OpenCV houghLinesP parameters - python

I am having difficulty finding the lines on a chessboard in this image using HoughLinesP with OpenCV in Python.
In an attempt to understand the parameters of HoughLinesP, I have come up with the following code:
import numpy as np
import cv2
from matplotlib import pyplot as plt
from matplotlib import image as image
I = image.imread('chess.jpg')
G = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY)
# Canny Edge Detection:
Threshold1 = 150;
Threshold2 = 350;
FilterSize = 5
E = cv2.Canny(G, Threshold1, Threshold2, FilterSize)
Rres = 1
Thetares = 1*np.pi/180
Threshold = 1
minLineLength = 1
maxLineGap = 100
lines = cv2.HoughLinesP(E,Rres,Thetares,Threshold,minLineLength,maxLineGap)
N = lines.shape[0]
for i in range(N):
x1 = lines[i][0][0]
y1 = lines[i][0][1]
x2 = lines[i][0][2]
y2 = lines[i][0][3]
cv2.line(I,(x1,y1),(x2,y2),(255,0,0),2)
plt.figure(),plt.imshow(I),plt.title('Hough Lines'),plt.axis('off')
plt.show()
The problem I am having is that this picks up only one line. If I reduce the maxLineGap to 1, it picks up thousands.
I understand why this might be but how do I pick a suitable set of parameters to get all these co-linear lines to merge? Am I missing something?
I would like to keep the code simple as I am using it as an example of this function in action.
Thanks in advance for any help!
Update: This works perfectly with HoughLines.
And there doesn't seem to be edge detection issues as Canny is working just fine.
However, I still need to get HoughLinesP to work. Any ideas??
Images here: Results

Ok, I finally found the problem and thought I would share the solution for anyone else driven nuts by this. The issue is that in the HoughLinesP function, there is an extra parameter, "lines" which is redundant because the output of the function is the same:
cv2.HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]])
This is causing issues with the parameters as they are read in the wrong order. To avoid confusion with the order of the parameters, the simplest solution is to specify them inside the function like so:
lines = cv2.HoughLinesP(E,rho = 1,theta = 1*np.pi/180,threshold = 100,minLineLength = 100,maxLineGap = 50)
This totally fixed my problem and I hope it will help others.

edges: Output of the edge detector.
lines: A vector to store the coordinates of the start and end of the line.
rho: The resolution parameter \rho in pixels.
theta: The resolution of the parameter \theta in radians.
threshold: The minimum number of intersecting points to detect a line.
Sample application
import cv2
import numpy as np
img = cv2.imread('sudoku.png', cv2.IMREAD_COLOR)
# Convert the image to gray-scale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the edges in the image using canny detector
edges = cv2.Canny(gray, 50, 200)
# Detect points that form a line
lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=10, maxLineGap=250)
# Draw lines on the image
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 3)
# Show result
img = cv2.resize(img, dsize=(600, 600))
cv2.imshow("Result Image", img)
if cv2.waitKey(0) & 0xff == 27:
cv2.destroyAllWindows()

cv2.HoughLinesP(image,rho, theta, threshold, np.array ([ ]), minLineLength=xx, maxLineGap=xx)
This will also work.

It is not HoughLinesP issue, using that method will only get all the lines detected in the picture and return to you.
To be able to get the lines you want,you will need to smooth the image before you use the method. However if you smooth too much, there won't be any edges for HoughLinesP to detect.
You can know more about Smoothing Effects of OpenCV here.

Related

Detecting handwritten lines using OpenCV

I'm trying to detect underlines and boxes in the following image:
For example, this is the output I'm aiming for:
Here's what I've atempted:
import cv2
import numpy as np
# Load image
img = cv2.imread('document.jpg')
# Convert image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur to reduce noise
blur = cv2.GaussianBlur(gray, (3, 3), 0)
# Threshold the image
ret, thresh = cv2.threshold(blur, 127, 255, cv2.THRESH_TRUNC)
# Apply Canny Edge Detection
edges = cv2.Canny(thresh, 155, 200)
# Use HoughLinesP to detect lines
lines = cv2.HoughLinesP(edges, rho=1, theta=1*np.pi/180, threshold=100, minLineLength=100, maxLineGap=50)
# Draw lines on image
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 4)
However, this is the result I get:
Here are my thoughts regarding this problem:
I might need to use adaptive thresholding with Otsu's algorithm to provide a proper binary image to cv2.Canny(). However, I doubt this is the core issue. Here is how the image looks with the current thresholding applied:
cv2.threshold() already does a decent job separating the notes from the page.
Once I get HoughLinesP() to properly draw all the lines (and not the weird scribbles it's currently outputting), I can write some sort of box detector function to find the boxes based on the intersections (or near-intersections) of four lines. As for underlines, I simply need to detect horizontal lines from the output of HoughLinesP(), which shouldn't be difficult (e.g., for any given line, check if the two y coordinates are within some range of each other).
So the fundamental problem I have is this: how do I get HoughLinesP() to output smoother lines and not the current mess it's giving so I can then move forward with detecting boxes and lines?
Additionally, do my proposed methods for finding boxes and underlines make sense from an efficiency standpoint? Does OpenCV provide a better way for achieving what I want to accomplish?

Approximating edge with rough outline - OpenCV

I've been researching and trying a couple functions to get what I want and I feel like I might be overthinking it.
One version of my code is below. The sample image is here.
My end goal is to find the angle (yellow) of the approximated line with respect to the frame (green line) Final
I haven't even got to the angle portion of the program yet.
The results I was obtaining from the below code were as follows. Canny Closed Small Removed
Anybody have a better way of creating the difference and establishing the estimated line?
Any help is appreciated.
import cv2
import numpy as np
pX = int(512)
pY = int(768)
img = cv2.imread('IMAGE LOCATION', cv2.IMREAD_COLOR)
imgS = cv2.resize(img, (pX, pY))
aimg = cv2.imread('IMAGE LOCATION', cv2.IMREAD_GRAYSCALE)
# Blur image to reduce noise and resize for viewing
blur = cv2.medianBlur(aimg, 5)
rblur = cv2.resize(blur, (384, 512))
canny = cv2.Canny(rblur, 120, 255, 1)
cv2.imshow('canny', canny)
kernel = np.ones((2, 2), np.uint8)
#fringeMesh = cv2.dilate(canny, kernel, iterations=2)
#fringeMesh2 = cv2.dilate(fringeMesh, None, iterations=1)
#cv2.imshow('fringeMesh', fringeMesh2)
closing = cv2.morphologyEx(canny, cv2.MORPH_CLOSE, kernel)
cv2.imshow('Closed', closing)
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(closing, connectivity=8)
#connectedComponentswithStats yields every separated component with information on each of them, such as size
sizes = stats[1:, -1]; nb_components = nb_components - 1
min_size = 200 #num_pixels
fringeMesh3 = np.zeros((output.shape))
for i in range(0, nb_components):
if sizes[i] >= min_size:
fringeMesh3[output == i + 1] = 255
#contours, _ = cv2.findContours(fringeMesh3, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
#cv2.drawContours(fringeMesh3, contours, -1, (0, 255, 0), 1)
cv2.imshow('final', fringeMesh3)
#cv2.imshow("Natural", imgS)
#cv2.imshow("img", img)
cv2.imshow("aimg", aimg)
cv2.imshow("Blur", rblur)
cv2.waitKey()
cv2.destroyAllWindows()
You can fit a straight line to the first white pixel you encounter in each column, starting from the bottom.
I had to trim your image because you shared a screen grab of it with a window decoration, title and frame rather than your actual image:
import cv2
import math
import numpy as np
# Load image as greyscale
im = cv2.imread('trimmed.jpg', cv2.IMREAD_GRAYSCALE)
# Get index of first white pixel in each column, starting at the bottom
yvals = (im[::-1,:]>200).argmax(axis=0)
# Make the x values 0, 1, 2, 3...
xvals = np.arange(0,im.shape[1])
# Fit a line of the form y = mx + c
z = np.polyfit(xvals, yvals, 1)
# Convert the slope to an angle
angle = np.arctan(z[0]) * 180/math.pi
Note 1: The value of z (the result of fitting) is:
array([ -0.74002694, 428.01463745])
which means the equation of the line you are looking for is:
y = -0.74002694 * x + 428.01463745
i.e. the y-intercept is at row 428 from the bottom of the image.
Note 2: Try to avoid JPEG format as an intermediate format in image processing - it is lossy and changes your pixel values - so where you have thresholded and done your morphology you are expecting values of 255 and 0, JPEG will lossily alter those values and you end up testing for a range or thresholding again.
Your 'Closed' image seems to quite clearly segment the two regions, so I'd suggest you focus on turning that boundary into a line that you can do something with. Connected components analysis and contour detection don't really provide any useful information here, so aren't necessary.
One quite simple approach to finding the line angle is to find the first white pixel in each row. To get only the rows that are part of your diagonal, don't include rows where that pixel is too close to either side (e.g. within 5%). That gives you a set of points (pixel locations) on the boundary of your two types of grass.
From there you can either do a linear regression to get an equation for the straight line, or you can get two points by averaging the x values for the top and bottom half of the rows, and then calculate the gradient angle from that.
An alternative approach would be doing another morphological close with a very large kernel, to end up with just a solid white region and a solid black region, which you could turn into a line with canny or findContours. From there you could either get some points by averaging, use the endpoints, or given a smooth enough result from a large enough kernel you could detect the line with hough lines.

Detecting palm lines with OpenCV in Python

I'm studying OpenCV with python by working on a project which aims to detect the palm lines.
What I have done is basically use Canny edge detection and then apply Hough line detection on the edges but the outcome is not so good.
Here is the source code I am using:
original = cv2.imread(file)
img = cv2.cvtColor(original, cv2.COLOR_BGR2GRAY)
save_image_file(img, "gray")
img = cv2.equalizeHist(img)
save_image_file(img, "equalize")
img = cv2.GaussianBlur(img, (9, 9), 0)
save_image_file(img, "blur")
img = cv2.Canny(img, 40, 80)
save_image_file(img, "canny")
lined = np.copy(original) * 0
lines = cv2.HoughLinesP(img, 1, np.pi / 180, 15, np.array([]), 50, 20)
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(lined, (x1, y1), (x2, y2), (0, 0, 255))
save_image_file(lined, "lined")
output = cv2.addWeighted(original, 0.8, lined, 1, 0)
save_image_file(output, "output")
I tried different parameter sets of Gaussian kernel size and Canny low/high thresholds, but the outcome is either having too much noises, or missing (part of) major lines. Above picture is already the best I get, so far..
Is there anything I should do to get result improved, or any other approach would get better result?
Any help would be appreciated!
What you are looking for is really experimental. You have already done the most important function. I suggest that you tune your parameters to get a reasonable and a noisy number of lines, then you can make some filtering:
using morphological filters,
classification of lines
(according to their lengths, fits on contrasted area...etc)
improving your categories by dividing the area of palm (without
fingers) into a grid (4x4 .. where 4 vertical fingers corners can
define the configs of the grid).
calculate the gradient image,
orientation of lines may help as well
Make a search about the algorithm "cumulative level lines detection", it can help for the certainty of detected lines

Using OpenCV Hough Tranform for line detection in 2D point cloud

I have tried my best to find out how to use OpenCV for line detection. However, I cannot find the examples that I'm looking for. I want to use it to find lines in simple 2-d point clouds. As a test I want to use the following points:
import random
import numpy as np
import matplotlib.pyplot as plt
a = np.random.randint(1,101,400) # Random points.
b = np.random.randint(1,101,400) # Random points.
for i in range(0, 90, 2): # A line to detect
a = np.append(a, [i+5])
b = np.append(b, [0.5*i+30])
plt.plot(a, b, '.')
plt.show()
I have found a lot of initial examples of how the Hough Tranform works. However, when it comes to code examples, I can only find that images have been used.
Is there a way to use the OpenCV Hough Transform to detect the line in a set of points, or can you recommend any other methods or libraries?
---- Edit ----
After reading some great ansewers I feel like I scould discribe what i intent to use it for a little bit better. I have a high resolution 2D LiDAR and need to extract walls from the data. A typicle scan can look like this:
Where the "correct output" would look something like this:
After I have done some more research I suspect that the Hough transform is less than optimal to use in this case. Any tips on what i should look for?
(If anyone is interested, the LiDAR and wall extraction is used to generate a map and navigate a robot.)
Thanks, Jakob
One way would be to implement Hough Transformation yourself following these slides skipping the Edge Detection part.
Alternatively you could create an image from your list of points such as
#create an image from list of points
x_shape = int(np.max(a) - np.min(a))
y_shape = int(np.max(b) - np.min(b))
im = np.zeros((x_shape+1, y_shape+1))
indices = np.stack([a-1,b-1], axis =1).astype(int)
im[indices[:,0], indices[:,1]] = 1
plt.imshow(im)
#feed to opencv as usual
following the answer to this question
EDIT: Do not feed to OpenCV but use instead skimage such as described here in the documentation:
import numpy as np
from skimage.transform import (hough_line, hough_line_peaks,
probabilistic_hough_line)
from skimage.feature import canny
from skimage import data
import matplotlib.pyplot as plt
from matplotlib import cm
# Constructing test image
#image = np.zeros((100, 100))
#idx = np.arange(25, 75)
#image[idx[::-1], idx] = 255
#image[idx, idx] = 255
image = im
# Classic straight-line Hough transform
h, theta, d = hough_line(image)
# Generating figure 1
fig, axes = plt.subplots(1, 3, figsize=(15, 6))
ax = axes.ravel()
ax[0].imshow(image, cmap=cm.gray)
ax[0].set_title('Input image')
ax[0].set_axis_off()
ax[1].imshow(np.log(1 + h),
extent=[np.rad2deg(theta[-1]), np.rad2deg(theta[0]), d[-1], d[0]],
cmap=cm.gray, aspect=1/1.5)
ax[1].set_title('Hough transform')
ax[1].set_xlabel('Angles (degrees)')
ax[1].set_ylabel('Distance (pixels)')
ax[1].axis('image')
ax[2].imshow(image, cmap=cm.gray)
for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
y1 = (dist - image.shape[1] * np.cos(angle)) / np.sin(angle)
ax[2].plot((0, image.shape[1]), (y0, y1), '-r')
ax[2].set_xlim((0, image.shape[1]))
ax[2].set_ylim((image.shape[0], 0))
ax[2].set_axis_off()
ax[2].set_title('Detected lines')
plt.tight_layout()
plt.show()
# Line finding using the Probabilistic Hough Transform
image = data.camera()
edges = canny(image, 2, 1, 25)
lines = probabilistic_hough_line(edges, threshold=10, line_length=5,
line_gap=3)
# Generating figure 2
fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True)
ax = axes.ravel()
ax[0].imshow(image, cmap=cm.gray)
ax[0].set_title('Input image')
ax[1].imshow(edges, cmap=cm.gray)
ax[1].set_title('Canny edges')
ax[2].imshow(edges * 0)
for line in lines:
p0, p1 = line
ax[2].plot((p0[0], p1[0]), (p0[1], p1[1]))
ax[2].set_xlim((0, image.shape[1]))
ax[2].set_ylim((image.shape[0], 0))
ax[2].set_title('Probabilistic Hough')
for a in ax:
a.set_axis_off()
plt.tight_layout()
plt.show()
Here's an approach
Convert image to grayscale
Threshold to obtain binary image
Perform morphological operations to connect contours and smooth image
Find lines
After converting to grayscale, we threshold image to obtain a binary image
import cv2
import numpy as np
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
Next we perform morphological operations to connect contours
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9,9))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
Finally we find the line using cv2.HoughLinesP()
minLineLength = 550
maxLineGap = 70
lines = cv2.HoughLinesP(close,1,np.pi/180,100,minLineLength,maxLineGap)
for line in lines:
for x1,y1,x2,y2 in line:
cv2.line(image,(x1,y1),(x2,y2),(36,255,12),3)
Instead of using cv2.HoughLinesP(), an alternative method is to find contours and filter using cv2.contourArea(). The largest contour will be our line.
Full code
import cv2
import numpy as np
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9,9))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
minLineLength = 550
maxLineGap = 70
lines = cv2.HoughLinesP(close,1,np.pi/180,100,minLineLength,maxLineGap)
for line in lines:
for x1,y1,x2,y2 in line:
cv2.line(image,(x1,y1),(x2,y2),(36,255,12),3)
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('image', image)
cv2.waitKey()
You most likely won't be able to use Hough transform to detect lines in a set of points. Hough transform works with images. Better yet, binarized images with edges marked as 1 and background stays as 0. So, forget about the Hough transform.
For your particular case I'd suggest some kind of RANSAC algorithm, which looks for specific points following some rules, ignoring everything else. Though, in your case you have a lot (=too much) noise. If you can keep the noise points below 50%, RANSAC will do the trick. You may read the details here: OpenCV - Ransac fitting line
Or here's the Wiki with the most generic explanation: https://en.wikipedia.org/wiki/RANSAC
After spending some (alot) of time with the problem I eventually reached a solution that I was sattisfied with.
My solution is to go through the scan data as it is read (as a revolving scanner) and iteratively look at smalles sections of the data, then running a custom ransac algorithm to fit a line to the current segment.
Then if the segment satisfies the critera for a possible line the segment is extended and checked again. This is then repeated for all small segments of data in different ways. In short, I used a custom, self written from scratch, iterative ransac line fit.
If we take a similar example to what I initially gave:
The following result is now generated by the algorith:
And comparing to the actual (wall) map of the enviroment we can see the following comparison:
Which I would say is good enough. Another important note is that the algorith can be run for multiple scans of data with the enviroment naturally chaning slightly inbetween all of the scans (taking quite some time to execute):
As can bee seen there are some extra walls that are not a part of the map, which is to be expected and also some faulty findings that can be filtered since they are clear outliers.
Now for the code.... The final solution is a 300 lines long python script converted though a .pyx file and compiled using Cython in order to improve time complexity. If the code or maybe more importantly a psuedo code (since my implementation is tweeked to my specfic need) is wanted I can provide it given that someone will enjoy using/reading it :)

Extract a fixed number of squares from an image with Python/OpenCV

I have several scanned images I would like to compute with Python/Opencv. Each of these images (see an example below) contains n rows of coloured squares. Each of these squares have the same size. The goal is to crop each of these squares and to extract the data from it.
I have found there a code which is able to extract squares from an image.
Here is my code where I have used it :
import numpy as np
import cv2
from matplotlib import pyplot as plt
def angle_cos(p0, p1, p2):
import numpy as np
d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )
def find_squares(img):
import cv2 as cv
import numpy as np
img = cv.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv.split(img):
for thrs in range(0, 255, 26):
if thrs == 0:
bin = cv.Canny(gray, 0, 50, apertureSize=5)
bin = cv.dilate(bin, None)
else:
_retval, bin = cv.threshold(gray, thrs, 255, cv.THRESH_BINARY)
contours, _hierarchy = cv.findContours(bin, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv.arcLength(cnt, True)
cnt = cv.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv.contourArea(cnt) > 1000 and cv.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in range(4)])
if max_cos < 0.1:
squares.append(cnt)
print(len(squares))
return squares
img = cv2.imread("test_squares.jpg",1)
plt.axis("off")
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
squares = find_squares(img)
cv2.drawContours( img, squares, -1, (0, 255, 0), 1 )
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
However, it finds two many squares (100 instead of 15 !!). Looking at the image, it seems that Opencv find a lot of contours for each square.
I'm pretty sure that it can be optimized since the squares have more or less the same size and far from each other. As a very beginner in Opencv, I haven't found yet a way to give more criteria in the function "find squares" in order to get only 15 squares at the end of the routine. Maybe the contour area can be maximized ?
I have also found there a more detailed code (very close to the previous one) but it seems to be developed in a old version of Opencv. I haven't managed to make it work (and so to modify it).
This is another more robust method.
I used this code to find the contours in the image (the full code can be found in this gist):
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Define square size
min_square_size = 987
# Read Image
img = cv2.imread('/home/stephen/Desktop/3eY0k.jpg')
# Threshold and find edges
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Threshold the image - segment white background from post it notes
_, thresh = cv2.threshold(gray, 250, 255, cv2.THRESH_BINARY_INV);
# Find the contours
_, contours, _ = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
I iterated through the contours. I only looked at the contours that were a reasonable size. I found the four corners of each contour.
# Create a list for post-it images
images = []
# Iterate through the contours in the image
for contour in contours:
area = cv2.contourArea(contour)
# If the contour is not really small, or really big
h,w = img.shape[0], img.shape[1]
if area > min_square_size and area < h*w-(2*(h+w)):
# Get the four corners of the contour
epsilon = .1 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
# Draw the point
for point in approx: cv2.circle(img, tuple(point[0]), 2, (255,0,0), 2)
# Warp it to a square
pts1 = np.float32(approx)
pts2 = np.float32([[0,0],[300,0],[300,300],[0,300]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(img,M,(300,300))
# Add the square to the list of images
images.append(dst.copy())
The post-it notes are squares, but because the camera warps the objects in the image they do not appear as squares. I used warpPerspective to make the post-it notes square shapes. Only a few of them are shown in this plot (there are more that didn't fit):
If your problem is that too many contours (edges) are found in the image, my suggestion is to modify the edge-finding part first. It'll be by far the easiest modification to make.
In particular, you'll need to change this call:
bin = cv.Canny(gray, 0, 50, apertureSize=5)
The cv.Canny() function takes as arguments two threshold values, the aperture size, and a boolean to indicate whether a precise form of gradient is used. Play with those parameters, and my guess is, you'll get much better results.

Categories