matplot lib y-axis interval with dollar sign - python

I have the following code to generate the a chart showing year in the x-axis, and the dollar amount in the y-axis. How can I format my y-axis to show intervals like $4,000,000, $8,000,000, $12,000,000...
Right now, the y-axis are showing 0.2, 0.4, and 1e7 on the left-top.
from matplotlib import pyplot as plt
...
plt.figure(figsize=(8,4))
plt.plot(x_values, y_values)
plt.ylabel('Amount')
...
plt.savefig(img_path)

Matlab Example
% Years on x axis
x = 2010:2016;
% Dollar amount on y axis
y = linspace(4000000,8000000,length(x));
% Plot and save the tick values that Matlab generates
plot(x,y);
yTicks = get(gca,'YTick');
% Turn ticks into non-exponential values
a = textscan(num2str(yTicks),'%f');
% Format into strings representing dollar amount with delimiter etc.
newYTickLabels = Sep1000Str(a{1});
% Set your new ticklabels
set(gca,'YTickLabel',newYTickLabels)
Where Sep1000Str() is:
function output = Sep1000Str(a)
n = length(a);
for k = 1:n
S = sprintf('$%.2f', a(k));
S(2, length(S) - 6:-3:2) = ',';
S = {transpose(S(S ~= char(0)))};
output(k) = S;
end

You could use the matplotlib FormatStrFormatter
x_values = [2011,2012,2013,2014,2015,2016,2017] #list of years
y_values = np.linspace(4e6,10e6,len(x_values)) #y_values with same size as x
fig, ax = plt.subplots(figsize=(8,4))
ax.plot(x_values, y_values)
formatter = ticker.FormatStrFormatter('$%0.1f') #declaring the formatter with the $ sign and y_values with 1 decimalplace
ax.yaxis.set_major_formatter(formatter)
for tick in ax.yaxis.get_major_ticks():
tick.label1.set_visible(True) #make your yvalues visible on the plot
plt.show()

Related

Show density and frequency on the same histogram

I would like to see both the density and frequency on my histogram. For example, display density on the left side and frequency on the right side.
Here is my code:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
x = [6.950915827194559, 0.5704464713012669, -1.655326152372283, 5.867122206816244, -1.809359944941513, -6.164821482653027, -2.538999462076397, 0.2108693568484643, -8.740600769897465, 2.121232876712331, 7.967032967032961, 10.61701196601832, 1.847419201771516, 0.6858006670780847, -2.008695652173909, 2.86991153132885, 1.703131050506168, -1.346913193356314, 3.334927671049193, -15.64688995215311, 20.00022688856367, 10.05956454173731, 2.044936877124148, 3.06513409961684, -0.9973614775725559, 1.190631873030967, -1.509991311902692, -0.3333827233664155, 1.898473282442747, 1.618299899267539, -0.1897860593512823, 1.000000000000001, 3.03501945525293, -7.646697418593529, -0.9769069279216391, -2.918403811792736, -3.90929422276739, 9.609846259653532, 3.240690674452962, 10.08973134408675, 1.98356309650054, 1.915301127899549, -0.7792207792207684, -3.308682400714091, -3.312977099236647, 19.98101265822785, 3.661973444534827, -5.770676691729326, 0.5268044012063156, -1.573767040370533, 3.234974862888484, -1.514352732634994, 6.564849624060143, 9.956794019127146, 3.232590278195024, 2.042007001166857, 1.601164483260553, -2.384737678855331, -2.731242556570068, 0.6069707315088602, 1.40561881957264, -6.805306861851957, 2.492102492102499, -3.639688275501762, 0.7958485384154335, 2.799187725631769, 0.9195966872689088, -2.366608280379856, 0.797679477882518, -3.80380434782609]
df = pd.DataFrame(x, columns=["Returns"])
def plot_histogram():
bins = range(-11, 12, 1)
bins_str = []
for i in bins:
bins_str.append(str(i)+"%")
fig, ax = plt.subplots(figsize=(9, 5))
_, bins, patches = plt.hist(np.clip(df.Returns, bins[0], bins[-1]),
bins=bins, density=True, rwidth=0.8)
xlabels = bins_str[:]
xlabels[-1] = "Over"
xlabels[0] = "Under"
N_labels = len(xlabels)
plt.xlim([bins[0], bins[-1]])
plt.xticks(bins)
ax.set_xticklabels(xlabels)
plt.title("Returns distribution")
plt.grid(axis="y", linewidth=0.5)
plot_histogram()
I tried adding density=True in plt.hist() but it removes the count from the histogram. Is it possible to display both the frequency and density on the same histogram?
A density plot sets the heights of the bars such that the area of all the bars (taking rwidth=1 for that calculation) sums to 1. As such, the bar heights of a counting histogram get divided by (the number of values times the bar widths).
With that conversion factor, you can recalculate the counts from the density (or vice versa). The recalculation can be used to label the bars and/or set a secondary y-axis. Note that the ticks of both y axes are aligned, so the grid only works well for one of them. (A secondary y-axis is a bit different from ax.twiny(), as the former has a fixed conversion between both y axes).
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
x = [6.950915827194559, 0.5704464713012669, -1.655326152372283, 5.867122206816244, -1.809359944941513, -6.164821482653027, -2.538999462076397, 0.2108693568484643, -8.740600769897465, 2.121232876712331, 7.967032967032961, 10.61701196601832, 1.847419201771516, 0.6858006670780847, -2.008695652173909, 2.86991153132885, 1.703131050506168, -1.346913193356314, 3.334927671049193, -15.64688995215311, 20.00022688856367, 10.05956454173731, 2.044936877124148, 3.06513409961684, -0.9973614775725559, 1.190631873030967, -1.509991311902692, -0.3333827233664155, 1.898473282442747, 1.618299899267539, -0.1897860593512823, 1.000000000000001, 3.03501945525293, -7.646697418593529, -0.9769069279216391, -2.918403811792736, -3.90929422276739, 9.609846259653532, 3.240690674452962, 10.08973134408675, 1.98356309650054, 1.915301127899549, -0.7792207792207684, -3.308682400714091, -3.312977099236647, 19.98101265822785, 3.661973444534827, -5.770676691729326, 0.5268044012063156, -1.573767040370533, 3.234974862888484, -1.514352732634994, 6.564849624060143, 9.956794019127146, 3.232590278195024, 2.042007001166857, 1.601164483260553, -2.384737678855331, -2.731242556570068, 0.6069707315088602, 1.40561881957264, -6.805306861851957, 2.492102492102499, -3.639688275501762, 0.7958485384154335, 2.799187725631769, 0.9195966872689088, -2.366608280379856, 0.797679477882518, -3.80380434782609]
df = pd.DataFrame(x, columns=["Returns"])
bins = range(-11, 12, 1)
bins_str = [str(i) + "%" for i in bins]
fig, ax = plt.subplots(figsize=(9, 5))
values, bins, patches = ax.hist(np.clip(df["Returns"], bins[0], bins[-1]),
bins=bins, density=True, rwidth=0.8)
# conversion between counts and density: number of values times bin width
factor = len(df) * (bins[1] - bins[0])
ax.bar_label(patches, ['' if v == 0 else f'{v * factor:.0f}' for v in values])
xlabels = bins_str[:]
xlabels[-1] = "Over"
xlabels[0] = "Under"
ax.set_xlim([bins[0], bins[-1]])
ax.set_xticks(bins, xlabels)
ax.set_title("Returns distribution")
ax.grid(axis="y", linewidth=0.5)
secax = ax.secondary_yaxis('right', functions=(lambda y: y * factor, lambda y: y / factor))
secax.set_ylabel('counts')
ax.set_ylabel('density')
plt.show()
To have the same grid positions for both y-axes, you can copy the ticks of one and convert them to set them at the other. For the ticks to be calculated, the plot needs to be drawn once (at the end of the code). Note that the converted values are only shown with a limited number of digits.
fig.canvas.draw()
ax.set_yticks(secax.get_yticks() / factor)
plt.show()

How to scale histogram y-axis in million in matplotlib

I am plotting a histogram using matplotlib but my y-axis range is in the millions. How can I scale the y-axis so that instead of printing 5000000 it will print 5
Here is my code
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
filename = './norstar10readlength.csv'
df=pd.read_csv(filename, sep=',',header=None)
n, bins, patches = plt.hist(x=df.values, bins=10, color='#0504aa',
alpha=0.7, rwidth=0.85)
plt.grid(axis='y', alpha=0.75)
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('My Very Own Histogram')
maxfreq = n.max()
# Set a clean upper y-axis limit.
plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10)
plt.show()
And here is the plot I am generating now
An elegant solution is to apply a FuncFormatter to format y labels.
Instead of your source data, I used the following DataFrame:
Val
0 800000
1 2600000
2 6700000
3 1400000
4 1700000
5 1600000
and made a bar plot. "Ordinary" bar plot:
df.Val.plot.bar(rot=0, width=0.75);
yields a picture with original values on the y axis (1000000 to
7000000).
But if you run:
from matplotlib.ticker import FuncFormatter
def lblFormat(n, pos):
return str(int(n / 1e6))
lblFormatter = FuncFormatter(lblFormat)
ax = df.Val.plot.bar(rot=0, width=0.75)
ax.yaxis.set_major_formatter(lblFormatter)
then y axis labels are integers (the number of millions):
So you can arrange your code something like this:
n, bins, patches = plt.hist(x=df.values, ...)
#
# Other drawing actions, up to "plt.ylim" (including)
#
ax = plt.gca()
ax.yaxis.set_major_formatter(lblFormatter)
plt.show()
You can modify your df itself, you just need to decide one ratio
so if you want to make 50000 to 5 then it means the ratio is 5/50000 which is 0.0001
Once you have the ratio just multiply all the values of y-axis with the ratio in your DataFrame itself.
Hope this helps!!

Adjusting x-axis in matplotlib

I have a range of values for every hour of year. Which means there are 24 x 365 = 8760 values. I want to plot this information neatly with matplotlib, with x-axis showing January, February......
Here is my current code:
from matplotlib import pyplot as plt
plt.plot(x_data,y_data,label=str("Plot"))
plt.xticks(rotation=45)
plt.xlabel("Time")
plt.ylabel("Y axis values")
plt.title("Y axis values vs Time")
plt.legend(loc='upper right')
axes = plt.gca()
axes.set_ylim([0,some_value * 3])
plt.show()
x_data is a list containing dates in datetime format. y_data contains values corresponding to the values in x_data. How can I get the plot neatly done with months on the X axis? An example:
You could create a scatter plot with horizontal lines as markers. The month is extracted by using the datetime module. In case the dates are not ordered, the plot sorts both lists first according to the date:
#creating a toy dataset for one year, random data points within month-specific limits
from datetime import date, timedelta
import random
x_data = [date(2017, 1, 1) + timedelta(days = i) for i in range(365)]
random.shuffle(x_data)
y_data = [random.randint(50 * (i.month - 1), 50 * i.month) for i in x_data]
#the actual plot starts here
from matplotlib import pyplot as plt
#get a scatter plot with horizontal markers for each data point
#in case the dates are not ordered, sort first the dates and the y values accordingly
plt.scatter([day.strftime("%b") for day in sorted(x_data)], [y for _xsorted, y in sorted(zip(x_data, y_data))], marker = "_", s = 900)
plt.show()
Output
The disadvantage is obviously that the lines have a fixed length. Also, if a month doesn't have a data point, it will not appear in the graph.
Edit 1:
You could also use Axes.hlines, as seen here.
This has the advantage, that the line length changes with the window size. And you don't have to pre-sort the lists, because each start and end point is calculated separately.
The toy dataset is created as above.
from matplotlib import pyplot as plt
#prepare the axis with categories Jan to Dec
x_ax = [date(2017, 1, 1) + timedelta(days = 31 * i) for i in range(12)]
#create invisible bar chart to retrieve start and end points from automatically generated bars
Bars = plt.bar([month.strftime("%b") for month in x_ax], [month.month for month in x_ax], align = "center", alpha = 0)
start_1_12 = [plt.getp(item, "x") for item in Bars]
end_1_12 = [plt.getp(item, "x") + plt.getp(item, "width") for item in Bars]
#retrieve start and end point for each data point line according to its month
x_start = [start_1_12[day.month - 1] for day in x_data]
x_end = [end_1_12[day.month - 1] for day in x_data]
#plot hlines for all data points
plt.hlines(y_data, x_start, x_end, colors = "blue")
plt.show()
Output
Edit 2:
Now your description of the problem is totally different from what you show in your question. You want a simple line plot with specific axis formatting. This can be found easily in the matplotlib documentation and all over SO. An example, how to achieve this with the above created toy dataset would be:
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter, MonthLocator
ax = plt.subplot(111)
ax.plot([day for day in sorted(x_data)], [y for _xsorted, y in sorted(zip(x_data, y_data))], "r.-")
ax.xaxis.set_major_locator(MonthLocator(bymonthday=15))
ax.xaxis.set_minor_locator(MonthLocator())
ax.xaxis.set_major_formatter(DateFormatter("%B"))
plt.show()
Output

divide x and y labels in Matplotlib

I have a graph with X as a date and Y as some readings. the X axis has a date interval with an increment of one day. what i want is to show the hours on the x axis between two days(just to set the hours in the yellow area in the graph).
The idea of the code is:
Date=[];Readings=[] # will be filled from another function
dateconv=np.vectorize(datetime.fromtimestamp)
Date_F=dateconv(Date)
ax1 = plt.subplot2grid((1,1), (0,0))
ax1.plot_date(Date_F,Readings,'-')
for label in ax1.xaxis.get_ticklabels():
label.set_rotation(45)
ax1.grid(True)
plt.xlabel('Date')
plt.ylabel('Readings')
ax1.set_yticks(range(0,800,50))
plt.legend()
plt.show()
You can use MultipleLocator from matplotlib.ticker with set_major_locator and set_minor_locator. See example.
Example
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import datetime
# Generate some data
d = datetime.timedelta(hours=1/5)
now = datetime.datetime.now()
times = [now + d * j for j in range(250)]
ax = plt.gca() # get the current axes
ax.plot(times, range(len(times)))
for label in ax.xaxis.get_ticklabels():
label.set_rotation(30)
# Set the positions of the major and minor ticks
dayLocator = MultipleLocator(1)
hourLocator = MultipleLocator(1/24)
ax.xaxis.set_major_locator(dayLocator)
ax.xaxis.set_minor_locator(hourLocator)
# Convert the labels to the Y-m-d format
xax = ax.get_xaxis() # get the x-axis
adf = xax.get_major_formatter() # the the auto-formatter
adf.scaled[1/24] = '%Y-%m-%d' # set the < 1d scale to Y-m-d
adf.scaled[1.0] = '%Y-%m-%d' # set the > 1d < 1m scale to Y-m-d
plt.show()
Result

Plot : Too many ticks on X axe

The first loaded plot have too many ticks on X axe (see image01).
If I use the zoom action on X axe, the plot is now well loaded.
Can you give me some advise where I can search because The Plot constructor parameters seems good.
date_range = (735599.0, 735745.0)
x = (735610.5, 735647.0, 735647.5, 735648.5, 735669.0, 735699.0, 735701.5, 735702.5, 735709.5, 735725.5, 735728.5, 735735.5, 735736.0)
y = (227891.25361545716, 205090.4880046467, 208352.59317388065, 175462.99296699322, 98209.836461969651, 275063.37219361769, 219456.93600708069, 230731.12613806152, 209043.19805037521, 218297.51486296533, 208036.88967207001, 206311.71988471842, 216036.56824433553)
y0 = 218206.79192
x_after = (735610.5, 735647.0, 735647.5, 735701.5, 735702.5, 735709.5, 735725.5, 735728.5, 735735.5, 735736.0)
y_after = (227891.25361545716, 205090.4880046467, 208352.59317388065, 219456.93600708069, 230731.12613806152, 209043.19805037521, 218297.51486296533, 208036.88967207001, 206311.71988471842, 216036.56824433553)
linex = -39.1175584541
liney = 28993493.5251
ax.plot_date(x, numpy.array(y) / y0, color='r', xdate=True, marker='x')
ax.plot_date(x_after, numpy.array(y_after) / y0, color='r', xdate=True)
ax.set_xlim(date_range)
steps = list(ax.get_xlim())
steps.append(steps[-1] + 2)
steps = [steps[0] - 2] + steps
ax.plot(steps, numpy.array([linex * a + liney for a in steps]) / y0, color='b')
Thank you for your help.
Manuel
If you have too many xtick labels, so many that they are all munged together on the plot, you can reduce them using pyplot.xticks. the arguments are the points the labels apply to, the labels themselves and an optional rotation.
import numpy as np
import matplotlib.pyplot as plt
y = np.arange(10000)
ticks = y - 5000
plt.plot(y)
k = 1000
ys = y[::k]
ys = np.append(ys, y[-1])
labels = ticks[::k]
labels = np.append(labels, ticks[-1])
plt.xticks(ys,labels, rotation='vertical')
plt.show()
plt.close()
I'm not sure I understand exactly what you wanna do but is a rotation of your xticklabels sufficient for you?
# Add this code at the end of your script
# It will rotate the labels contained in your date range
plt.xticks(rotation=70)
If I test your code, I have 7 labels but the rotation argument is changed to 0 (horizontal)

Categories