When I run this code in Python 3,why it shows name “lags” not defined?
from numpy import log,sqrt,std,subtract,cumsum,polyfit
def hurst(ts):
# Create the range of lag values
lags = range(2, 100)
# Calculate the array of the variances of the lagged differences
tau = [sqrt(std(subtract(ts[lag:], ts[:-lag]))) for lag in lags] # This line throws the Error
# Use a linear fit to estimate the Hurst Exponent
poly = polyfit(log(lags), log(tau), 1)
# Return the Hurst exponent from the polyfit output
return poly[0]*2.0
It looks like you didnt import numpy correctly.
Add this to the top of your code:
import numpy as np
and then change all calls to be:
np.polyfit(...)
np.sqrt(...)
or if you only want to import the ones you need:
from numpy import log, sqrt, std, subtract, cumsum, polyfit
Related
I need to compute two unknown variable with least square method , I have got the experimental data which are produced ( simiulated ) by a few line of code at first. so at the beginning two variable which are phase and width are known to simulate the data. in the second part these two variable are considered unknown and with the help of data and least squares method I am going to compute them. but there is a problem!. if the phase is between 0 to pi the code gives the right value and when it is between pi to 2*pi wrong value is retuned. I need to compute these two variables for any arbitrary value with high precision that is entered in the first part.
Thanks to those who would help in advance.
this is the code bellow:
from numpy import sin,cos,pi,linspace,sqrt,zeros,arccos
from scipy.special import fresnel as f
import matplotlib.pyplot as plt
from scipy.optimize import least_squares as lst
import numpy as np
# first part to simulate data
m=500
l=632.8e-9
z=.25
a=0.3e-3
b=6e-3
p=(1.7)*pi
q=sqrt(2/(l*z))
x=linspace(-b,b,m)
v2=-q*(x-a)
v1=-q*(x+a)
s,c,I=zeros(m),zeros(m),zeros(m)
for i in range(m):
s[i]=f(v2[i])[0]-f(v1[i])[0]
c[i]=f(v2[i])[1]-f(v1[i])[1]
for j in range(m):
I[j]=1+(1-cos(p))*((c[j]**2 +s[j]**2 )-(c[j]+s[j]))+sin(p)*(c[j]-s[j])
# second part to compute a and p
def model(y,x):
w=sqrt(2/(l*z))
C=f(w*(y[1]-x))[1]-f(w*(-y[1]-x))[1]
S=f(w*(y[1]-x))[0]-f(w*(-y[1]-x))[0]
return 1+(1-cos(y[0])) *(C**2 -C +S**2 -S)+sin(y[0])*(C-S)
def func(y,x,z):
return (z-model(y,x))
ExI=I
y0=np.array([0.5,50e-6])
reslm = lst(func, y0,method='lm',args=(x, ExI),verbose=2)
print('Real phase and channel width : ',p , a)
print(' lm method ')
print('Estimated phase : ' ,reslm.x[0] if reslm.x[0]>=0 else 2*pi+reslm.x[0])
print('channel width' , reslm.x[1])
I'm trying to do a guassian fit for some experimental data but I keep running into error after error. I've followed a few different threads online but either the fit isn't good (it's just a horizontal line) or the code just won't run. I'm following this code from another thread. Below is my code.
I apologize if my code seems a bit messy. There are some bits from other attempts when I tried making it work. Hence the "astropy" import.
import math as m
import matplotlib.pyplot as plt
import numpy as np
from scipy import optimize as opt
import pandas as pd
import statistics as stats
from astropy import modeling
def gaus(x,a,x0,sigma, offset):
return a*m.exp(-(x-x0)**2/(2*sigma**2)) + offset
# Python program to get average of a list
def Average(lst):
return sum(lst) / len(lst)
wavelengths = [391.719, 391.984, 392.248, 392.512, 392.777, 393.041, 393.306, 393.57, 393.835, 394.099, 391.719, 391.455, 391.19, 390.926, 390.661, 390.396]
intensities = [511.85, 1105.85, 1631.85, 1119.85, 213.85, 36.85, 10.85, 6.85, 13.85, 7.85, 511.85, 200.85, 80.85, 53.85, 14.85, 24.85]
n=sum(intensities)
mean = sum(wavelengths*intensities)/n
sigma = m.sqrt(sum(intensities*(wavelengths-mean)**2)/n)
def gaus(x,a,x0,sigma):
return a*m.exp(-(x-x0)**2/(2*sigma**2))
popt,pcov = opt.curve_fit(gaus,wavelengths,intensities,p0=[1,mean,sigma])
print(popt)
plt.scatter(wavelengths, intensities)
plt.title("Helium Spectral Line Peak 1")
plt.xlabel("Wavelength (nm)")
plt.ylabel("Intensity (a.u.)")
plt.show()
Thanks to the kind user, my curve seems to be working more reasonably well. However, one of the points seems to be back connecting to an earlier point? Screenshot below:
There are two problems with your code. The first is that you are performing vector operation on list which gives you the first error in the line mean = sum(wavelengths*intensities)/n. Therefore, you should use np.array instead. The second is that you take math.exp on python list which again throws an error as it takes a real number, so you should use np.exp here instead.
The following code solves your problem:
import matplotlib.pyplot as plt
import numpy as np
from scipy import optimize as opt
wavelengths = [391.719, 391.984, 392.248, 392.512, 392.777, 393.041,
393.306, 393.57, 393.835, 394.099, 391.719, 391.455,
391.19, 390.926, 390.661, 390.396]
intensities = [511.85, 1105.85, 1631.85, 1119.85, 213.85, 36.85, 10.85, 6.85,
13.85, 7.85, 511.85, 200.85, 80.85, 53.85, 14.85, 24.85]
wavelengths_new = np.array(wavelengths)
intensities_new = np.array(intensities)
n=sum(intensities)
mean = sum(wavelengths_new*intensities_new)/n
sigma = np.sqrt(sum(intensities_new*(wavelengths_new-mean)**2)/n)
def gaus(x,a,x0,sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))
popt,pcov = opt.curve_fit(gaus,wavelengths_new,intensities_new,p0=[1,mean,sigma])
print(popt)
plt.scatter(wavelengths_new, intensities_new, label="data")
plt.plot(wavelengths_new, gaus(wavelengths_new, *popt), label="fit")
plt.title("Helium Spectral Line Peak 1")
plt.xlabel("Wavelength (nm)")
plt.ylabel("Intensity (a.u.)")
plt.show()
I have been thinking about it for a long time, but I don't find out what the problem is. Hope you can help me, Thank you.
F(s) Gaussian function
F(s)=1/(√2π s) e^(-(w-μ)^2/(2s^2 ))
Code:
import numpy as np
from matplotlib import pyplot as plt
from math import pi
from scipy.fft import fft
def F_S(w, mu, sig):
return (np.exp(-np.power(w-mu, 2)/(2 * np.power(sig, 2))))/(np.power(2*pi, 0.5)*sig)
w=np.linspace(-5,5,100)
plt.plot(w, np.real(np.fft.fft(F_S(w, 0, 1))))
plt.show()
Result:
As was mentioned before you want the absolute value, not the real part.
A minimal example, showing the the re/im , abs/phase spectra.
import numpy as np
import matplotlib.pyplot as p
%matplotlib inline
n=1001 # add 1 to keep the interval a round number when using linspace
t = np.linspace(-5, 5, n ) # presumed to be time
dt=t[1]-t[0] # time resolution
print(f'sampling every {dt:.3f} sec , so at {1/dt:.1f} Sa/sec, max. freq will be {1/2/dt:.1f} Hz')
y = np.exp(-(t**2)/0.01) # signal in time
fr= np.fft.fftshift(np.fft.fftfreq(n, dt)) # shift helps with sorting the frequencies for better plotting
ft=np.fft.fftshift(np.fft.fft(y)) # fftshift only necessary for plotting in sequence
p.figure(figsize=(20,12))
p.subplot(231)
p.plot(t,y,'.-')
p.xlabel('time (secs)')
p.title('signal in time')
p.subplot(232)
p.plot(fr,np.abs(ft), '.-',lw=0.3)
p.xlabel('freq (Hz)')
p.title('spectrum, abs');
p.subplot(233)
p.plot(fr,np.real(ft), '.-',lw=0.3)
p.xlabel('freq (Hz)')
p.title('spectrum, real');
p.subplot(235)
p.plot(fr,np.angle(ft), '.-', lw=0.3)
p.xlabel('freq (Hz)')
p.title('spectrum, phase');
p.subplot(236)
p.plot(fr,np.imag(ft), '.-',lw=0.3)
p.xlabel('freq (Hz)')
p.title('spectrum, imag');
you have to change from time scale to frequency scale
When you make a FFT you will get the simetric tranformation, i.e, mirror of the positive to negative curve. Usually, you only will look at the positive side.
Also, you should take care with sample rate, as FFT is designed to transform time domain input to frequency domain, the time, or sample rate, of input info matters. So add timestep in np.fft.fftfreq(n, d=timestep) for your sample rate.
If you simple want to make a fft of normal dist signal, here is another question with it and some good explanations on why are you geting this behavior:
Fourier transform of a Gaussian is not a Gaussian, but thats wrong! - Python
There are two mistakes in your code:
Don't take the real part, take the absoulte value when plotting.
From the docs:
If A = fft(a, n), then A[0] contains the zero-frequency term (the mean
of the signal), which is always purely real for real inputs. Then
A[1:n/2] contains the positive-frequency terms, and A[n/2+1:] contains
the negative-frequency terms, in order of decreasingly negative
frequency.
You can rearrange the elements with np.fft.fftshift.
The working code:
import numpy as np
from matplotlib import pyplot as plt
from math import pi
from scipy.fftpack import fft, fftshift
def F_S(w, mu, sig):
return (np.exp(-np.power(w-mu, 2)/(2 * np.power(sig, 2))))/(np.power(2*pi, 0.5)*sig)
w=np.linspace(-5,5,100)
plt.plot(w, fftshift(np.abs(np.fft.fft(F_S(w, 0, 1)))))
plt.show()
Also, you might want to consider scaling the x axis too.
I am supposed to use python to solve a Matrix A^1000. I have tried numpy's built in matrix_power function to compute the output, but when I try to compute the result step by step according to the formula P*(D^1000) *P^-1 , I get an incomplete result. I am trying to figure out if my precision options are just too tight or if I am doing something else wrong completely
I have tried the matrix_power function to definitely get the result I want. But I need to be able to show how the calculation is done, and when I do so, I get an incomplete result
import numpy as np
np.set_printoptions(precision=6) # set the precision of the output
np.set_printoptions(suppress=True) # suppress the use of scientific notation
from numpy import diag, allclose, corrcoef
from numpy.random import randint, randn
from numpy.linalg import eig, matrix_rank, inv, cholesky, qr, norm, matrix_power
from sympy import Matrix, init_printing, matrix2numpy
A = np.array([[0.9,0.15,0.25],[0.075,0.8,0.25],[0.025,0.05,0.5]])
A
#python way
A_1000 = matrix_power(A,1000)
A_1000
D , P = eig(A)
P * np.diag(D**1000) * np.linalg.inv(p)
I wish to perform a fourier transform of the function 'stress' from 0 to infinity and extract the real and imaginary parts. I have the following code that does it using a numerical integration technique:
import numpy as np
from scipy.integrate import trapz
import fileinput
import sys,string
window = 200000 # length of the array I wish to transform (number of data points)
time = np.linspace(1,window,window)
freq = np.logspace(-5,2,window)
output = [0]*len(freq)
for index,f in enumerate(freq):
visco = trapz(stress*np.exp(-1j*f*t),t)
soln = visco*(1j*f)
output[index] = soln
print 'f storage loss'
for i in range(len(freq)):
print freq[i],output[i].real,output[i].imag
This gives me a nice transformation of my input data.
Now I have an array of size 2x10^6, and using the above technique is not feasible(computation time scales as O(N^2)), so I have turned to the inbuilt fft function in numpy.
There aren't too many arguments that you can specify to change this function, and so I'm finding it difficult to customize it to my needs.
So far I have
import numpy as np
import fileinput
import sys, string
np.set_printoptions(threshold='nan')
N = len(stress)
fvi = np.fft.fft(stress,n=N)
gprime = fvi.real
gdoubleprime = fvi.imag
for i in range(len(stress)):
print gprime[i], gdoubleprime[i]
And it's not giving me accurate results.
The DFT in python is of the form A_k = summation(a_m * exp(-2*piimk/n)) where the summation is from m = 0 to m = n-1 (http://docs.scipy.org/doc/numpy-1.10.1/reference/routines.fft.html). How can I change it to the form that I have mentioned in my first code, i.e. exp(-1jfreq*t) (freq is the frequency and t is the time which have already been predefined)? Or is there a post processing of the data that I have to do?
Thanks in advance for all your help.