How can I create numpy array of views? - python

I have image in a numpy array of shape (3, height, width) and I want to create an of subimage views. I know exactly how many subimages I will have and can create each ones in cycle.
That's how I did it:
result_array = np.empty(
shape=(
int((res_img.shape[WIDTH] - SUB_IMG_WIDTH + 1) / step * (
res_img.shape[HEIGHT] - SUB_IMG_HEIGHT + 1) / step),
SUB_IMG_LAYERS, SUB_IMG_HEIGHT, SUB_IMG_WIDTH),
dtype=np.dtype(float))
for i in range(0, img.shape[WIDTH] - sub_img_shape[WIDTH], step):
for ii in range(0, img.shape[HEIGHT] - sub_img_shape[HEIGHT], step):
result_array[index] = img[:, i:i + sub_img_shape[WIDTH], ii:ii + sub_img_shape[HEIGHT]]
But instead of array of views I get array of copies. It's not problem by itself, I don't need to modify them, just use them simultaneously on GPU, but it's consume terrible amount of memory: My images have size about 1000x600 and I have roughly 100 000 subimages. So my array of subimages consume 3-4 Gb of my RAM.
I tried to store views in python list, like that:
for i in range(0, img.shape[WIDTH] - sub_img_shape[WIDTH], step):
for ii in range(0, img.shape[HEIGHT] - sub_img_shape[HEIGHT], step):
result_array.append(img[:, i:i + sub_img_shape[WIDTH], ii:ii + sub_img_shape[HEIGHT]])
And it worked, but I doubt that it's a good method. Any way I can do this with a numpy array and not a python list?

You can do it using the as_strided function:
import numpy as np
from numpy.lib.stride_tricks import as_strided
N=10
L=4*N
H=3*N
step=5
a=(np.arange(3*H*L)%256).reshape(3,H,L)
(k,j,i)=a.strides
b=as_strided (a,shape=(H/step,L/step,3,step,step),strides=(j*step,i*step,k,j,i))
b then address each bloc without copy.
In [29]: np.all(b[1,2]==a[:,5:10,10:15])
Out[29]: True
In [30]: a[:,5,10]=0 # modification of a
In [31]: np.all(b[1,2]==a[:,5:10,10:15])
Out[31]: True # b also modified

Related

caculating the sum of elements around an element in a numpy array [duplicate]

I am trying to perform a 2d convolution in python using numpy
I have a 2d array as follows with kernel H_r for the rows and H_c for the columns
data = np.zeros((nr, nc), dtype=np.float32)
#fill array with some data here then convolve
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
data = data.astype(np.uint8);
It does not produce the output that I was expecting, does this code look OK, I think the problem is with the casting from float32 to 8bit. Whats the best way to do this
Thanks
Maybe it is not the most optimized solution, but this is an implementation I used before with numpy library for Python:
def convolution2d(image, kernel, bias):
m, n = kernel.shape
if (m == n):
y, x = image.shape
y = y - m + 1
x = x - m + 1
new_image = np.zeros((y,x))
for i in range(y):
for j in range(x):
new_image[i][j] = np.sum(image[i:i+m, j:j+m]*kernel) + bias
return new_image
I hope this code helps other guys with the same doubt.
Regards.
Edit [Jan 2019]
#Tashus comment bellow is correct, and #dudemeister's answer is thus probably more on the mark. The function he suggested is also more efficient, by avoiding a direct 2D convolution and the number of operations that would entail.
Possible Problem
I believe you are doing two 1d convolutions, the first per columns and the second per rows, and replacing the results from the first with the results of the second.
Notice that numpy.convolve with the 'same' argument returns an array of equal shape to the largest one provided, so when you make the first convolution you already populated the entire data array.
One good way to visualize your arrays during these steps is to use Hinton diagrams, so you can check which elements already have a value.
Possible Solution
You can try to add the results of the two convolutions (use data[:,c] += .. instead of data[:,c] = on the second for loop), if your convolution matrix is the result of using the one dimensional H_r and H_c matrices like so:
Another way to do that would be to use scipy.signal.convolve2d with a 2d convolution array, which is probably what you wanted to do in the first place.
Since you already have your kernel separated you should simply use the sepfir2d function from scipy:
from scipy.signal import sepfir2d
convolved = sepfir2d(data, H_r, H_c)
On the other hand, the code you have there looks all right ...
I checked out many implementations and found none for my purpose, which should be really simple. So here is a dead-simple implementation with for loop
def convolution2d(image, kernel, stride, padding):
image = np.pad(image, [(padding, padding), (padding, padding)], mode='constant', constant_values=0)
kernel_height, kernel_width = kernel.shape
padded_height, padded_width = image.shape
output_height = (padded_height - kernel_height) // stride + 1
output_width = (padded_width - kernel_width) // stride + 1
new_image = np.zeros((output_height, output_width)).astype(np.float32)
for y in range(0, output_height):
for x in range(0, output_width):
new_image[y][x] = np.sum(image[y * stride:y * stride + kernel_height, x * stride:x * stride + kernel_width] * kernel).astype(np.float32)
return new_image
It might not be the most optimized solution either, but it is approximately ten times faster than the one proposed by #omotto and it only uses basic numpy function (as reshape, expand_dims, tile...) and no 'for' loops:
def gen_idx_conv1d(in_size, ker_size):
"""
Generates a list of indices. This indices correspond to the indices
of a 1D input tensor on which we would like to apply a 1D convolution.
For instance, with a 1D input array of size 5 and a kernel of size 3, the
1D convolution product will successively looks at elements of indices [0,1,2],
[1,2,3] and [2,3,4] in the input array. In this case, the function idx_conv1d(5,3)
outputs the following array: array([0,1,2,1,2,3,2,3,4]).
args:
in_size: (type: int) size of the input 1d array.
ker_size: (type: int) kernel size.
return:
idx_list: (type: np.array) list of the successive indices of the 1D input array
access to the 1D convolution algorithm.
example:
>>> gen_idx_conv1d(in_size=5, ker_size=3)
array([0, 1, 2, 1, 2, 3, 2, 3, 4])
"""
f = lambda dim1, dim2, axis: np.reshape(np.tile(np.expand_dims(np.arange(dim1),axis),dim2),-1)
out_size = in_size-ker_size+1
return f(ker_size, out_size, 0)+f(out_size, ker_size, 1)
def repeat_idx_2d(idx_list, nbof_rep, axis):
"""
Repeats an array of indices (idx_list) a number of time (nbof_rep) "along" an axis
(axis). This function helps to browse through a 2d array of size
(len(idx_list),nbof_rep).
args:
idx_list: (type: np.array or list) a 1D array of indices.
nbof_rep: (type: int) number of repetition.
axis: (type: int) axis "along" which the repetition will be applied.
return
idx_list: (type: np.array) a 1D array of indices of size len(idx_list)*nbof_rep.
example:
>>> a = np.array([0, 1, 2])
>>> repeat_idx_2d(a, 3, 0) # repeats array 'a' 3 times along 'axis' 0
array([0, 0, 0, 1, 1, 1, 2, 2, 2])
>>> repeat_idx_2d(a, 3, 1) # repeats array 'a' 3 times along 'axis' 1
array([0, 1, 2, 0, 1, 2, 0, 1, 2])
>>> b = np.reshape(np.arange(3*4), (3,4))
>>> b[repeat_idx_2d(np.arange(3), 4, 0), repeat_idx_2d(np.arange(4), 3, 1)]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
"""
assert axis in [0,1], "Axis should be equal to 0 or 1."
tile_axis = (nbof_rep,1) if axis else (1,nbof_rep)
return np.reshape(np.tile(np.expand_dims(idx_list, 1),tile_axis),-1)
def conv2d(im, ker):
"""
Performs a 'valid' 2D convolution on an image. The input image may be
a 2D or a 3D array.
The output image first two dimensions will be reduced depending on the
convolution size.
The kernel may be a 2D or 3D array. If 2D, it will be applied on every
channel of the input image. If 3D, its last dimension must match the
image one.
args:
im: (type: np.array) image (2D or 3D).
ker: (type: np.array) convolution kernel (2D or 3D).
returns:
im: (type: np.array) convolved image.
example:
>>> im = np.reshape(np.arange(10*10*3),(10,10,3))/(10*10*3) # 3D image
>>> ker = np.array([[0,1,0],[-1,0,1],[0,-1,0]]) # 2D kernel
>>> conv2d(im, ker) # 3D array of shape (8,8,3)
"""
if len(im.shape)==2: # if the image is a 2D array, it is reshaped by expanding the last dimension
im = np.expand_dims(im,-1)
im_x, im_y, im_w = im.shape
if len(ker.shape)==2: # if the kernel is a 2D array, it is reshaped so it will be applied to all of the image channels
ker = np.tile(np.expand_dims(ker,-1),[1,1,im_w]) # the same kernel will be applied to all of the channels
assert ker.shape[-1]==im.shape[-1], "Kernel and image last dimension must match."
ker_x = ker.shape[0]
ker_y = ker.shape[1]
# shape of the output image
out_x = im_x - ker_x + 1
out_y = im_y - ker_y + 1
# reshapes the image to (out_x, ker_x, out_y, ker_y, im_w)
idx_list_x = gen_idx_conv1d(im_x, ker_x) # computes the indices of a 1D conv (cf. idx_conv1d doc)
idx_list_y = gen_idx_conv1d(im_y, ker_y)
idx_reshaped_x = repeat_idx_2d(idx_list_x, len(idx_list_y), 0) # repeats the previous indices to be used in 2D (cf. repeat_idx_2d doc)
idx_reshaped_y = repeat_idx_2d(idx_list_y, len(idx_list_x), 1)
im_reshaped = np.reshape(im[idx_reshaped_x, idx_reshaped_y, :], [out_x, ker_x, out_y, ker_y, im_w]) # reshapes
# reshapes the 2D kernel
ker = np.reshape(ker,[1, ker_x, 1, ker_y, im_w])
# applies the kernel to the image and reduces the dimension back to the one of original input image
return np.squeeze(np.sum(im_reshaped*ker, axis=(1,3)))
I tried to add a lot of comments to explain the method but the global idea is to reshape the 3D input image to a 5D one of shape (output_image_height, kernel_height, output_image_width, kernel_width, output_image_channel) and then to apply the kernel directly using the basic array multiplication. Of course, this methods is then using more memory (during the execution the size of the image is thus multiply by kernel_height*kernel_width) but it is faster.
To do this reshape step, I 'over-used' the indexing methods of numpy arrays, especially, the possibility of giving a numpy array as indices into a numpy array.
This methods could also be used to re-code the 2D convolution product in Pytorch or Tensorflow using the base math functions but I have no doubt in saying that it will be slower than the existing nn.conv2d operator...
I really enjoyed coding this method by only using the numpy basic tools.
One of the most obvious is to hard code the kernel.
img = img.convert('L')
a = np.array(img)
out = np.zeros([a.shape[0]-2, a.shape[1]-2], dtype='float')
out += a[:-2, :-2]
out += a[1:-1, :-2]
out += a[2:, :-2]
out += a[:-2, 1:-1]
out += a[1:-1,1:-1]
out += a[2:, 1:-1]
out += a[:-2, 2:]
out += a[1:-1, 2:]
out += a[2:, 2:]
out /= 9.0
out = out.astype('uint8')
img = Image.fromarray(out)
This example does a box blur 3x3 completely unrolled. You can multiply the values where you have a different value and divide them by a different amount. But, if you honestly want the quickest and dirtiest method this is it. I think it beats Guillaume Mougeot's method by a factor of like 5. His method beating the others by a factor of 10.
It may lose a few steps if you're doing something like a gaussian blur. and need to multiply some stuff.
Try to first round and then cast to uint8:
data = data.round().astype(np.uint8);
I wrote this convolve_stride which uses numpy.lib.stride_tricks.as_strided. Moreover it supports both strides and dilation. It is also compatible to tensor with order > 2.
import numpy as np
from numpy.lib.stride_tricks import as_strided
from im2col import im2col
def conv_view(X, F_s, dr, std):
X_s = np.array(X.shape)
F_s = np.array(F_s)
dr = np.array(dr)
Fd_s = (F_s - 1) * dr + 1
if np.any(Fd_s > X_s):
raise ValueError('(Dilated) filter size must be smaller than X')
std = np.array(std)
X_ss = np.array(X.strides)
Xn_s = (X_s - Fd_s) // std + 1
Xv_s = np.append(Xn_s, F_s)
Xv_ss = np.tile(X_ss, 2) * np.append(std, dr)
return as_strided(X, Xv_s, Xv_ss, writeable=False)
def convolve_stride(X, F, dr=None, std=None):
if dr is None:
dr = np.ones(X.ndim, dtype=int)
if std is None:
std = np.ones(X.ndim, dtype=int)
if not (X.ndim == F.ndim == len(dr) == len(std)):
raise ValueError('X.ndim, F.ndim, len(dr), len(std) must be the same')
Xv = conv_view(X, F.shape, dr, std)
return np.tensordot(Xv, F, axes=X.ndim)
%timeit -n 100 -r 10 convolve_stride(A, F)
#31.2 ms ± 1.31 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
Super simple and fast convolution using only basic numpy:
import numpy as np
def conv2d(image, kernel):
# apply kernel to image, return image of the same shape
# assume both image and kernel are 2D arrays
# kernel = np.flipud(np.fliplr(kernel)) # optionally flip the kernel
k = kernel.shape[0]
width = k//2
# place the image inside a frame to compensate for the kernel overlap
a = framed(image, width)
b = np.zeros(image.shape) # fill the output array with zeros; do not use np.empty()
# shift the image around each pixel, multiply by the corresponding kernel value and accumulate the results
for p, dp, r, dr in [(i, i + image.shape[0], j, j + image.shape[1]) for i in range(k) for j in range(k)]:
b += a[p:dp, r:dr] * kernel[p, r]
# or just write two nested for loops if you prefer
# np.clip(b, 0, 255, out=b) # optionally clip values exceeding the limits
return b
def framed(image, width):
a = np.zeros((image.shape[0]+2*width, image.shape[1]+2*width))
a[width:-width, width:-width] = image
# alternatively fill the frame with ones or copy border pixels
return a
Run it:
Image.fromarray(conv2d(image, kernel).astype('uint8'))
Instead of sliding the kernel along the image and computing the transformation pixel by pixel, create a series of shifted versions of the image corresponding to each element in the kernel and apply the corresponding kernel value to each of the shifted image versions.
This is probably the fastest you can get using just basic numpy; the speed is already comparable to C implementation of scipy convolve2d and better than fftconvolve. The idea is similar to #Tatarize. This example works only for one color component; for RGB just repeat for each (or modify the algorithm accordingly).
Typically, Convolution 2D is a misnomer. Ideally, under the hood,
whats being done is a correlation of 2 matrices.
pad == same
returns the output as the same as input dimension
It can also take asymmetric images. In order to perform correlation(convolution in deep learning lingo) on a batch of 2d matrices, one can iterate over all the channels, calculate the correlation for each of the channel slices with the respective filter slice.
For example: If image is (28,28,3) and filter size is (5,5,3) then take each of the 3 slices from the image channel and perform the cross correlation using the custom function above and stack the resulting matrix in the respective dimension of the output.
def get_cross_corr_2d(W, X, pad = 'valid'):
if(pad == 'same'):
pr = int((W.shape[0] - 1)/2)
pc = int((W.shape[1] - 1)/2)
conv_2d = np.zeros((X.shape[0], X.shape[1]))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.inner(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
else:
pr = W.shape[0] - 1
pc = W.shape[1] - 1
conv_2d = np.zeros((X.shape[0] - W.shape[0] + 2*pr + 1,
X.shape[1] - W.shape[1] + 2*pc + 1))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.multiply(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
This code incorrect:
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
See Nussbaumer transformation from multidimentional convolution to one dimentional.

Slicing 2D numpy array periodically

I have a numpy array of 300x300 where I want to keep all elements periodically. Specifically, for both axes I want to keep the first 5 elements, then discard 15, keep 5, discard 15, etc. This should result in an array of 75x75 elements. How can this be done?
You can created a 1D mask, that carries out the keep/discard function, and then repeat the mask and apply the mask to the array. Here is an example.
import numpy as np
size = 300
array = np.arange(size).reshape((size, 1)) * np.arange(size).reshape((1, size))
mask = np.concatenate((np.ones(5), np.zeros(15))).astype(bool)
period = len(mask)
mask = np.repeat(mask.reshape((1, period)), repeats=size // period, axis=0)
mask = np.concatenate(mask, axis=0)
result = array[mask][:, mask]
print(result.shape)
You can view the array as series of 20x20 blocks, of which you want to keep the upper-left 5x5 portion. Let's say you have
keep = 5
discard = 15
This only works if
assert all(s % (keep + discard) == 0 for s in arr.shape)
First compute the shape of the view and use it:
block = keep + discard
shape1 = (arr.shape[0] // block, block, arr.shape[1] // block, block)
view = arr.reshape(shape1)[:, :keep, :, :keep]
The following operation will create a copy of the data because the view creates a non-contiguous buffer:
shape2 = (shape1[0] * keep, shape1[2] * keep)
result = view.reshape(shape2)
You can compute shape1 and shape2 in a more general manner with something like
shape1 = tuple(
np.stack((np.array(arr.shape) // block,
np.full(arr.ndim, block)), -1).ravel())
shape2 = tuple(np.array(shape1[::2]) * keep)
I would recommend packaging this into a function.
Here is my first thought of a solution. Will update later if I think of one with fewer lines. This should work even if the input is not square:
output = []
for i in range(len(arr)):
tmp = []
if i % (15+5) < 5: # keep first 5, then discard next 15
for j in range(len(arr[i])):
if j % (15+5) < 5: # keep first 5, then discard next 15
tmp.append(arr[i,j])
output.append(tmp)
Update:
Building off of Yang's answer, here is another way which uses np.tile, which repeats an array a given number of times along each axis. This relies on the input array being square in dimension.
import numpy as np
# Define one instance of the keep/discard box
keep, discard = 5, 15
mask = np.concatenate([np.ones(keep), np.zeros(discard)])
mask_2d = mask.reshape((keep+discard,1)) * mask.reshape((1,keep+discard))
# Tile it out -- overshoot, then trim to match size
count = len(arr)//len(mask_2d) + 1
tiled = np.tile(mask_2d, [count,count]).astype('bool')
tiled = tiled[:len(arr), :len(arr)]
# Apply the mask to the input array
dim = sum(tiled[0])
output = arr[tiled].reshape((dim,dim))
Another option using meshgrid and a modulo:
# MyArray = 300x300 numpy array
r = np.r_[0:300] # A slide from 0->300
xv, yv = np.meshgrid(r, r) # x and y grid
mask = ((xv%20)<5) & ((yv%20)<5) # We create the boolean mask
result = MyArray[mask].reshape((75,75)) # We apply the mask and reshape the final output

Efficient way of computing the cross products between two sets of vectors numpy

I have two sets of 2000 3D vectors each, and I need to compute the cross product between each possible pair. I currently do it like this
for tx in tangents_x:
for ty in tangents_y:
cross = np.cross(tx, ty)
(... do something with the cross variable...)
This works, but it's pretty slow. Is there a way to make it faster?
If I was interested in the element-wise product, I could just do the following
# Define initial vectors
tx = np.array([np.random.randn(3) for i in range(2000)])
ty = np.array([np.random.randn(3) for i in range(2000)])
# Store them into matrices
X = np.array([tx for i in range(2000)])
Y = np.array([ty for i in range(2000)]).T
# Compute the element-wise product
ew = X * Y
# Use the element_wise product as usual
for i,tx in enumerate(tangents_x):
for j,ty in enumerate(tangents_y):
(... use the element wise product of tx and ty as ew[i,j])
How can I apply this to the cross product instead of the element-wise one? Or, do you see another alternative?
Thanks much :)
Like many numpy functions cross supports broadcasting, therefore you can simply do:
np.cross(tangents_x[:, None, :], tangents_y)
or - more verbose but maybe easier to read
np.cross(tangents_x[:, None, :], tangents_y[None, :, :])
This reshapes tangents_x and tangents_y to shapes 2000, 1, 3 and 1, 2000, 3. By the rules of broadcasting this will be interpreted like two arrays of shape 2000, 2000, 3 where tangents_x is repeated along axis 1 and tangents_y is repeated along axis 0.
Just write it out and compile it
import numpy as np
import numba as nb
#nb.njit(fastmath=True,parallel=True)
def calc_cros(vec_1,vec_2):
res=np.empty((vec_1.shape[0],vec_2.shape[0],3),dtype=vec_1.dtype)
for i in nb.prange(vec_1.shape[0]):
for j in range(vec_2.shape[0]):
res[i,j,0]=vec_1[i,1] * vec_2[j,2] - vec_1[i,2] * vec_2[j,1]
res[i,j,1]=vec_1[i,2] * vec_2[j,0] - vec_1[i,0] * vec_2[j,2]
res[i,j,2]=vec_1[i,0] * vec_2[j,1] - vec_1[i,1] * vec_2[j,0]
return res
Performance
#create data
tx = np.random.rand(3000,3)
ty = np.random.rand(3000,3)
#don't measure compilation overhead
comb=calc_cros(tx,ty)
t1=time.time()
comb=calc_cros(tx,ty)
print(time.time()-t1)
This gives 0.08s for the two (3000,3) matrices.
np.dot is almost always going to be faster. So you could convert one of the vectors into a matrix.
def skew(x):
return np.array([[0, -x[2], x[1]],
[x[2], 0, -x[0]],
[-x[1], x[0], 0]])
On my machine this runs faster:
tx = np.array([np.random.randn(3) for i in range(100)])
ty = np.array([np.random.randn(3) for i in range(100)])
tt=time.clock()
for x in tx:
for y in ty:
cross = np.cross(x, y)
print(time.clock()-tt)
0.207 sec
tt=time.clock()
for x in tx:
m=skew(x)
for y in ty:
cross = np.dot(m, y)
print(time.clock()-tt)
0.015 sec
This result may vary depending on the computer.
You could use np.meshgrid() to build the combination matrix and then decompose the cross product. The rest is fiddling around with the axes etc:
# build two lists of 5 3D vecotrs as example values:
a_list = np.random.randint(0, 10, (5, 3))
b_list = np.random.randint(0, 10, (5, 3))
# here the original approach using slow list comprehensions:
slow = np.array([[ np.cross(a, b) for a in a_list ] for b in b_list ])
# now the faster proposed version:
g = np.array([ np.meshgrid(a_list[:,i], b_list[:,i]) for i in range(3) ])
fast = np.array([ g[1,0] * g[2,1] - g[2,0] * g[1,1],
g[2,0] * g[0,1] - g[0,0] * g[2,1],
g[0,0] * g[1,1] - g[1,0] * g[0,1] ]).transpose(1, 2, 0)
I tested this with 10000×10000 elements (instead of the 5×5 in the example above) and it took 6.4 seconds with the fast version. The slow version already took 27 seconds for 500 elements.
For your 2000×2000 elements the fast version takes 0.23s on my computer. Fast enough for you?
Use a cartesian product to get all possible pairs
import itertools as it
all_pairs = it.product(tx, ty)
And then use map to loop over all pairs and compute the cross product:
map(lambda x: np.cross(x[0], x[1]), all_pairs)

fastest way to create a list with differences of all entrys and the corresponding iterator in python

I'm doing statistical science, and have this code snippet which consumes about 80% of my computing time. As the program will run for weeks, i want to make it as fast as possible. agg1 and agg2 are numpy arrays with 4 entries and length between 20 and 400
for i, j in itertools.product(xrange(agg1.shape[1]), xrange(agg2.shape[1])):
iterator.append((i, j))
particle_distances.append(agg1[0:2, i] - agg2[0:2, j])
does it pay off to i.e. filter my numpy arrays from the last entry (which is uninteresting here)? should i use agg1.shape[1] or better give it a variable name beforehand. The function which contains this code is called 4500 times. If there are any other faster approaches to achieve the differences of every list element and its corresponding iterator they are also welcome.
here is an example text file you can use. import with numpy.loadtxt.
Thank you for your help
This computation can be concisely vectorized:
a = agg1[0:2, :].T
b = agg2[0:2, :].T
particle_distances = (a[:, None, :] - b[None, :, :]).reshape(-1, 2)
To retrieve the mapping of the indices you can call
idx1, idx2 = np.unravel_index(np.arange(agg1.shape[1] * agg2.shape[1]),
(agg1.shape[1], agg2.shape[1]))
This results in two arrays that correspond with the corresponding indices of agg1 and agg2.
Let's compare performance:
import numpy as np
import itertools
from time_stats import compare_calls
agg1 = np.random.rand(100, 10)
agg2 = np.random.rand(100, 15)
def original(agg1, agg2):
particle_distances = []
for i, j in itertools.product(range(agg1.shape[1]), range(agg2.shape[1])):
particle_distances.append(agg1[0:2, i] - agg2[0:2, j])
return particle_distances
def prealloc(agg1, agg2):
n = agg1.shape[1] * agg2.shape[1]
particle_distances = np.empty((n, 2))
for k, (i, j) in enumerate(itertools.product(range(agg1.shape[1]), range(agg2.shape[1]))):
particle_distances[k, :] = agg1[0:2, i] - agg2[0:2, j]
return particle_distances
def vectorized(agg1, agg2):
a = agg1[0:2, :].T
b = agg2[0:2, :].T
particle_distances = (a[:, None, :] - b[None, :, :]).reshape(-1, 2)
return particle_distances
r = compare_calls(['original(agg1, agg2)', 'prealloc(agg1, agg2)', 'vectorized(agg1, agg2)'], globals=globals())
r.print()
r.hist()
# original(agg1, agg2) : 0.00038 s/call median, 0.00034 ... 0.00047 IQR
# prealloc(agg1, agg2) : 0.00047 s/call median, 0.00041 ... 0.00068 IQR
# vectorized(agg1, agg2) : 6e-06 s/call median, 5.8e-06 ... 6.7e-06 IQR
I would guess it's slow because you're growing your lists inside a loop so it often has to move the lists around in memory as they grow too big. On option is to preallocate an array. If you use a 2D numpy array you can do away with iterator as it just become the indices:
import numpy as np
import itertools
particle_distances = np.zeros((agg1.shape[1], agg2.shape[1],3))
for i, j in itertools.product(range(agg1.shape[1]), range(agg2.shape[1])):
particle_distances[i,j,:] = agg1[0:2, i] - agg2[0:2, j]
However you can probably get more speedup and simplify your code by dropping the loop for a vectorized solution:
particle_distances = np.transpose(np.expand_dims(agg1[0:2,:], axis=3), (1,2,0)) - np.transpose(np.expand_dims(agg2[0:2,:], axis=3), (2,1,0))
Here I've used np.transpose to change the shape of the matrices such that automatic broadcasting will do the job that itertools.product was doing for you. np.expand_dims is just to add a third dimension to each so that we can reshape them appropriately.

2d convolution using python and numpy

I am trying to perform a 2d convolution in python using numpy
I have a 2d array as follows with kernel H_r for the rows and H_c for the columns
data = np.zeros((nr, nc), dtype=np.float32)
#fill array with some data here then convolve
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
data = data.astype(np.uint8);
It does not produce the output that I was expecting, does this code look OK, I think the problem is with the casting from float32 to 8bit. Whats the best way to do this
Thanks
Maybe it is not the most optimized solution, but this is an implementation I used before with numpy library for Python:
def convolution2d(image, kernel, bias):
m, n = kernel.shape
if (m == n):
y, x = image.shape
y = y - m + 1
x = x - m + 1
new_image = np.zeros((y,x))
for i in range(y):
for j in range(x):
new_image[i][j] = np.sum(image[i:i+m, j:j+m]*kernel) + bias
return new_image
I hope this code helps other guys with the same doubt.
Regards.
Edit [Jan 2019]
#Tashus comment bellow is correct, and #dudemeister's answer is thus probably more on the mark. The function he suggested is also more efficient, by avoiding a direct 2D convolution and the number of operations that would entail.
Possible Problem
I believe you are doing two 1d convolutions, the first per columns and the second per rows, and replacing the results from the first with the results of the second.
Notice that numpy.convolve with the 'same' argument returns an array of equal shape to the largest one provided, so when you make the first convolution you already populated the entire data array.
One good way to visualize your arrays during these steps is to use Hinton diagrams, so you can check which elements already have a value.
Possible Solution
You can try to add the results of the two convolutions (use data[:,c] += .. instead of data[:,c] = on the second for loop), if your convolution matrix is the result of using the one dimensional H_r and H_c matrices like so:
Another way to do that would be to use scipy.signal.convolve2d with a 2d convolution array, which is probably what you wanted to do in the first place.
Since you already have your kernel separated you should simply use the sepfir2d function from scipy:
from scipy.signal import sepfir2d
convolved = sepfir2d(data, H_r, H_c)
On the other hand, the code you have there looks all right ...
I checked out many implementations and found none for my purpose, which should be really simple. So here is a dead-simple implementation with for loop
def convolution2d(image, kernel, stride, padding):
image = np.pad(image, [(padding, padding), (padding, padding)], mode='constant', constant_values=0)
kernel_height, kernel_width = kernel.shape
padded_height, padded_width = image.shape
output_height = (padded_height - kernel_height) // stride + 1
output_width = (padded_width - kernel_width) // stride + 1
new_image = np.zeros((output_height, output_width)).astype(np.float32)
for y in range(0, output_height):
for x in range(0, output_width):
new_image[y][x] = np.sum(image[y * stride:y * stride + kernel_height, x * stride:x * stride + kernel_width] * kernel).astype(np.float32)
return new_image
It might not be the most optimized solution either, but it is approximately ten times faster than the one proposed by #omotto and it only uses basic numpy function (as reshape, expand_dims, tile...) and no 'for' loops:
def gen_idx_conv1d(in_size, ker_size):
"""
Generates a list of indices. This indices correspond to the indices
of a 1D input tensor on which we would like to apply a 1D convolution.
For instance, with a 1D input array of size 5 and a kernel of size 3, the
1D convolution product will successively looks at elements of indices [0,1,2],
[1,2,3] and [2,3,4] in the input array. In this case, the function idx_conv1d(5,3)
outputs the following array: array([0,1,2,1,2,3,2,3,4]).
args:
in_size: (type: int) size of the input 1d array.
ker_size: (type: int) kernel size.
return:
idx_list: (type: np.array) list of the successive indices of the 1D input array
access to the 1D convolution algorithm.
example:
>>> gen_idx_conv1d(in_size=5, ker_size=3)
array([0, 1, 2, 1, 2, 3, 2, 3, 4])
"""
f = lambda dim1, dim2, axis: np.reshape(np.tile(np.expand_dims(np.arange(dim1),axis),dim2),-1)
out_size = in_size-ker_size+1
return f(ker_size, out_size, 0)+f(out_size, ker_size, 1)
def repeat_idx_2d(idx_list, nbof_rep, axis):
"""
Repeats an array of indices (idx_list) a number of time (nbof_rep) "along" an axis
(axis). This function helps to browse through a 2d array of size
(len(idx_list),nbof_rep).
args:
idx_list: (type: np.array or list) a 1D array of indices.
nbof_rep: (type: int) number of repetition.
axis: (type: int) axis "along" which the repetition will be applied.
return
idx_list: (type: np.array) a 1D array of indices of size len(idx_list)*nbof_rep.
example:
>>> a = np.array([0, 1, 2])
>>> repeat_idx_2d(a, 3, 0) # repeats array 'a' 3 times along 'axis' 0
array([0, 0, 0, 1, 1, 1, 2, 2, 2])
>>> repeat_idx_2d(a, 3, 1) # repeats array 'a' 3 times along 'axis' 1
array([0, 1, 2, 0, 1, 2, 0, 1, 2])
>>> b = np.reshape(np.arange(3*4), (3,4))
>>> b[repeat_idx_2d(np.arange(3), 4, 0), repeat_idx_2d(np.arange(4), 3, 1)]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
"""
assert axis in [0,1], "Axis should be equal to 0 or 1."
tile_axis = (nbof_rep,1) if axis else (1,nbof_rep)
return np.reshape(np.tile(np.expand_dims(idx_list, 1),tile_axis),-1)
def conv2d(im, ker):
"""
Performs a 'valid' 2D convolution on an image. The input image may be
a 2D or a 3D array.
The output image first two dimensions will be reduced depending on the
convolution size.
The kernel may be a 2D or 3D array. If 2D, it will be applied on every
channel of the input image. If 3D, its last dimension must match the
image one.
args:
im: (type: np.array) image (2D or 3D).
ker: (type: np.array) convolution kernel (2D or 3D).
returns:
im: (type: np.array) convolved image.
example:
>>> im = np.reshape(np.arange(10*10*3),(10,10,3))/(10*10*3) # 3D image
>>> ker = np.array([[0,1,0],[-1,0,1],[0,-1,0]]) # 2D kernel
>>> conv2d(im, ker) # 3D array of shape (8,8,3)
"""
if len(im.shape)==2: # if the image is a 2D array, it is reshaped by expanding the last dimension
im = np.expand_dims(im,-1)
im_x, im_y, im_w = im.shape
if len(ker.shape)==2: # if the kernel is a 2D array, it is reshaped so it will be applied to all of the image channels
ker = np.tile(np.expand_dims(ker,-1),[1,1,im_w]) # the same kernel will be applied to all of the channels
assert ker.shape[-1]==im.shape[-1], "Kernel and image last dimension must match."
ker_x = ker.shape[0]
ker_y = ker.shape[1]
# shape of the output image
out_x = im_x - ker_x + 1
out_y = im_y - ker_y + 1
# reshapes the image to (out_x, ker_x, out_y, ker_y, im_w)
idx_list_x = gen_idx_conv1d(im_x, ker_x) # computes the indices of a 1D conv (cf. idx_conv1d doc)
idx_list_y = gen_idx_conv1d(im_y, ker_y)
idx_reshaped_x = repeat_idx_2d(idx_list_x, len(idx_list_y), 0) # repeats the previous indices to be used in 2D (cf. repeat_idx_2d doc)
idx_reshaped_y = repeat_idx_2d(idx_list_y, len(idx_list_x), 1)
im_reshaped = np.reshape(im[idx_reshaped_x, idx_reshaped_y, :], [out_x, ker_x, out_y, ker_y, im_w]) # reshapes
# reshapes the 2D kernel
ker = np.reshape(ker,[1, ker_x, 1, ker_y, im_w])
# applies the kernel to the image and reduces the dimension back to the one of original input image
return np.squeeze(np.sum(im_reshaped*ker, axis=(1,3)))
I tried to add a lot of comments to explain the method but the global idea is to reshape the 3D input image to a 5D one of shape (output_image_height, kernel_height, output_image_width, kernel_width, output_image_channel) and then to apply the kernel directly using the basic array multiplication. Of course, this methods is then using more memory (during the execution the size of the image is thus multiply by kernel_height*kernel_width) but it is faster.
To do this reshape step, I 'over-used' the indexing methods of numpy arrays, especially, the possibility of giving a numpy array as indices into a numpy array.
This methods could also be used to re-code the 2D convolution product in Pytorch or Tensorflow using the base math functions but I have no doubt in saying that it will be slower than the existing nn.conv2d operator...
I really enjoyed coding this method by only using the numpy basic tools.
One of the most obvious is to hard code the kernel.
img = img.convert('L')
a = np.array(img)
out = np.zeros([a.shape[0]-2, a.shape[1]-2], dtype='float')
out += a[:-2, :-2]
out += a[1:-1, :-2]
out += a[2:, :-2]
out += a[:-2, 1:-1]
out += a[1:-1,1:-1]
out += a[2:, 1:-1]
out += a[:-2, 2:]
out += a[1:-1, 2:]
out += a[2:, 2:]
out /= 9.0
out = out.astype('uint8')
img = Image.fromarray(out)
This example does a box blur 3x3 completely unrolled. You can multiply the values where you have a different value and divide them by a different amount. But, if you honestly want the quickest and dirtiest method this is it. I think it beats Guillaume Mougeot's method by a factor of like 5. His method beating the others by a factor of 10.
It may lose a few steps if you're doing something like a gaussian blur. and need to multiply some stuff.
Try to first round and then cast to uint8:
data = data.round().astype(np.uint8);
I wrote this convolve_stride which uses numpy.lib.stride_tricks.as_strided. Moreover it supports both strides and dilation. It is also compatible to tensor with order > 2.
import numpy as np
from numpy.lib.stride_tricks import as_strided
from im2col import im2col
def conv_view(X, F_s, dr, std):
X_s = np.array(X.shape)
F_s = np.array(F_s)
dr = np.array(dr)
Fd_s = (F_s - 1) * dr + 1
if np.any(Fd_s > X_s):
raise ValueError('(Dilated) filter size must be smaller than X')
std = np.array(std)
X_ss = np.array(X.strides)
Xn_s = (X_s - Fd_s) // std + 1
Xv_s = np.append(Xn_s, F_s)
Xv_ss = np.tile(X_ss, 2) * np.append(std, dr)
return as_strided(X, Xv_s, Xv_ss, writeable=False)
def convolve_stride(X, F, dr=None, std=None):
if dr is None:
dr = np.ones(X.ndim, dtype=int)
if std is None:
std = np.ones(X.ndim, dtype=int)
if not (X.ndim == F.ndim == len(dr) == len(std)):
raise ValueError('X.ndim, F.ndim, len(dr), len(std) must be the same')
Xv = conv_view(X, F.shape, dr, std)
return np.tensordot(Xv, F, axes=X.ndim)
%timeit -n 100 -r 10 convolve_stride(A, F)
#31.2 ms ± 1.31 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
Super simple and fast convolution using only basic numpy:
import numpy as np
def conv2d(image, kernel):
# apply kernel to image, return image of the same shape
# assume both image and kernel are 2D arrays
# kernel = np.flipud(np.fliplr(kernel)) # optionally flip the kernel
k = kernel.shape[0]
width = k//2
# place the image inside a frame to compensate for the kernel overlap
a = framed(image, width)
b = np.zeros(image.shape) # fill the output array with zeros; do not use np.empty()
# shift the image around each pixel, multiply by the corresponding kernel value and accumulate the results
for p, dp, r, dr in [(i, i + image.shape[0], j, j + image.shape[1]) for i in range(k) for j in range(k)]:
b += a[p:dp, r:dr] * kernel[p, r]
# or just write two nested for loops if you prefer
# np.clip(b, 0, 255, out=b) # optionally clip values exceeding the limits
return b
def framed(image, width):
a = np.zeros((image.shape[0]+2*width, image.shape[1]+2*width))
a[width:-width, width:-width] = image
# alternatively fill the frame with ones or copy border pixels
return a
Run it:
Image.fromarray(conv2d(image, kernel).astype('uint8'))
Instead of sliding the kernel along the image and computing the transformation pixel by pixel, create a series of shifted versions of the image corresponding to each element in the kernel and apply the corresponding kernel value to each of the shifted image versions.
This is probably the fastest you can get using just basic numpy; the speed is already comparable to C implementation of scipy convolve2d and better than fftconvolve. The idea is similar to #Tatarize. This example works only for one color component; for RGB just repeat for each (or modify the algorithm accordingly).
Typically, Convolution 2D is a misnomer. Ideally, under the hood,
whats being done is a correlation of 2 matrices.
pad == same
returns the output as the same as input dimension
It can also take asymmetric images. In order to perform correlation(convolution in deep learning lingo) on a batch of 2d matrices, one can iterate over all the channels, calculate the correlation for each of the channel slices with the respective filter slice.
For example: If image is (28,28,3) and filter size is (5,5,3) then take each of the 3 slices from the image channel and perform the cross correlation using the custom function above and stack the resulting matrix in the respective dimension of the output.
def get_cross_corr_2d(W, X, pad = 'valid'):
if(pad == 'same'):
pr = int((W.shape[0] - 1)/2)
pc = int((W.shape[1] - 1)/2)
conv_2d = np.zeros((X.shape[0], X.shape[1]))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.inner(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
else:
pr = W.shape[0] - 1
pc = W.shape[1] - 1
conv_2d = np.zeros((X.shape[0] - W.shape[0] + 2*pr + 1,
X.shape[1] - W.shape[1] + 2*pc + 1))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.multiply(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
This code incorrect:
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
See Nussbaumer transformation from multidimentional convolution to one dimentional.

Categories