Write a pandas df into Excel and save it into a copy - python

I have a pandas dataframe and I want to open an existing excel workbook containing formulas, copying the dataframe in a specific set of columns (lets say from column A to column H) and save it as a new file with a different name.
The idea is to update an existing template, populate it with the dataframe in a specified set of column and then save a copy of the Excel file with a different name.
Any idea?
What I have is:
import pandas
from openpyxl import load_workbook
book = load_workbook('Template.xlsx')
writer = pandas.ExcelWriter('Template.xlsx', engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
df.to_excel(writer)
writer.save()

The below should work, assuming that you are happy to copy into column A. I don't see a way to write into the sheet starting in a different column (without overwriting anything).
The below incorporates #MaxU's suggestion of copying the template sheet before writing to it (having just lost a few hours' work on my own template workbook to pd.to_excel)
import pandas as pd
from openpyxl.utils.dataframe import dataframe_to_rows
from shutil import copyfile
template_file = 'Template.xlsx' # Has a header in row 1 already
output_file = 'Result.xlsx' # What we are saving the template as
# Copy Template.xlsx as Result.xlsx
copyfile(template_file, output_file)
# Read in the data to be pasted into the termplate
df = pd.read_csv('my_data.csv')
# Load the workbook and access the sheet we'll paste into
wb = load_workbook(output_file)
ws = wb.get_sheet_by_name('Existing Result Sheet')
# Selecting a cell in the header row before writing makes append()
# start writing to the following line i.e. row 2
ws['A1']
# Write each row of the DataFrame
# In this case, I don't want to write the index (useless) or the header (already in the template)
for r in dataframe_to_rows(df, index=False, header=False):
ws.append(r)
wb.save(output_file)

try this:
df.to_excel(writer, startrow=10, startcol=1, index=False, engine='openpyxl')
Pay attention at startrow and startcol parameters

Related

Pandas creates new excel sheet when trying to append to existing sheet

I have the code where I want to read data from the current sheet, store it in df_old, append the current data to it using df = df_old.append(df) and then replace the data in the sheet with this new dataframe. However, what it does instead is create a new sheet with the exact same name where it publishes this new dataframe. I tried adding if_sheet_exists="replace" as an argument to ExcelWriter but this did not change anything. How can I force it to overwrite the data in the sheet with the current name?
df_old = pd.read_excel(r'C:\Users\XXX\Downloads\Digitalisation\mat_flow\reblend_v2.xlsx',sheet_name = ft_tags_final[i][j])
df = df_old.append(df)
with pd.ExcelWriter(r'C:\Users\XXX\Downloads\Digitalisation\mat_flow\reblend_v2.xlsx', engine="openpyxl", mode="a", if_sheet_exists="replace") as writer:
df.to_excel(writer, index=False, sheet_name = ft_tags_final[i][j])
I had the same issue and i solved it with using write instead of append. Also i used openpyxl instead of xlsxwriter
from pandas import ExcelWriter
from pandas import ExcelFile
from openpyxl import load_workbook
book = load_workbook('Wallet.xlsx')
writer = pd.ExcelWriter('Wallet.xlsx', engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
#^THIS IS THE MOST IMPORTANT LINES BECAUSE IT GIVES PANDAS THE SHEET
Data.to_excel(writer, sheet_name='Main', header=None, index=False, startcol=number,startrow=counter)

How do I use a loop to write data to multiple Excel sheets in 1 workbook [duplicate]

I want to use excel files to store data elaborated with python. My problem is that I can't add sheets to an existing excel file. Here I suggest a sample code to work with in order to reach this issue
import pandas as pd
import numpy as np
path = r"C:\Users\fedel\Desktop\excelData\PhD_data.xlsx"
x1 = np.random.randn(100, 2)
df1 = pd.DataFrame(x1)
x2 = np.random.randn(100, 2)
df2 = pd.DataFrame(x2)
writer = pd.ExcelWriter(path, engine = 'xlsxwriter')
df1.to_excel(writer, sheet_name = 'x1')
df2.to_excel(writer, sheet_name = 'x2')
writer.save()
writer.close()
This code saves two DataFrames to two sheets, named "x1" and "x2" respectively. If I create two new DataFrames and try to use the same code to add two new sheets, 'x3' and 'x4', the original data is lost.
import pandas as pd
import numpy as np
path = r"C:\Users\fedel\Desktop\excelData\PhD_data.xlsx"
x3 = np.random.randn(100, 2)
df3 = pd.DataFrame(x3)
x4 = np.random.randn(100, 2)
df4 = pd.DataFrame(x4)
writer = pd.ExcelWriter(path, engine = 'xlsxwriter')
df3.to_excel(writer, sheet_name = 'x3')
df4.to_excel(writer, sheet_name = 'x4')
writer.save()
writer.close()
I want an excel file with four sheets: 'x1', 'x2', 'x3', 'x4'.
I know that 'xlsxwriter' is not the only "engine", there is 'openpyxl'. I also saw there are already other people that have written about this issue, but still I can't understand how to do that.
Here a code taken from this link
import pandas
from openpyxl import load_workbook
book = load_workbook('Masterfile.xlsx')
writer = pandas.ExcelWriter('Masterfile.xlsx', engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])
writer.save()
They say that it works, but it is hard to figure out how. I don't understand what "ws.title", "ws", and "dict" are in this context.
Which is the best way to save "x1" and "x2", then close the file, open it again and add "x3" and "x4"?
Thank you. I believe that a complete example could be good for anyone else who have the same issue:
import pandas as pd
import numpy as np
path = r"C:\Users\fedel\Desktop\excelData\PhD_data.xlsx"
x1 = np.random.randn(100, 2)
df1 = pd.DataFrame(x1)
x2 = np.random.randn(100, 2)
df2 = pd.DataFrame(x2)
writer = pd.ExcelWriter(path, engine = 'xlsxwriter')
df1.to_excel(writer, sheet_name = 'x1')
df2.to_excel(writer, sheet_name = 'x2')
writer.close()
Here I generate an excel file, from my understanding it does not really matter whether it is generated via the "xslxwriter" or the "openpyxl" engine.
When I want to write without loosing the original data then
import pandas as pd
import numpy as np
from openpyxl import load_workbook
path = r"C:\Users\fedel\Desktop\excelData\PhD_data.xlsx"
book = load_workbook(path)
writer = pd.ExcelWriter(path, engine = 'openpyxl')
writer.book = book
x3 = np.random.randn(100, 2)
df3 = pd.DataFrame(x3)
x4 = np.random.randn(100, 2)
df4 = pd.DataFrame(x4)
df3.to_excel(writer, sheet_name = 'x3')
df4.to_excel(writer, sheet_name = 'x4')
writer.close()
this code do the job!
For creating a new file
x1 = np.random.randn(100, 2)
df1 = pd.DataFrame(x1)
with pd.ExcelWriter('sample.xlsx') as writer:
df1.to_excel(writer, sheet_name='x1')
For appending to the file, use the argument mode='a' in pd.ExcelWriter.
x2 = np.random.randn(100, 2)
df2 = pd.DataFrame(x2)
with pd.ExcelWriter('sample.xlsx', engine='openpyxl', mode='a') as writer:
df2.to_excel(writer, sheet_name='x2')
Default is mode ='w'.
See documentation.
In the example you shared you are loading the existing file into book and setting the writer.book value to be book. In the line writer.sheets = dict((ws.title, ws) for ws in book.worksheets) you are accessing each sheet in the workbook as ws. The sheet title is then ws so you are creating a dictionary of {sheet_titles: sheet} key, value pairs. This dictionary is then set to writer.sheets. Essentially these steps are just loading the existing data from 'Masterfile.xlsx' and populating your writer with them.
Now let's say you already have a file with x1 and x2 as sheets. You can use the example code to load the file and then could do something like this to add x3 and x4.
path = r"C:\Users\fedel\Desktop\excelData\PhD_data.xlsx"
writer = pd.ExcelWriter(path, engine='openpyxl')
df3.to_excel(writer, 'x3', index=False)
df4.to_excel(writer, 'x4', index=False)
writer.save()
That should do what you are looking for.
A simple example for writing multiple data to excel at a time. And also when you want to append data to a sheet on a written excel file (closed excel file).
When it is your first time writing to an excel. (Writing "df1" and "df2" to "1st_sheet" and "2nd_sheet")
import pandas as pd
from openpyxl import load_workbook
df1 = pd.DataFrame([[1],[1]], columns=['a'])
df2 = pd.DataFrame([[2],[2]], columns=['b'])
df3 = pd.DataFrame([[3],[3]], columns=['c'])
excel_dir = "my/excel/dir"
with pd.ExcelWriter(excel_dir, engine='xlsxwriter') as writer:
df1.to_excel(writer, '1st_sheet')
df2.to_excel(writer, '2nd_sheet')
writer.save()
After you close your excel, but you wish to "append" data on the same excel file but another sheet, let's say "df3" to sheet name "3rd_sheet".
book = load_workbook(excel_dir)
with pd.ExcelWriter(excel_dir, engine='openpyxl') as writer:
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
## Your dataframe to append.
df3.to_excel(writer, '3rd_sheet')
writer.save()
Be noted that excel format must not be xls, you may use xlsx one.
Every time you want to save a Pandas DataFrame to an Excel, you may call this function:
import os
def save_excel_sheet(df, filepath, sheetname, index=False):
# Create file if it does not exist
if not os.path.exists(filepath):
df.to_excel(filepath, sheet_name=sheetname, index=index)
# Otherwise, add a sheet. Overwrite if there exists one with the same name.
else:
with pd.ExcelWriter(filepath, engine='openpyxl', if_sheet_exists='replace', mode='a') as writer:
df.to_excel(writer, sheet_name=sheetname, index=index)
I would strongly recommend you work directly with openpyxl since it now supports Pandas DataFrames.
This allows you to concentrate on the relevant Excel and Pandas code.
Can do it without using ExcelWriter, using tools in openpyxl
This can make adding fonts to the new sheet much easier using openpyxl.styles
import pandas as pd
from openpyxl import load_workbook
from openpyxl.utils.dataframe import dataframe_to_rows
#Location of original excel sheet
fileLocation =r'C:\workspace\data.xlsx'
#Location of new file which can be the same as original file
writeLocation=r'C:\workspace\dataNew.xlsx'
data = {'Name':['Tom','Paul','Jeremy'],'Age':[32,43,34],'Salary':[20000,34000,32000]}
#The dataframe you want to add
df = pd.DataFrame(data)
#Load existing sheet as it is
book = load_workbook(fileLocation)
#create a new sheet
sheet = book.create_sheet("Sheet Name")
#Load dataframe into new sheet
for row in dataframe_to_rows(df, index=False, header=True):
sheet.append(row)
#Save the modified excel at desired location
book.save(writeLocation)
You can read existing sheets of your interests, for example, 'x1', 'x2', into memory and 'write' them back prior to adding more new sheets (keep in mind that sheets in a file and sheets in memory are two different things, if you don't read them, they will be lost). This approach uses 'xlsxwriter' only, no openpyxl involved.
import pandas as pd
import numpy as np
path = r"C:\Users\fedel\Desktop\excelData\PhD_data.xlsx"
# begin <== read selected sheets and write them back
df1 = pd.read_excel(path, sheet_name='x1', index_col=0) # or sheet_name=0
df2 = pd.read_excel(path, sheet_name='x2', index_col=0) # or sheet_name=1
writer = pd.ExcelWriter(path, engine='xlsxwriter')
df1.to_excel(writer, sheet_name='x1')
df2.to_excel(writer, sheet_name='x2')
# end ==>
# now create more new sheets
x3 = np.random.randn(100, 2)
df3 = pd.DataFrame(x3)
x4 = np.random.randn(100, 2)
df4 = pd.DataFrame(x4)
df3.to_excel(writer, sheet_name='x3')
df4.to_excel(writer, sheet_name='x4')
writer.save()
writer.close()
If you want to preserve all existing sheets, you can replace above code between begin and end with:
# read all existing sheets and write them back
writer = pd.ExcelWriter(path, engine='xlsxwriter')
xlsx = pd.ExcelFile(path)
for sheet in xlsx.sheet_names:
df = xlsx.parse(sheet_name=sheet, index_col=0)
df.to_excel(writer, sheet_name=sheet)
Another fairly simple way to go about this is to make a method like this:
def _write_frame_to_new_sheet(path_to_file=None, sheet_name='sheet', data_frame=None):
book = None
try:
book = load_workbook(path_to_file)
except Exception:
logging.debug('Creating new workbook at %s', path_to_file)
with pd.ExcelWriter(path_to_file, engine='openpyxl') as writer:
if book is not None:
writer.book = book
data_frame.to_excel(writer, sheet_name, index=False)
The idea here is to load the workbook at path_to_file if it exists and then append the data_frame as a new sheet with sheet_name. If the workbook does not exist, it is created. It seems that neither openpyxl or xlsxwriter append, so as in the example by #Stefano above, you really have to load and then rewrite to append.
#This program is to read from excel workbook to fetch only the URL domain names and write to the existing excel workbook in a different sheet..
#Developer - Nilesh K
import pandas as pd
from openpyxl import load_workbook #for writting to the existing workbook
df = pd.read_excel("urlsearch_test.xlsx")
#You can use the below for the relative path.
# r"C:\Users\xyz\Desktop\Python\
l = [] #To make a list in for loop
#begin
#loop starts here for fetching http from a string and iterate thru the entire sheet. You can have your own logic here.
for index, row in df.iterrows():
try:
str = (row['TEXT']) #string to read and iterate
y = (index)
str_pos = str.index('http') #fetched the index position for http
str_pos1 = str.index('/', str.index('/')+2) #fetched the second 3rd position of / starting from http
str_op = str[str_pos:str_pos1] #Substring the domain name
l.append(str_op) #append the list with domain names
#Error handling to skip the error rows and continue.
except ValueError:
print('Error!')
print(l)
l = list(dict.fromkeys(l)) #Keep distinct values, you can comment this line to get all the values
df1 = pd.DataFrame(l,columns=['URL']) #Create dataframe using the list
#end
#Write using openpyxl so it can be written to same workbook
book = load_workbook('urlsearch_test.xlsx')
writer = pd.ExcelWriter('urlsearch_test.xlsx',engine = 'openpyxl')
writer.book = book
df1.to_excel(writer,sheet_name = 'Sheet3')
writer.save()
writer.close()
#The below can be used to write to a different workbook without using openpyxl
#df1.to_excel(r"C:\Users\xyz\Desktop\Python\urlsearch1_test.xlsx",index='false',sheet_name='sheet1')
if you want to add empty sheet
xw = pd.ExcelWriter(file_path, engine='xlsxwriter')
pd.DataFrame().to_excel(xw, 'sheet11')
if you get empty sheet
sheet = xw.sheets['sheet11']
import pandas as pd
import openpyxl
writer = pd.ExcelWriter('test.xlsx', engine='openpyxl')
data_df.to_excel(writer, 'sheet_name')
writer.save()
writer.close()
The following solution worked for me:
# dataframe to save
df = pd.DataFrame({"A":[1,2], "B":[3,4]})
# path where you want to save
path = "./..../..../.../test.xlsx"
# if an excel sheet named `test` is already present append on sheet 2
if os.path.isfile(path):
with pd.ExcelWriter(path, mode='a') as writer:
df.to_excel(writer, sheet_name= "sheet_2")
else:
# if not present then write to a excel file on sheet 1
with pd.ExcelWriter(path) as writer:
df.to_excel(writer, sheet_name= "sheet_1")
Now, if you want to write multiple dataframes on different sheets, simply add a loop and keep on changing the sheet_name.

Loop update existing excel template

Trying to write a script where I currently have an excel VBA sheet that has two tabs with 1st being a graph and second being a backend file. Backend is updated by a master file. In the master file there is a city column where I want to loop through all the unique city rows write those rows in to the VBA file and save the VBA file with the city's name.
master_backend = pd.read_excel(path)
city = master_backend[(master_backend["City"]=="NY")]
def append_df_to_excel(filename, df, sheet_name='Sheet1', startrow=None,
truncate_sheet=False,
**to_excel_kwargs):
from openpyxl import load_workbook
import pandas as pd
if 'engine' in to_excel_kwargs:
to_excel_kwargs.pop('engine')
writer = pd.ExcelWriter(filename, engine='openpyxl')
try:
FileNotFoundError
except NameError:
FileNotFoundError = IOError
try:
writer.book = load_workbook(filename, keep_vba = True)
if startrow is None and sheet_name in writer.book.sheetnames:
startrow = writer.book[sheet_name].max_row
if truncate_sheet and sheet_name in writer.book.sheetnames:
idx = writer.book.sheetnames.index(sheet_name)
writer.book.remove(writer.book.worksheets[idx])
writer.book.create_sheet(sheet_name, idx)
writer.sheets = {ws.title:ws for ws in writer.book.worksheets}
except FileNotFoundError:
pass
if startrow is None:
startrow = 0
df.to_excel(writer, sheet_name, startrow=startrow, **to_excel_kwargs)
writer.save()
Essentially what I want is 5 files since there are 5 cities all named with their city name
as I don't know VBA and you posted this under the python tag I'll provide my take on this.
assuming your datasheet is called file you could try something like this :
import shutil
for city in master_backend.City.unique():
df = master_backend.loc[master_backend.City == city]
shutil.copy(file,f"{city}.xlsx")
append_df_excel(f"{city}.xlsx", df,sheet_name='Backend')
cracking function btw, I would use put some doc strings in it for easy of use : )
I think you can simplify this script significantly by understanding that pandas will create a dataframe for you when you read the excel file. Then it's just a simple matter of collecting the info you want from the dataframe and re-writting it to a file. It's unclear what you want in your new file, but suppose you just want to filter the second sheet and keep everything in the first sheet it might look like this.
# Open the file,
# NOTE: when you open the file, if there are multiple sheets
# then the result is a dictionary of dataframes keyed on the sheet name
master_data = pd.read_excel(file_path, ....)
# Assuming second sheet name is 'City'
city_df=master_data['City']
# Replace 'columnName' with the name of the column (if includes headers) or column number
for city in pd.unique(city_df['columnName']):
with pd.ExcelWriter(city + '.xlsx') as writer:
master_data['Sheet1'].to_excel(writer, sheet_name='Sheet1')
city_df[city_df['columnName']==city].to_excel(writer, sheet_name='City')

Insert worksheet at specified index in existing Excel file using Pandas

Is there a way to insert a worksheet at a specified index using Pandas? With the code below, when adding a dataframe as a new worksheet, it gets added after the last sheet in the existing Excel file. What if I want to insert it at say index 1?
import pandas as pd
from openpyxl import load_workbook
f = 'existing_file.xlsx'
df = pd.DataFrame({'cat':['A','B'], 'word': ['C','D']})
book = load_workbook(f)
writer = pd.ExcelWriter(f, engine = 'openpyxl')
writer.book = book
df.to_excel(writer, sheet_name = 'sheet')
writer.save()
writer.close()
Thank you.

Open existing workbook with ExcelWriter [duplicate]

I use pandas to write to excel file in the following fashion:
import pandas
writer = pandas.ExcelWriter('Masterfile.xlsx')
data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])
writer.save()
Masterfile.xlsx already consists of number of different tabs. However, it does not yet contain "Main".
Pandas correctly writes to "Main" sheet, unfortunately it also deletes all other tabs.
Pandas docs says it uses openpyxl for xlsx files. Quick look through the code in ExcelWriter gives a clue that something like this might work out:
import pandas
from openpyxl import load_workbook
book = load_workbook('Masterfile.xlsx')
writer = pandas.ExcelWriter('Masterfile.xlsx', engine='openpyxl')
writer.book = book
## ExcelWriter for some reason uses writer.sheets to access the sheet.
## If you leave it empty it will not know that sheet Main is already there
## and will create a new sheet.
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])
writer.save()
UPDATE: Starting from Pandas 1.3.0 the following function will not work properly, because functions DataFrame.to_excel() and pd.ExcelWriter() have been changed - a new if_sheet_exists parameter has been introduced, which has invalidated the function below.
Here you can find an updated version of the append_df_to_excel(), which is working for Pandas 1.3.0+.
Here is a helper function:
import os
from openpyxl import load_workbook
def append_df_to_excel(filename, df, sheet_name='Sheet1', startrow=None,
truncate_sheet=False,
**to_excel_kwargs):
"""
Append a DataFrame [df] to existing Excel file [filename]
into [sheet_name] Sheet.
If [filename] doesn't exist, then this function will create it.
#param filename: File path or existing ExcelWriter
(Example: '/path/to/file.xlsx')
#param df: DataFrame to save to workbook
#param sheet_name: Name of sheet which will contain DataFrame.
(default: 'Sheet1')
#param startrow: upper left cell row to dump data frame.
Per default (startrow=None) calculate the last row
in the existing DF and write to the next row...
#param truncate_sheet: truncate (remove and recreate) [sheet_name]
before writing DataFrame to Excel file
#param to_excel_kwargs: arguments which will be passed to `DataFrame.to_excel()`
[can be a dictionary]
#return: None
Usage examples:
>>> append_df_to_excel('d:/temp/test.xlsx', df)
>>> append_df_to_excel('d:/temp/test.xlsx', df, header=None, index=False)
>>> append_df_to_excel('d:/temp/test.xlsx', df, sheet_name='Sheet2',
index=False)
>>> append_df_to_excel('d:/temp/test.xlsx', df, sheet_name='Sheet2',
index=False, startrow=25)
(c) [MaxU](https://stackoverflow.com/users/5741205/maxu?tab=profile)
"""
# Excel file doesn't exist - saving and exiting
if not os.path.isfile(filename):
df.to_excel(
filename,
sheet_name=sheet_name,
startrow=startrow if startrow is not None else 0,
**to_excel_kwargs)
return
# ignore [engine] parameter if it was passed
if 'engine' in to_excel_kwargs:
to_excel_kwargs.pop('engine')
writer = pd.ExcelWriter(filename, engine='openpyxl', mode='a')
# try to open an existing workbook
writer.book = load_workbook(filename)
# get the last row in the existing Excel sheet
# if it was not specified explicitly
if startrow is None and sheet_name in writer.book.sheetnames:
startrow = writer.book[sheet_name].max_row
# truncate sheet
if truncate_sheet and sheet_name in writer.book.sheetnames:
# index of [sheet_name] sheet
idx = writer.book.sheetnames.index(sheet_name)
# remove [sheet_name]
writer.book.remove(writer.book.worksheets[idx])
# create an empty sheet [sheet_name] using old index
writer.book.create_sheet(sheet_name, idx)
# copy existing sheets
writer.sheets = {ws.title:ws for ws in writer.book.worksheets}
if startrow is None:
startrow = 0
# write out the new sheet
df.to_excel(writer, sheet_name, startrow=startrow, **to_excel_kwargs)
# save the workbook
writer.save()
Tested with the following versions:
Pandas 1.2.3
Openpyxl 3.0.5
With openpyxlversion 2.4.0 and pandasversion 0.19.2, the process #ski came up with gets a bit simpler:
import pandas
from openpyxl import load_workbook
with pandas.ExcelWriter('Masterfile.xlsx', engine='openpyxl') as writer:
writer.book = load_workbook('Masterfile.xlsx')
data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])
#That's it!
Starting in pandas 0.24 you can simplify this with the mode keyword argument of ExcelWriter:
import pandas as pd
with pd.ExcelWriter('the_file.xlsx', engine='openpyxl', mode='a') as writer:
data_filtered.to_excel(writer)
I know this is an older thread, but this is the first item you find when searching, and the above solutions don't work if you need to retain charts in a workbook that you already have created. In that case, xlwings is a better option - it allows you to write to the excel book and keeps the charts/chart data.
simple example:
import xlwings as xw
import pandas as pd
#create DF
months = ['2017-01','2017-02','2017-03','2017-04','2017-05','2017-06','2017-07','2017-08','2017-09','2017-10','2017-11','2017-12']
value1 = [x * 5+5 for x in range(len(months))]
df = pd.DataFrame(value1, index = months, columns = ['value1'])
df['value2'] = df['value1']+5
df['value3'] = df['value2']+5
#load workbook that has a chart in it
wb = xw.Book('C:\\data\\bookwithChart.xlsx')
ws = wb.sheets['chartData']
ws.range('A1').options(index=False).value = df
wb = xw.Book('C:\\data\\bookwithChart_updated.xlsx')
xw.apps[0].quit()
Old question, but I am guessing some people still search for this - so...
I find this method nice because all worksheets are loaded into a dictionary of sheet name and dataframe pairs, created by pandas with the sheetname=None option. It is simple to add, delete or modify worksheets between reading the spreadsheet into the dict format and writing it back from the dict. For me the xlsxwriter works better than openpyxl for this particular task in terms of speed and format.
Note: future versions of pandas (0.21.0+) will change the "sheetname" parameter to "sheet_name".
# read a single or multi-sheet excel file
# (returns dict of sheetname(s), dataframe(s))
ws_dict = pd.read_excel(excel_file_path,
sheetname=None)
# all worksheets are accessible as dataframes.
# easy to change a worksheet as a dataframe:
mod_df = ws_dict['existing_worksheet']
# do work on mod_df...then reassign
ws_dict['existing_worksheet'] = mod_df
# add a dataframe to the workbook as a new worksheet with
# ws name, df as dict key, value:
ws_dict['new_worksheet'] = some_other_dataframe
# when done, write dictionary back to excel...
# xlsxwriter honors datetime and date formats
# (only included as example)...
with pd.ExcelWriter(excel_file_path,
engine='xlsxwriter',
datetime_format='yyyy-mm-dd',
date_format='yyyy-mm-dd') as writer:
for ws_name, df_sheet in ws_dict.items():
df_sheet.to_excel(writer, sheet_name=ws_name)
For the example in the 2013 question:
ws_dict = pd.read_excel('Masterfile.xlsx',
sheetname=None)
ws_dict['Main'] = data_filtered[['Diff1', 'Diff2']]
with pd.ExcelWriter('Masterfile.xlsx',
engine='xlsxwriter') as writer:
for ws_name, df_sheet in ws_dict.items():
df_sheet.to_excel(writer, sheet_name=ws_name)
There is a better solution in pandas 0.24:
with pd.ExcelWriter(path, mode='a') as writer:
s.to_excel(writer, sheet_name='another sheet', index=False)
before:
after:
so upgrade your pandas now:
pip install --upgrade pandas
The solution of #MaxU is not working for the updated version of python and related packages. It raises the error:
"zipfile.BadZipFile: File is not a zip file"
I generated a new version of the function that works fine with the updated version of python and related packages and tested with python: 3.9 | openpyxl: 3.0.6 | pandas: 1.2.3
In addition I added more features to the helper function:
Now It resize all columns based on cell content width AND all variables will be visible (SEE "resizeColumns")
You can handle NaN, if you want that NaN are displayed as NaN or as empty cells (SEE "na_rep")
Added "startcol", you can decide to start to write from specific column, oterwise will start from col = 0
Here the function:
import pandas as pd
def append_df_to_excel(filename, df, sheet_name='Sheet1', startrow=None, startcol=None,
truncate_sheet=False, resizeColumns=True, na_rep = 'NA', **to_excel_kwargs):
"""
Append a DataFrame [df] to existing Excel file [filename]
into [sheet_name] Sheet.
If [filename] doesn't exist, then this function will create it.
Parameters:
filename : File path or existing ExcelWriter
(Example: '/path/to/file.xlsx')
df : dataframe to save to workbook
sheet_name : Name of sheet which will contain DataFrame.
(default: 'Sheet1')
startrow : upper left cell row to dump data frame.
Per default (startrow=None) calculate the last row
in the existing DF and write to the next row...
truncate_sheet : truncate (remove and recreate) [sheet_name]
before writing DataFrame to Excel file
resizeColumns: default = True . It resize all columns based on cell content width
to_excel_kwargs : arguments which will be passed to `DataFrame.to_excel()`
[can be dictionary]
na_rep: default = 'NA'. If, instead of NaN, you want blank cells, just edit as follows: na_rep=''
Returns: None
*******************
CONTRIBUTION:
Current helper function generated by [Baggio]: https://stackoverflow.com/users/14302009/baggio?tab=profile
Contributions to the current helper function: https://stackoverflow.com/users/4046632/buran?tab=profile
Original helper function: (c) [MaxU](https://stackoverflow.com/users/5741205/maxu?tab=profile)
Features of the new helper function:
1) Now it works with python 3.9 and latest versions of pandas and openpxl
---> Fixed the error: "zipfile.BadZipFile: File is not a zip file".
2) Now It resize all columns based on cell content width AND all variables will be visible (SEE "resizeColumns")
3) You can handle NaN, if you want that NaN are displayed as NaN or as empty cells (SEE "na_rep")
4) Added "startcol", you can decide to start to write from specific column, oterwise will start from col = 0
*******************
"""
from openpyxl import load_workbook
from string import ascii_uppercase
from openpyxl.utils import get_column_letter
from openpyxl import Workbook
# ignore [engine] parameter if it was passed
if 'engine' in to_excel_kwargs:
to_excel_kwargs.pop('engine')
try:
f = open(filename)
# Do something with the file
except IOError:
# print("File not accessible")
wb = Workbook()
ws = wb.active
ws.title = sheet_name
wb.save(filename)
writer = pd.ExcelWriter(filename, engine='openpyxl', mode='a')
# Python 2.x: define [FileNotFoundError] exception if it doesn't exist
try:
FileNotFoundError
except NameError:
FileNotFoundError = IOError
try:
# try to open an existing workbook
writer.book = load_workbook(filename)
# get the last row in the existing Excel sheet
# if it was not specified explicitly
if startrow is None and sheet_name in writer.book.sheetnames:
startrow = writer.book[sheet_name].max_row
# truncate sheet
if truncate_sheet and sheet_name in writer.book.sheetnames:
# index of [sheet_name] sheet
idx = writer.book.sheetnames.index(sheet_name)
# remove [sheet_name]
writer.book.remove(writer.book.worksheets[idx])
# create an empty sheet [sheet_name] using old index
writer.book.create_sheet(sheet_name, idx)
# copy existing sheets
writer.sheets = {ws.title:ws for ws in writer.book.worksheets}
except FileNotFoundError:
# file does not exist yet, we will create it
pass
if startrow is None:
# startrow = -1
startrow = 0
if startcol is None:
startcol = 0
# write out the new sheet
df.to_excel(writer, sheet_name, startrow=startrow, startcol=startcol, na_rep=na_rep, **to_excel_kwargs)
if resizeColumns:
ws = writer.book[sheet_name]
def auto_format_cell_width(ws):
for letter in range(1,ws.max_column):
maximum_value = 0
for cell in ws[get_column_letter(letter)]:
val_to_check = len(str(cell.value))
if val_to_check > maximum_value:
maximum_value = val_to_check
ws.column_dimensions[get_column_letter(letter)].width = maximum_value + 2
auto_format_cell_width(ws)
# save the workbook
writer.save()
Example Usage:
# Create a sample dataframe
df = pd.DataFrame({'numbers': [1, 2, 3],
'colors': ['red', 'white', 'blue'],
'colorsTwo': ['yellow', 'white', 'blue'],
'NaNcheck': [float('NaN'), 1, float('NaN')],
})
# EDIT YOUR PATH FOR THE EXPORT
filename = r"C:\DataScience\df.xlsx"
# RUN ONE BY ONE IN ROW THE FOLLOWING LINES, TO SEE THE DIFFERENT UPDATES TO THE EXCELFILE
append_df_to_excel(filename, df, index=False, startrow=0) # Basic Export of df in default sheet (Sheet1)
append_df_to_excel(filename, df, sheet_name="Cool", index=False, startrow=0) # Append the sheet "Cool" where "df" is written
append_df_to_excel(filename, df, sheet_name="Cool", index=False) # Append another "df" to the sheet "Cool", just below the other "df" instance
append_df_to_excel(filename, df, sheet_name="Cool", index=False, startrow=0, startcol=5) # Append another "df" to the sheet "Cool" starting from col 5
append_df_to_excel(filename, df, index=False, truncate_sheet=True, startrow=10, na_rep = '') # Override (truncate) the "Sheet1", writing the df from row 10, and showing blank cells instead of NaN
def append_sheet_to_master(self, master_file_path, current_file_path, sheet_name):
try:
master_book = load_workbook(master_file_path)
master_writer = pandas.ExcelWriter(master_file_path, engine='openpyxl')
master_writer.book = master_book
master_writer.sheets = dict((ws.title, ws) for ws in master_book.worksheets)
current_frames = pandas.ExcelFile(current_file_path).parse(pandas.ExcelFile(current_file_path).sheet_names[0],
header=None,
index_col=None)
current_frames.to_excel(master_writer, sheet_name, index=None, header=False)
master_writer.save()
except Exception as e:
raise e
This works perfectly fine only thing is that formatting of the master file(file to which we add new sheet) is lost.
writer = pd.ExcelWriter('prueba1.xlsx'engine='openpyxl',keep_date_col=True)
The "keep_date_col" hope help you
I used the answer described here
from openpyxl import load_workbook
writer = pd.ExcelWriter(p_file_name, engine='openpyxl', mode='a')
writer.book = load_workbook(p_file_name)
writer.sheets = {ws.title:ws for ws in writer.book.worksheets}
df.to_excel(writer, 'Data', startrow=10, startcol=20)
writer.save()
book = load_workbook(xlsFilename)
writer = pd.ExcelWriter(self.xlsFilename)
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
df.to_excel(writer, sheet_name=sheetName, index=False)
writer.save()
Solution by #MaxU worked very well. I have just one suggestion:
If truncate_sheet=True is specified than "startrow" should NOT be retained from existing sheet. I suggest:
if startrow is None and sheet_name in writer.book.sheetnames:
if not truncate_sheet: # truncate_sheet would use startrow if provided (or zero below)
startrow = writer.book[sheet_name].max_row
I'd reccommend using xlwings (https://docs.xlwings.org/en/stable/api.html), it is really powerful for this application... This is how I use it:
import xlwings as xw
import pandas as pd
import xlsxwriter
# function to get the active workbook
def getActiveWorkbook():
try:
# logic from xlwings to grab the current excel file
activeWb = xw.books.active
except:
# print error message if unable to get the current workbook
print('Unable to grab the current Workbook')
pause()
exitProgram()
else:
return activeWb
# function that returns the last row number and last cell of a sheet
def getLastRow(myBook, sheetName):
lastRow = myBook.sheets[sheetName].range("A1").current_region.last_cell.row
lastCol = str(xlsxwriter.utility.xl_col_to_name(myBook.sheets[sheetName].range("A1").current_region.last_cell.column))
return str(lastRow), lastCol + str(lastRow)
activeWb = getActiveWorkbook()
df = pd.DataFrame(data=[1,2,3])
# look at worksheet = Part Number Status
sheetName = "Sheet1"
ws = activeWb.sheets[sheetName]
lastRow, lastCell = getLastRow(activeWb, sheetName)
if int(lastRow) > 1:
ws.range("A1:" + lastCell).clear()
ws.range("A1").options(index=False, header=False).value = df.fillna('')
This seems to work very well for my applications because .xlsm workbooks can be very tricky. You can execute this as a python script or turn it into and executable with pyinstaller and then run the .exe through an excel macro. You can also call VBA macros from Python using xlwings which is very useful.
You can write to an existing Excel file without overwriting data using pandas by using the pandas.DataFrame.to_excel() method and specifying the mode parameter as 'a' (append mode).
Here's an example:
import pandas as pd
# Create a sample DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
# Write the DataFrame to an existing Excel file in append mode
df.to_excel('existing_file.xlsx', engine='openpyxl', mode='a', index=False, sheet_name='Sheet1')
Method:
Can create file if not present
Append to existing excel as per sheet name
import pandas as pd
from openpyxl import load_workbook
def write_to_excel(df, file):
try:
book = load_workbook(file)
writer = pd.ExcelWriter(file, engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
df.to_excel(writer, **kwds)
writer.save()
except FileNotFoundError as e:
df.to_excel(file, **kwds)
Usage:
df_a = pd.DataFrame(range(10), columns=["a"])
df_b = pd.DataFrame(range(10, 20), columns=["b"])
write_to_excel(df_a, "test.xlsx", sheet_name="Sheet a", columns=['a'], index=False)
write_to_excel(df_b, "test.xlsx", sheet_name="Sheet b", columns=['b'])

Categories