I would like to use a ColorFunction similar to that in Mathematica for my plots in python.
In other words, I would like to call pyplot.plot(x, y, color=c), where c is a vector, defining the color of each data point.
Is there any way to achieve this using the matplotlib library?
To the best of my knowledge, there is no equivalent in Matplotlib, but we can get the similar result following two steps: draw points with varied colors and draw the line.
Here is a demo.
The source code,
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
import random
fig, ax = plt.subplots()
nrof_points = 100
x = np.linspace(0, 10, nrof_points)
y = np.sin(x)
colors = cm.rainbow(np.linspace(0, 1, nrof_points)) # generate a bunch of colors
# draw points
for idx, point in enumerate(zip(x, y)):
ax.plot(point[0], point[1], 'o', color=colors[idx], markersize=10)
# draw the line
ax.plot(x, y, 'k')
plt.grid()
plt.show()
While I agree with #SparkAndShine that there is no way to parameterize the color of one line, it is possible to color many lines to create a visual effect that is largely the same. This is at the heart of a demo in the MatPlotLib documentation. However, this demo is not the simplest implementation of this principle. Here is an alternate demo based on #SparkAndShine's response:
colored sine (can't post as image since I don't have the reputation)
Source code:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
fig, ax = plt.subplots()
nrof_points = 100
x = np.linspace(0, 10, nrof_points)
y = np.sin(x)
colors = cm.rainbow(np.linspace(0, 1, nrof_points)) # generate a bunch of colors
# draw points
for idx in range(0,np.shape(x)[0]-2,1):
ax.plot(x[idx:idx+1+1], y[idx:idx+1+1], color=colors[idx])
# add a grid and show
plt.grid()
plt.show()
Related
I am reading the following discussion:
setting axis scale in matplotlib contour plot
From the discussion above, to get arbitrary ratio, we could use
plt.figure(figsize=(8,2))
# ...
plt.tight_layout()
However, this setting is for figure not for contourf.
I used the above codes in my codes
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
import pandas as pd
import math
rm = pd.read_excel("test_3d.xlsx", header = None)
# find min values of noise
rec = np.shape(rm)
# grid
X = np.arange(1,rec[1]+1,1)
Y = np.arange(1,rec[0]+1,1)
x , y = np.meshgrid(X,Y)
# plots
plt.clf()
con = plt.contourf(x,y,rm, cmap=cm.jet)
plt.figure(figsize=(8,2))
plt.tight_layout()
plt.title('2457MHz')
plt.show()
The result I got is
The ratio of bottom plot is what I want; however, I use plt.figure(figsize=(8,2)), which is not for contourf. Therefore, I did not get the correct result.
Is there any way that I can plot arbitrary ratio for contourf?
Instead of setting the figsize, use Axes.set_aspect to change the aspect ratio of the contour plot's Axes:
fig, ax = plt.subplots()
ax.contourf(x, y, rm, cmap='viridis')
ax.set_aspect(0.25)
If you prefer to stick with the plt syntax, access the Axes using plt.gca:
plt.contourf(x, y, rm, cmap='viridis')
plt.gca().set_aspect(0.25)
I need to plot a line plot. I want to plot all parts of the lineplot that are below zero blue, and all parts above red.
Here's what I managed so far:
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
x = np.linspace(0, 1, 40)
y = np.random.random(len(x))-0.5
da = xr.DataArray(y, dims=('x',), coords={'x':x})
fig = plt.figure(figsize=(12,6))
ax = fig.add_subplot(1, 1, 1)
da.plot(ax=ax, color='red', linewidth=3)
da.where(y<0).plot(ax=ax, color='blue', linewidth=3)
plt.show()
Here's what I get with this script:
But what I want is for the color to change at the threshold of 0, like this example (that I've modified to show what I want):
I've looked at some suggestions here, for example this here: Plot: color all larger than different color
But I get the same figure with that solution. It seems that the solution lies in the fact that all their line segments are incredibly short, so you don't notice that a segment that passes the threshold doesn't change color at the threshold, and only the next segment is drawn in a different color.
Is there a straightforward way to do this? Or do I have to separate the line segments that cross the threshold manually?
Thank you
It seems that the solution lies in the fact that all their line segments are incredibly short, so you don't notice that a segment that passes the threshold doesn't change color at the threshold, and only the next segment is drawn in a different color.
You could just interpolate your data such that this holds true for your data as well.
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
xx = np.linspace(0, 1, 40)
yy = np.random.random(len(xx))-0.5
x = np.linspace(0, 1, 4000)
y = np.interp(x, xx, yy) # linear piecewise interpolation
da = xr.DataArray(y, dims=('x',), coords={'x':x})
fig = plt.figure(figsize=(12,6))
ax = fig.add_subplot(1, 1, 1)
da.plot(ax=ax, color='red', linewidth=3)
da.where(y<0).plot(ax=ax, color='blue', linewidth=3)
plt.show()
I am pretty much a beginner in using python's matplotlib library.
I have ten plots to be drawn in the same figure, using matplotlib.pyplot.plot assigns. I would like to pick the colors from a ranger "shorter" than the default one, for example "around the red" (like from reddish purple to orange). Is it possible? How can I do it in python?
I also found this https://matplotlib.org/examples/color/colormaps_reference.html, but it seems quite useless to me.
Thanks for answering
EDIT: to better clarify what I need, I am looking for a way to communicate to the "plt.plot" function that I want it to iterate over a different set of colors
If you want to create a color ramp you can do the following. Using https://matplotlib.org/3.2.1/tutorials/colors/colormap-manipulation.html as a reference:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
def plot_examples(colormaps):
"""
Helper function to plot data with associated colormap.
"""
np.random.seed(19680801)
data = np.random.randn(30, 30)
n = len(colormaps)
fig, axs = plt.subplots(1, n, figsize=(n * 2 + 2, 3),
constrained_layout=True, squeeze=False)
for [ax, cmap] in zip(axs.flat, colormaps):
psm = ax.pcolormesh(data, cmap=cmap, rasterized=True, vmin=-4, vmax=4)
fig.colorbar(psm, ax=ax)
plt.show()
colors = ["purple", "red"]
cmap1 = LinearSegmentedColormap.from_list("mycmap", colors)
plot_examples([cmap1])
You can also use the colormap to get values for a normal plot:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
# Creating the colar map
colors = ["purple", "red"]
cmap1 = LinearSegmentedColormap.from_list("mycmap", colors)
# Data used in plot
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)
plt.plot(t, s, color=cmap1(0.1))
plt.show()
Here you can change the 0.1 in the second to last line to choose where on the colormap you want to query (0-255).
I'm trying to plot a wave function over one dimension but it has real and imaginary parts, so I did a 3D plot animation of it. This is a screenshot:
The main thing I would like to do is to spread it along the x-axis (which now is vertical) so it doesn't look squeezed. Also, it would be nice to set it up in a set of 3 RGB axes that intersect at the point (0,0,0). In the documentation I couldn't find any straight forward way to do this. I'm attaching the part of the code I'm using to animate it:
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import mpl_toolkits.mplot3d.axes3d as p3
fig = plt.figure()
ax = fig.gca(projection='3d')
line, = ax.plot(REAL[0,:],IMAG[0,:],x,"r",linewidth=0.5)
def animacio(i):
ax.collections.clear()
line.set_data(REAL[i,:],IMAG[i,:])
line.set_3d_properties(x, 'z')
return line,
ani = animation.FuncAnimation(fig,animacio,interval=50, frames=Nt,repeat=True)
nom = 'EvoluciĆ³_'
ani.save(str(nom)+'['+str(V0)+','+str(L)+','+str(l)+','+str(xi)+','+str(sigmax)+','+str(T)+']'+'.mp4', writer="ffmpeg", dpi=300)
plt.show()
print('Animation saved as: '+str(nom)+'['+str(V0)+','+str(L)+','+str(l)+','+str(xi)+','+str(sigmax)+','+str(T)+']'+'.mp4')
You can add colored lines to the plot, just by giving start and end points and assigning a color. The limits for the 'up'-axis can be set by ax.set_zlim. I created a demo curve that roughly resembles yours.
import numpy as np
from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
x = np.linspace(-10, 10, 1000)
y = np.sin(10*x)/(x*x+1)
z = np.cos(10*x)/(x*x+1)
ax = plt.axes(projection='3d')
ax.plot3D([0,0], [0,0], [-10,10], color='crimson')
ax.plot3D([0,0], [-1,1], [0,0], color='limegreen')
ax.plot3D([-1,1], [0,0], [0,0], color='dodgerblue')
line, = ax.plot3D(y, z, x, color='blueviolet')
ax.set_zlim(-1, 1)
plt.show()
At the left the plot without limiting, at the right with limits:
To get a more elongated view, you could use something like:
plt.gcf().set_size_inches(4, 12)
I have questions related to creating a simple lineplot in Python with mplot3D where the area under the plot is filled. I am using Python 2.7.5 on RedHatEnterprise 7.2, matplotlib 1.2.0 and numpy 1.7.2.
Using the code below, I am able to generate a line plot. This is displayed as expected with the beginning / end of the plot set by the limits of the imported data set.
I am then trying to fill the area between the line plot and -0.1 using the answer given by Bart from Plotting a series of 2D plots projected in 3D in a perspectival way. This works, however, the filled area is continued beyond the limits of the data set. This is also the case when running the example from the link.
This screen shot shows the plot generated with filled area extending beyond the set axis limits.
How do I achieve that the filled area is only the range of the data set or the axis limits whichever is smaller?
How do I add a legend for those plots onto the figure?
Code as follows:
from numpy import *
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import Axes3D
x,y = genfromtxt("data.dat",unpack=True)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.add_collection3d(plt.fill_between(x,y,-0.1, color='orange', alpha=0.3,label="filled plot"),1, zdir='y')
ax.plot(x,y,1,zdir="y",label="line plot")
ax.legend()
ax.set_xlim3d(852.353,852.359)
ax.set_zlim3d(-0.1,5)
ax.set_ylim3d(0,2)
ax.get_xaxis().get_major_formatter().set_useOffset(False)
plt.show()
I don't know how to put fill_between working the way you want it to, but I can provide an alternative using a 3D polygon:
from numpy import *
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection # New import
#x,y = genfromtxt("data.dat",unpack=True)
# Generated some random data
w = 3
x,y = np.arange(100), np.random.randint(0,100+w,100)
y = np.array([y[i-w:i+w].mean() for i in range(3,100+w)])
z = np.zeros(x.shape)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
#ax.add_collection3d(plt.fill_between(x,y,-0.1, color='orange', alpha=0.3,label="filled plot"),1, zdir='y')
verts = [(x[i],z[i],y[i]) for i in range(len(x))] + [(x.max(),0,0),(x.min(),0,0)]
ax.add_collection3d(Poly3DCollection([verts],color='orange')) # Add a polygon instead of fill_between
ax.plot(x,z,y,label="line plot")
ax.legend()
ax.set_ylim(-1,1)
plt.show()
The code above generates some random data. Builds vertices from it and plots a polygon with those vertices. This will give you the plot you wish (but does not use fill_between). The result is: