics=['categorical_accuracy'])
history = model.fit(x_train, y_train,
validation_data=[x_val, y_val],
batch_size=params['batch_size'],
epochs=params['epochs'],
verbose=1)
Working code using tensorflow which gives me a pretty loss graph haha:
x_train, x_test, y_train, y_test = train_test_split(X_main, Y_main, test_size=0.3)
x_test, x_val, y_test, y_val = train_test_split(x_test, y_test, test_size=0.5)
# ANOTHER OPTION IS TO USE SKLEARN sklearn.model_selection.ShuffleSplit
# look into stratification
# Normalize training data; will want to have the same mu and sigma for test
def normalize_features(dataset):
mu = np.mean(dataset, axis = 0) # columns
sigma = np.std(dataset, axis = 0)
norm_parameters = {'mu': mu,
'sigma': sigma}
return (dataset-mu)/(sigma+1e-10), norm_parameters
# TRY LOG TRANSFORMATION LOG(1+X) to deal with outliers
# change ordinal to one hot vector
# to make label encoder
# for c in x_train.columns[x_train.dtype == 'object']:
# X[c] (which was copy of xtrain) X[c].factorize()[0]
# able to plot feature importance in random forest
# Normal X data; using same mu and sigma from test set; then transposed
x_train, norm_parameters = normalize_features(x_train)
x_val = (x_val-norm_parameters['mu'])/(norm_parameters['sigma']+1e-10)
x_test = (x_test-norm_parameters['mu'])/(norm_parameters['sigma']+1e-10)
x_train = np.transpose(x_train)
x_val = np.transpose(x_val)
x_test = np.transpose(x_test)
y_train = np.transpose(y_train)
y_val = np.transpose(y_val)
y_test = np.transpose(y_test)
# converting values from database to matrix
x_train = x_train.as_matrix()
x_val = x_val.as_matrix()
x_test = x_test.as_matrix()
y_train = y_train.as_matrix()
y_val = y_val.as_matrix()
y_test = y_test.as_matrix()
# testing shape
#print(y_train.shape)
#print(y_val.shape)
#print(y_test.shape)
#
#print(x_train.shape)
#print(x_val.shape)
#print(x_test.shape)
# convert y to array per value so 3 = [0 0 1]
def convert_to_one_hot(Y, C):
Y = np.eye(C)[Y.reshape(-1)].T
return Y
y_train = convert_to_one_hot(y_train, 4)
y_val = convert_to_one_hot(y_val, 4)
y_test = convert_to_one_hot(y_test, 4)
print ("number of training examples = " + str(x_train.shape[1]))
print ("number of test examples = " + str(x_test.shape[1]))
print ("X_train shape: " + str(x_train.shape))
print ("Y_train shape: " + str(y_train.shape))
print ("X_test shape: " + str(x_test.shape))
print ("Y_test shape: " + str(y_test.shape))
# minibatches for later
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
mini_batch_size - size of the mini-batches, integer
seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
m = X.shape[1] # number of training examples
mini_batches = []
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((Y.shape[0],m))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
# starting TF graph
# Create X and Y placeholders
def create_xy_placeholder(n_x, n_y):
X = tf.placeholder(tf.float32, shape = [n_x, None], name = 'X')
Y = tf.placeholder(tf.float32, shape = [n_y, None], name = 'Y')
return X, Y
# initialize parameters hidden layers
def initialize_parameters(n_x, scale, hidden_units):
hidden_units= [n_x] + hidden_units
parameters = {}
regularizer = tf.contrib.layers.l2_regularizer(scale)
for i in range(0, len(hidden_units[1:])):
with tf.variable_scope('hidden_parameters_'+str(i+1)):
w = tf.get_variable("W"+str(i+1), [hidden_units[i+1], hidden_units[i]],
initializer=tf.contrib.layers.xavier_initializer(),
regularizer=regularizer)
b = tf.get_variable("b"+str(i+1), [hidden_units[i+1], 1],
initializer = tf.constant_initializer(0.1))
parameters.update({"W"+str(i+1): w})
parameters.update({"b"+str(i+1): b})
return parameters
# forward progression with batch norm and dropout
def forward_propagation(X, parameters, batch_norm=False, keep_prob=1):
a_new = X
for i in range(0, int(len(parameters)/2)-1):
with tf.name_scope('forward_pass_'+str(i+1)):
w = parameters['W'+str(i+1)]
b = parameters['b'+str(i+1)]
z = tf.matmul(w, a_new) + b
if batch_norm == True:
z = tf.layers.batch_normalization(z, momentum=0.99, axis=0)
a = tf.nn.relu(z)
if keep_prob < 1:
a = tf.nn.dropout(a, keep_prob)
a_new = a
tf.summary.histogram('act_'+str(i+1), a_new)
# calculating final Z before input into cost as logit
with tf.name_scope('forward_pass_'+str(int(len(parameters)/2))):
w = parameters['W'+str(int(len(parameters)/2))]
b = parameters['b'+str(int(len(parameters)/2))]
z = tf.matmul(w, a_new) + b
if batch_norm == True:
z = tf.layers.batch_normalization(z, momentum=0.99, axis=0)
return z
# compute cost with option for l2 regularizatoin
def compute_cost(z, Y, parameters, l2_reg=False):
with tf.name_scope('cost'):
logits = tf.transpose(z)
labels = tf.transpose(Y)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits,
labels = labels))
if l2_reg == True:
reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
cost = cost + tf.reduce_sum(reg)
with tf.name_scope('Pred/Accuracy'):
prediction=tf.argmax(z)
correct_prediction = tf.equal(tf.argmax(z), tf.argmax(Y))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
return cost, prediction, accuracy
# defining the model (need to add keep_prob for dropout)
def model(X_train, Y_train, X_test, Y_test,
hidden_units=[30, 20, 4], # hidden units/layers
learning_rate = 0.0001, # Learning rate
num_epochs = 10000, minibatch_size = 30, # minibatch/ number epochs
keep_prob=0.5, # dropout
batch_norm=True, # batch normalization
l2_reg=True, scale = 0.01, # L2 regularization/scale is lambda
print_cost = True):
ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1) # to keep consistent results
seed = 3 # to keep consistent results
(n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
n_y = Y_train.shape[0] # n_y : output size
costs = [] # To keep track of the cost
# Create Placeholders of shape (n_x, n_y)
X, Y = create_xy_placeholder(n_x, n_y)
# Initialize parameters
parameters = initialize_parameters(n_x, scale, hidden_units)
# Forward propagation: Build the forward propagation in the tensorflow graph
z = forward_propagation(X, parameters, keep_prob, batch_norm)
# Cost function: Add cost function to tensorflow graph
cost, prediction, accuracy = compute_cost(z, Y, parameters, l2_reg)
# Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
with tf.name_scope('optimizer'):
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)
# Initialize all the variables
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# Start the session to compute the tensorflow graph
with tf.Session(config=config) as sess:
# Run the initialization
sess.run(init)
# Do the training loop
for epoch in range(num_epochs):
epoch_cost = 0. # Defines a cost related to an epoch
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
for minibatch in minibatches:
# Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# IMPORTANT: The line that runs the graph on a minibatch.
# Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
_ , minibatch_cost = sess.run([optimizer, cost],
feed_dict = {X: minibatch_X, Y: minibatch_Y})
epoch_cost += minibatch_cost / num_minibatches
# Print the cost every epoch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
prediction1=tf.argmax(z)
# print('Z5: ', Z5.eval(feed_dict={X: minibatch_X, Y: minibatch_Y}))
print('prediction: ', prediction1.eval(feed_dict={X: minibatch_X,
Y: minibatch_Y}))
correct1=tf.argmax(Y)
# print('Y: ', Y.eval(feed_dict={X: minibatch_X,
# Y: minibatch_Y}))
print('correct: ', correct1.eval(feed_dict={X: minibatch_X,
Y: minibatch_Y}))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
# lets save the parameters in a variable
parameters = sess.run(parameters)
print ("Parameters have been trained!")
# Calculate the correct predictions
correct_prediction = tf.equal(tf.argmax(z), tf.argmax(Y))
# Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
return parameters
# run model on test data
parameters = model(x_train, y_train, x_test, y_test, keep_prob=1)

TensorFlow estimator with custom model_fn runs forever in training phase

Relevant parts of the code below. The call to the Scattering object returns a 3D tensor of coefficients, based on fixed filter maps. The program only enters and returns from the Scattering call once, indicating that the code hangs forever somewhere in the first training step, but not in the Scattering call. Where could this be happening?
def my_model_fn(features, labels, mode, params):
M, N = features.get_shape().as_list()[-2:]
scattering_coefficients = Scattering(M=M, N=N, J=1, L=2)(features)
batch_size = scattering_coefficients.get_shape().as_list()[0]
# throw all coefficients into single vector for each image
scattering_coefficients = tf.reshape(scattering_coefficients, [batch_size, -1])
# returns tensor of correct shape
print(scattering_coefficients)
n_classes = 10
n_coefficients = scattering_coefficients.get_shape().as_list()[1]
# use linear classifier
W = tf.Variable(tf.zeros([n_coefficients, n_classes]))
b = tf.Variable(tf.zeros([n_classes]))
y_predict = tf.nn.softmax(tf.matmul(scattering_coefficients, W) + b)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions={"predictions": y_predict})
# loss function and training step
cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=y_predict) )
train_op = tf.train.GradientDescentOptimizer(params["learning_rate"]).minimize(cross_entropy)
return tf.estimator.EstimatorSpec(
mode=mode,
loss=cross_entropy,
train_op=train_op)
def sample_batch(X, y, batch_size):
idx = np.random.choice(X.shape[0], batch_size, replace=False)
return tf.convert_to_tensor(X[idx]), tf.convert_to_tensor(y[idx])
LEARNING_RATE = 0.01
BATCH_SIZE = 2
n_training_steps = 2
image_dimension = 28
model_params = {"learning_rate": LEARNING_RATE}
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
X_train = mnist.train.images.astype(np.float32)
X_train = normalize(X_train)
# number of channels is 1, -1 infers number of samples
X_train = X_train.reshape(-1, 1, image_dimension, image_dimension)
y_train = mnist.train.labels.astype(np.int64)
X_validation = mnist.validation.images.astype(np.float32)
X_validation = normalize(X_validation)
X_validation = X_validation.reshape(-1, 1, image_dimension, image_dimension)
y_validation = mnist.validation.labels.astype(np.int64)
train_input_fn = lambda: sample_batch(X_train, y_train, BATCH_SIZE)
validation_input_fn = lambda: sample_batch(X_validation, y_validation, BATCH_SIZE)
# Train
scattering_classifier = tf.estimator.Estimator(model_fn=my_model_fn, params=model_params)
# Hangs forever...
scattering_classifier.train(input_fn=train_input_fn, max_steps=n_training_steps)
# If I comment out training step, this finishes immediately.
print("start scoring accuracy")
predictions = scattering_classifier.predict(input_fn=validation_input_fn)
Changing
train_op = tf.train.GradientDescentOptimizer(params["learning_rate"]).minimize(cross_entropy)
to
train_op = tf.train.GradientDescentOptimizer(params["learning_rate"]).minimize(
cross_entropy, global_step=tf.train.get_global_step())
solves the problem. Explanations are very welcome.

Tensorflow copy of sklearn MLPRegressor produces other results

I am trying to reproduce a deep learning regression result in Tensorflow. If I train a neural network with the MLPRegressor class from sklearn I get very nice results of 98% validation.
The MLPRegressor:
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
I am trying to reproduce the model in Tensorflow. By copying the default values of the MLPRegressor class in a Tensorflow model. However I cannot get the same result. I only get 75% most of the time.
My TF model:
tf.reset_default_graph()
graph = tf.Graph()
n_input = 3 # n variables
n_hidden_1 = 100
n_hidden_2 = 1
n_output = 1
beta = 0.001
learning_rate = 0.001
with graph.as_default():
tf_train_feat = tf.placeholder(tf.float32, shape=(None, n_input))
tf_train_label = tf.placeholder(tf.float32, shape=(None))
tf_test_feat = tf.constant(test_feat, tf.float32)
"""
Weights and biases. The weights matix' columns will be the output vector.
* ndarray([rows, columns])
* ndarray([in, out])
tf.placeholder(None) and tf.placeholder([None, 3]) means that the row's size is not set. In the second
placeholder the columns are prefixed at 3.
"""
W = {
"layer_1": tf.Variable(tf.truncated_normal([n_input, n_hidden_1])),
"layer_2": tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2])),
"layer_3": tf.Variable(tf.truncated_normal([n_hidden_2, n_output])),
}
b = {
"layer_1": tf.Variable(tf.zeros([n_hidden_1])),
"layer_2": tf.Variable(tf.zeros([n_hidden_2])),
}
def computation(X):
layer_1 = tf.nn.relu(tf.matmul(X, W["layer_1"]) + b["layer_1"])
layer_2 = tf.nn.relu(tf.matmul(layer_1, W["layer_2"]) + b["layer_2"])
return layer_2
tf_prediction = computation(tf_train_feat)
tf_test_prediction = computation(tf_test_feat)
tf_loss = tf.reduce_mean(tf.pow(tf_train_label - tf_prediction, 2))
tf_loss = tf.reduce_mean( tf_loss + beta * tf.nn.l2_loss(W["layer_2"]) )
tf_optimizer = tf.train.AdamOptimizer(learning_rate).minimize(tf_loss)
#tf_optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(tf_loss)
init = tf.global_variables_initializer()
My TF session:
def accuracy(y_pred, y):
a = 0
for i in range(y.shape[0]):
a += abs(1 - y_pred[i][0] / y[i])
return round((1 - a / y.shape[0]) * 100, 3)
def accuracy_tensor(y_pred, y):
a = 0
for i in range(y.shape[0]):
a += abs(1 - y_pred[i][0] / y[i])
return round((1 - a / y.shape[0]) * 100, 3)
# Shuffles two arrays.
def shuffle_in_unison(a, b):
assert len(a) == len(b)
shuffled_a = np.empty(a.shape, dtype=a.dtype)
shuffled_b = np.empty(b.shape, dtype=b.dtype)
permutation = np.random.permutation(len(a))
for old_index, new_index in enumerate(permutation):
shuffled_a[new_index] = a[old_index]
shuffled_b[new_index] = b[old_index]
return shuffled_a, shuffled_b
train_epoch = int(5e4)
batch = int(200)
n_batch = int(X.shape[0] // batch)
prev_acc = 0
stable_count = 0
session = tf.InteractiveSession(graph=graph)
session.run(init)
print("Initialized.\n No. of epochs: %d.\n No. of batches: %d." % (train_epoch, n_batch))
for epoch in range(train_epoch):
offset = (epoch * n_batch) % (Y.shape[0] - n_batch)
for i in range(n_batch):
x = X[offset:(offset + n_batch)]
y = Y[offset:(offset + n_batch)]
x, y = shuffle_in_unison(x, y)
feed_dict = {tf_train_feat: x, tf_train_label: y}
_, l, pred, pred_label = session.run([tf_optimizer, tf_loss, tf_prediction, tf_train_label], feed_dict=feed_dict)
if epoch % 1 == 0:
print("Epoch: %d. Batch' loss: %f" %(epoch, l))
test_pred = tf_test_prediction.eval(session=session)
acc_test = accuracy(test_pred, test_label)
acc_train = accuracy_tensor(pred, pred_label)
print("Accuracy train set %s%%" % acc_train)
print("Accuracy test set: %s%%" % acc_test)
Am I missing something in the Tensorflow code? Thanks!
Unless you have a very good reason to not use them, regression should have linear output units. I ran into a similar problem a while back and ended up using linear outputs and linear hidden units which seemed to mirror the mlpregressor in my case.
There is a great section in Goodfellow's Deep Learning Book in chapter 6, starting at page 181, that goes over the activation functions.
At the very least try this for your output layer
layer_2 = tf.matmul(layer_1, W["layer_2"]) + b["layer_2"]

Lasagne/Theano wrong number of dimensions

Headed into Lasagne and Theano with a modified mnist.py (the primary example of Lasagne) to train a very simple XOR.
import numpy as np
import theano
import theano.tensor as T
import time
import lasagne
X_train = [[[[0, 0], [0, 1], [1, 0], [1, 1]]]] # (1)
y_train = [[[[1, 0], [0, 1], [0, 1], [1, 0]]]]
# [0, 1, 1, 0]
X_train = np.array(X_train).astype(np.uint8)
y_train = np.array(y_train).astype(np.uint8)
print X_train.shape
X_val = X_train
y_val = y_train
X_test = X_train
y_test = y_train
def build_mlp(input_var=None):
# This creates an MLP of two hidden layers of 800 units each, followed by
# a softmax output layer of 10 units. It applies 20% dropout to the input
# data and 50% dropout to the hidden layers.
# Input layer, specifying the expected input shape of the network
# (unspecified batchsize, 1 channel, 28 rows and 28 columns) and
# linking it to the given Theano variable `input_var`, if any:
l_in = lasagne.layers.InputLayer(shape=(None, 1, 4, 2), # (2)
input_var=input_var)
# Apply 20% dropout to the input data:
# l_in_drop = lasagne.layers.DropoutLayer(l_in, p=0.2)
# Add a fully-connected layer of 800 units, using the linear rectifier, and
# initializing weights with Glorot's scheme (which is the default anyway):
l_hid1 = lasagne.layers.DenseLayer(
l_in, num_units=4,
nonlinearity=lasagne.nonlinearities.rectify,
W=lasagne.init.GlorotUniform())
# Finally, we'll add the fully-connected output layer, of 10 softmax units:
l_out = lasagne.layers.DenseLayer(
l_hid1, num_units=2,
nonlinearity=lasagne.nonlinearities.softmax)
# Each layer is linked to its incoming layer(s), so we only need to pass
# the output layer to give access to a network in Lasagne:
return l_out
# Prepare Theano variables for inputs and targets
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')
network = build_mlp(input_var)
# Create a loss expression for training, i.e., a scalar objective we want
# to minimize (for our multi-class problem, it is the cross-entropy loss):
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
# We could add some weight decay as well here, see lasagne.regularization.
# Create update expressions for training, i.e., how to modify the
# parameters at each training step. Here, we'll use Stochastic Gradient
# Descent (SGD) with Nesterov momentum, but Lasagne offers plenty more.
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.nesterov_momentum(
loss, params, learning_rate=0.01, momentum=0.9)
# Create a loss expression for validation/testing. The crucial difference
# here is that we do a deterministic forward pass through the network,
# disabling dropout layers.
test_prediction = lasagne.layers.get_output(network, deterministic=True)
test_loss = lasagne.objectives.categorical_crossentropy(test_prediction,
target_var)
test_loss = test_loss.mean()
# As a bonus, also create an expression for the classification accuracy:
test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),
dtype=theano.config.floatX)
# Compile a function performing a training step on a mini-batch (by giving
# the updates dictionary) and returning the corresponding training loss:
train_fn = theano.function([input_var, target_var], loss, updates=updates)
# Compile a second function computing the validation loss and accuracy:
val_fn = theano.function([input_var, target_var], [test_loss, test_acc])
# ############################# Batch iterator ###############################
# This is just a simple helper function iterating over training data in
# mini-batches of a particular size, optionally in random order. It assumes
# data is available as numpy arrays. For big datasets, you could load numpy
# arrays as memory-mapped files (np.load(..., mmap_mode='r')), or write your
# own custom data iteration function. For small datasets, you can also copy
# them to GPU at once for slightly improved performance. This would involve
# several changes in the main program, though, and is not demonstrated here.
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
else:
if shuffle:
excerpt = indices[0:len(inputs)]
else:
excerpt = slice(0, len(inputs))
yield inputs[excerpt], targets[excerpt]
num_epochs = 4
# Finally, launch the training loop.
print("Starting training...")
# We iterate over epochs:
for epoch in range(num_epochs):
# In each epoch, we do a full pass over the training data:
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X_train, y_train, 4, shuffle=True):
inputs, targets = batch
print inputs.shape, targets.shape, input_var.shape, input_var.ndim, inputs.ndim
train_err += train_fn(inputs, targets) # (3)
train_batches += 1
# And a full pass over the validation data:
val_err = 0
val_acc = 0
val_batches = 0
for batch in iterate_minibatches(X_val, y_val, 4, shuffle=False):
inputs, targets = batch
err, acc = val_fn(inputs, targets)
val_err += err
val_acc += acc
val_batches += 1
# Then we print the results for this epoch:
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" validation loss:\t\t{:.6f}".format(val_err / val_batches))
print(" validation accuracy:\t\t{:.2f} %".format(
val_acc / val_batches * 100))
# After training, we compute and print the test error:
test_err = 0
test_acc = 0
test_batches = 0
for batch in iterate_minibatches(X_test, y_test, 500, shuffle=False):
inputs, targets = batch
err, acc = val_fn(inputs, targets)
test_err += err
test_acc += acc
test_batches += 1
print("Final results:")
print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches))
print(" test accuracy:\t\t{:.2f} %".format(
test_acc / test_batches * 100))
# Optionally, you could now dump the network weights to a file like this:
# np.savez('model.npz', lasagne.layers.get_all_param_values(network))
Defined a training set at (1), modified the input to the new dimension at (2) and get an exception at (3):
Traceback (most recent call last):
File "test.py", line 139, in <module>
train_err += train_fn(inputs, targets)
File "/usr/local/lib/python2.7/site-packages/theano/compile/function_module.py", line 513, in __call__
allow_downcast=s.allow_downcast)
File "/usr/local/lib/python2.7/site-packages/theano/tensor/type.py", line 169, in filter
data.shape))
TypeError: ('Bad input argument to theano function with name "test.py:91" at index 1(0-based)', 'Wrong number of dimensions: expected 1, got 4 with shape (1, 1, 4, 2).')
And I have no clue what I did wrong. When I print the dimension (or the output of the program until the exception) I get this
(1, 1, 4, 2)
Starting training...
(1, 1, 4, 2) (1, 1, 4, 2) Shape.0 4 4
Which seem to be perfect. What I'm doing wrong and how must the array be formed to work?
The problem is with the second input, targets. Note that the error message indicated this by saying "...at index 1(0-based)...", i.e. the second parameter.
target_var is an ivector but you're providing a 4-dimensional tensor for targets. The solution is to alter your y_train dataset so that it is 1-dimensional:
y_train = [0, 1, 1, 0]
This will cause another error because you currently assert that the first dimension of the inputs and targets should match, but changing
assert len(inputs) == len(targets)
to
assert inputs.shape[2] == len(targets)
will solve the second problem and allow the script to run successfully.

Categories