I need help with a python homework question.
"Assume there is a variable , h already associated with a positive integer value. Write the code necessary to compute the sum of the perfect squares whose value is less than h, starting with 1. (A perfect square is an integer like 9, 16, 25, 36 that is equal to the square of another integer (in this case 3*3, 4*4, 5*5, 6*6 respectively).) Associate the sum you compute with the variable q. For example, if h is 19, you would assign 30 to q because the perfect squares (starting with 1) that are less than h are: 1, 4, 9, 16 and 30==1+4+9+16."
So far I get really close to having it right but it always does one extra number than it needs. For example with putting in 19, instead of stopping at 1,4,9,16 it adds 25 too.
heres my code so far
h_i=input()
h=int(h_i)
s=0
q=0
total=s**2
while total<=h:
s+=1
total=s**2
q+=total
print(total)
print(q)
I am going to suggest a different approach to this using a more "Pythonic" way with list comprehension:
>>> highest = 19 # in your case this is h
lst = list (n**2 for n in range(1, highest + 1))
lst
[1, 4, 9, 16]
>>> print '\n'.join(str(p) for p in lst)
1
4
9
16
I would suggest modifying your code to improve readability and spacing. Additionally, you can start counting at 1 (i = 1) since you state a positive integer must be given.
h = int(input('insert positive integer: '))
i = 1
total = 0
while total <= h:
total += i ** 2
i += 1
print(total)
And now... for something completely different:
h = int(input())
n = int((h - 1) ** 0.5)
q = n * (n + 1) * (2*n + 1) // 6
print(q)
You need to put s+=1 and total=s**2 at the end of your loop, so that the condition (which I believe should be total<h) is checked before it's added to q.
h_i=input()
h=int(h_i)
s=0
q=0
total=s**2
while total<h:
q+=total
print(total)
s+=1
total=s**2
print(q)
What you care about is that the current value of n**2 is less than h. So make sure you test that value.
h = 19
n = 1
q = 0
while n**2 <= h:
q += n**2
n += 1
print("Sum of squares less than {} is: {}".format(h, q))
while I love simplicity, here is my take and I have tested in the lab, it works:
q=0
n=0
while n*n<h:
q+=n*n
n+=1
Related
I am doing an assessment that is asking by the given "n" as input which is a length of a stick; how many triangles can you make? (3 < n < 1,000,000)
For example:
input: N=8
output: 1
explanation:
(3,3,2)
input: N=12
output: 3
explanation:
(4,4,4) (4,5,3) (5,5,2)
Now the codes I wrote are returning 33 % accuracy as the web assessment is throwing time limit error.
ans = 0
n = int(input())
for a in range(1, n + 1):
for b in range(a, n - a + 1):
c = n - a - b
if a + b > c >= b:
ans += 1
print(ans)
code b:
ans = 0
n = int(input())
for i in range(1,n):
for j in range(i,n):
for c in range(j,n):
if(i+j+c==n and i+j>c):
ans+=1
print(ans)
How can this be made faster?
This is an intuitive O(n) algorithm I came up with:
def main():
n = int(input())
if n < 3:
print(0)
return
ans = n % 2
for a in range(2, n//2+1):
diff = n - a
if diff // 2 < a:
break
if diff % 2 == 0:
b = diff // 2
else:
b = diff // 2 + 1
b = max(b - a // 2, a)
c = n - b - a
if abs(b - c) >= a:
b += 1
c -= 1
ans += abs(b-c)//2 + 1
print(ans)
main()
I find the upper bound and lower bound for b and c and count the values in that range.
I thought of a completely different way to do it:
We take the smallest side and call it a. It can never be more than n/3, otherwise a different side would be the smallest.
We try to figure out what is the next smallest side (b):
We see what's left after reducing our a.
We divide it by 2 in order to find the middle where we'll start advancing from
We'll see how far we can get before the difference between the lengths is a (or the difference from the middle is a/2) as that's the minimum b side length that is possible and satisfies a+b>c. Basically, the second smallest side is a/2 less than the middle.
The smallest side is the maximum between our calculation or a, in caseb==a. b can never be lower than a as it violates our first rule that a is the smallest.
We figure out the difference from the middle and the smallest side. That's how many possible solutions we have for the other 2 sides.
Add everything together for every a and that's our solution.
The floor, ceil and % are fixes for when a is odd, the middle is .5, or +1 in case b+c is even, cause b==c is then possible.
Code:
import math
n = int(input("Enter a number: "))
total = 0
# a is the shortest side
for a in range(1, (n//3)+1):
length_left = n-a
middle_number = length_left/2
# Shortest potential side b where the distance between b and c is smaller than a (c-b < a)
b = middle_number-(math.ceil(a/2)-1)-((length_left % 2)/2)
# We calculate how far it is from the middle
max_distance_from_middle = middle_number - max(b, a)
# Add another 1 if the length is even, in case b==c
adding = math.floor(max_distance_from_middle) + (1 if length_left % 2 == 0 else 0)
total += adding
print(total)
Or in an ugly one-liner:
n = int(input("Enter a number: "))
print(sum(math.floor((n-a)/2 - max((n-a)/2 - math.ceil(a/2) + 1 - (((n-a) % 2)/2), a)) + 1 - ((n-a) % 2) for a in range(1, (n//3)+1)))
Alcuin's sequence expansion: O(1)
Alcuin's sequence [See: https://en.wikipedia.org/wiki/Alcuin%27s_sequence] is a series expansion of the polynomial below, where the nth coefficient corresponds to the nth answer, that is, the maximum amount of unique integer triangles with perimeter n.
The algorithmic implementation of this is simply a formula. The Online Encyclopaedia of Integer Sequences (OEIS) provides many formulas that achieve this, the simplest of which is:
round(n^2 / 48) (Even)
round((n+3)^2 / 48) (Odd)
[See: https://oeis.org/A005044]
This evidently has a constant time complexity, given that the only functions required are modulo 2, integer squared and round, each of which are constant time (under certain definitions).
Implementation
Expanded:
def triangles(n):
if n % 2 == 0:
return round(n ** 2 / 48)
else:
return round((n + 3) ** 2 / 48)
1-Liner:
def triangles(n): return round(n ** 2 / 48) if n%2==0 else round((n + 3) ** 2 / 48)
Or even:
def triangles(n): return round((n + 3 * n%2) ** 2 / 48)
Extra
No imports are needed.
As the OP questioned, why do we divide by 48? While I can't answer that explicitly, let's get an intuitive understanding. We are squaring numbers, so it is evidently going to expand greatly. By the time we get to 5, that would give 64 (8^2). So, there must be a constant (albeit a reciprocal) to restrict the growth of the parabola, thus the / 48.
When we graph the OP's method, it gives an alternating parabola. This explains why there is a back-and-forth with the +3 and +0.
https://mathworld.wolfram.com/AlcuinsSequence.html
import math
n = int(input())
print(round(n ** 2 / 48)) if n % 2 == 0 else print(round((n + 3)** 2 / 48))
n = 5
cube = n**3
def get_sum(n):
a1 = n * (n - 1) + 1
for i in range(a1, cube, 2):
print(i, end='+')
print(f'{get_sum(n)}')
print(cube)
I have output:
21+23+25+27+29+31+33+35+37+39+41+43+45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83+85+87+89+91+93+95+97+99+101+103+105+107+109+111+113+115+117+119+121+123+None
125
How can I get a range till 29 so the sum of these numbers will be equal to cube in Python?
For example, 21+23+25+27+29 = 5^3
first, no need to write print(f'{get_sum(n)}') since your function doesn't return anything except None which you can see in your output, get_sum(n) is enough.
since you are always looping n times, you can simplify your condition, in my solution I used a while loop with a sum variable to keep tabs with the current sum of numbers.
you can apply the same logic with a for loop of course, this is just my implementation.
def get_sum(n):
a1 = n * (n - 1) + 1
sum = a1
while sum < cube:
print(a1, end='+')
a1+=2
sum+=a1
print(a1, end='=')
n = 5
cube = n**3
get_sum(n)
print(cube)
output:
21+23+25+27+29=125
Inefficient approach:
Keep a variable that tracks the current sum to check if we need to break the loop or not (as mentioned in the other answers).
Efficient Approach:
n^3 can be expressed as a sum of n odd integers, which are symmetric about n^2. Examples:
3^3 = 7+9+11 (symmetric about 9)
4^3 = 13+15+17+19 (symmetric about 16)
5^3 = 21+23+25+27+29 (symmetric about 25)
Use this approach to get a simpler algorithm
I know how to code a function for the factorial of a number but I am not sure why it works.
def factorial (num):
ans = 1
for i in range (1,num + 1):
ans *= i
return (ans)
In my mind ans remains one and is multiplied by every index on 1 through nums + 1. So it would look like: (1 * 1, 1 * 2, 1 * 3,...). How does this function lead to the factorial of the number in the parameter?
Why not introduce some print statements in your code to see what is going on?
def factorial(num):
ans = 1
for i in range(1, num + 1):
print(f" ans = {ans}, going to multiply by {i}")
ans *= i
return ans
print("Trying to find the factorial of 5")
final = factorial(5)
print(f"Final answer is: {final}")
This gives:
Trying to find the factorial of 5
ans = 1, going to multiply by 1
ans = 1, going to multiply by 2
ans = 2, going to multiply by 3
ans = 6, going to multiply by 4
ans = 24, going to multiply by 5
Final answer is: 120
So bottom line, you need to better understand what *= is doing in ans *= i (aka in-place operators), see here: https://docs.python.org/3/library/operator.html#in-place-operators
a *= b means :
take the content of a,
multiply it by b,
and store the result into a again.
(a in my example is ans for you)
So there is one variable, the same is used for every iteration. There is no list or such as you think it does, that takes the role of growing until the big final result.
ans starts at the value of 1, then will be multiplied by 2, and the result will replace it so it becomes 2, then will be multiply by 3, so it becomes 1 * 2 * 3 = 6, etc..
By the way, sometimes we call this kind of variable an "accumulator", in algorithmics.
Note the usage of the *= operator - in each iteration of the loop ans is multiplied by i, and the result saved back to ans.
Let's look at the first couple of iterations:
i=1 - ans * i is 1*1, or 1, which is saved back in ans.
i=2 - ans * i is 1*2, or 2, which is saved back in ans.
i=3 - ans * i is 2*3, or 6, which is saved back in ans.
... and so on.
Examples,
1.Input=4
Output=111
Explanation,
1 = 1³(divisors of 1)
2 = 1³ + 2³(divisors of 2)
3 = 1³ + 3³(divisors of 3)
4 = 1³ + 2³ + 4³(divisors of 4)
------------------------
sum = 111(output)
1.Input=5
Output=237
Explanation,
1 = 1³(divisors of 1)
2 = 1³ + 2³(divisors of 2)
3 = 1³ + 3³(divisors of 3)
4 = 1³ + 2³ + 4³(divisors of 4)
5 = 1³ + 5³(divisors of 5)
-----------------------------
sum = 237 (output)
x=int(raw_input().strip())
tot=0
for i in range(1,x+1):
for j in range(1,i+1):
if(i%j==0):
tot+=j**3
print tot
Using this code I can find the answer for small number less than one million.
But I want to find the answer for very large numbers. Is there any algorithm
for how to solve it easily for large numbers?
Offhand I don't see a slick way to make this truly efficient, but it's easy to make it a whole lot faster. If you view your examples as matrices, you're summing them a row at a time. This requires, for each i, finding all the divisors of i and summing their cubes. In all, this requires a number of operations proportional to x**2.
You can easily cut that to a number of operations proportional to x, by summing the matrix by columns instead. Given an integer j, how many integers in 1..x are divisible by j? That's easy: there are x//j multiples of j in the range, so divisor j contributes j**3 * (x // j) to the grand total.
def better(x):
return sum(j**3 * (x // j) for j in range(1, x+1))
That runs much faster, but still takes time proportional to x.
There are lower-level tricks you can play to speed that in turn by constant factors, but they still take O(x) time overall. For example, note that x // j == 1 for all j such that x // 2 < j <= x. So about half the terms in the sum can be skipped, replaced by closed-form expressions for a sum of consecutive cubes:
def sum3(x):
"""Return sum(i**3 for i in range(1, x+1))"""
return (x * (x+1) // 2)**2
def better2(x):
result = sum(j**3 * (x // j) for j in range(1, x//2 + 1))
result += sum3(x) - sum3(x//2)
return result
better2() is about twice as fast as better(), but to get faster than O(x) would require deeper insight.
Quicker
Thinking about this in spare moments, I still don't have a truly clever idea. But the last idea I gave can be carried to a logical conclusion: don't just group together divisors with only one multiple in range, but also those with two multiples in range, and three, and four, and ... That leads to better3() below, which does a number of operations roughly proportional to the square root of x:
def better3(x):
result = 0
for i in range(1, x+1):
q1 = x // i
# value i has q1 multiples in range
result += i**3 * q1
# which values have i multiples?
q2 = x // (i+1) + 1
assert x // q1 == i == x // q2
if i < q2:
result += i * (sum3(q1) - sum3(q2 - 1))
if i+1 >= q2: # this becomes true when i reaches roughly sqrt(x)
break
return result
Of course O(sqrt(x)) is an enormous improvement over the original O(x**2), but for very large arguments it's still impractical. For example better3(10**6) appears to complete instantly, but better3(10**12) takes a few seconds, and better3(10**16) is time for a coffee break ;-)
Note: I'm using Python 3. If you're using Python 2, use xrange() instead of range().
One more
better4() has the same O(sqrt(x)) time behavior as better3(), but does the summations in a different order that allows for simpler code and fewer calls to sum3(). For "large" arguments, it's about 50% faster than better3() on my box.
def better4(x):
result = 0
for i in range(1, x+1):
d = x // i
if d >= i:
# d is the largest divisor that appears `i` times, and
# all divisors less than `d` also appear at least that
# often. Account for one occurence of each.
result += sum3(d)
else:
i -= 1
lastd = x // i
# We already accounted for i occurrences of all divisors
# < lastd, and all occurrences of divisors >= lastd.
# Account for the rest.
result += sum(j**3 * (x // j - i)
for j in range(1, lastd))
break
return result
It may be possible to do better by extending the algorithm in "A Successive Approximation Algorithm for Computing the Divisor Summatory Function". That takes O(cube_root(x)) time for the possibly simpler problem of summing the number of divisors. But it's much more involved, and I don't care enough about this problem to pursue it myself ;-)
Subtlety
There's a subtlety in the math that's easy to miss, so I'll spell it out, but only as it pertains to better4().
After d = x // i, the comment claims that d is the largest divisor that appears i times. But is that true? The actual number of times d appears is x // d, which we did not compute. How do we know that x // d in fact equals i?
That's the purpose of the if d >= i: guarding that comment. After d = x // i we know that
x == d*i + r
for some integer r satisfying 0 <= r < i. That's essentially what floor division means. But since d >= i is also known (that's what the if test ensures), it must also be the case that 0 <= r < d. And that's how we know x // d is i.
This can break down when d >= i is not true, which is why a different method needs to be used then. For example, if x == 500 and i == 51, d (x // i) is 9, but it's certainly not the case that 9 is the largest divisor that appears 51 times. In fact, 9 appears 500 // 9 == 55 times. While for positive real numbers
d == x/i
if and only if
i == x/d
that's not always so for floor division. But, as above, the first does imply the second if we also know that d >= i.
Just for Fun
better5() rewrites better4() for about another 10% speed gain. The real pedagogical point is to show that it's easy to compute all the loop limits in advance. Part of the point of the odd code structure above is that it magically returns 0 for a 0 input without needing to test for that. better5() gives up on that:
def isqrt(n):
"Return floor(sqrt(n)) for int n > 0."
g = 1 << ((n.bit_length() + 1) >> 1)
d = n // g
while d < g:
g = (d + g) >> 1
d = n // g
return g
def better5(x):
assert x > 0
u = isqrt(x)
v = x // u
return (sum(map(sum3, (x // d for d in range(1, u+1)))) +
sum(x // i * i**3 for i in range(1, v)) -
u * sum3(v-1))
def sum_divisors(n):
sum = 0
i = 0
for i in range (1, n) :
if n % i == 0 and n != 0 :
sum = sum + i
# Return the sum of all divisors of n, not including n
return sum
print(sum_divisors(0))
# 0
print(sum_divisors(3)) # Should sum of 1
# 1
print(sum_divisors(36)) # Should sum of 1+2+3+4+6+9+12+18
# 55
print(sum_divisors(102)) # Should be sum of 2+3+6+17+34+51
# 114
I have the following code for Project Euler Problem 12. However, it takes a very long time to execute. Does anyone have any suggestions for speeding it up?
n = input("Enter number: ")
def genfact(n):
t = []
for i in xrange(1, n+1):
if n%i == 0:
t.append(i)
return t
print "Numbers of divisors: ", len(genfact(n))
print
m = input("Enter the number of triangle numbers to check: ")
print
for i in xrange (2, m+2):
a = sum(xrange(i))
b = len(genfact(a))
if b > 500:
print a
For n, I enter an arbitrary number such as 6 just to check whether it indeed returns the length of the list of the number of factors.
For m, I enter entered 80 000 000
It works relatively quickly for small numbers. If I enter b > 50 ; it returns 28 for a, which is correct.
My answer here isn't pretty or elegant, it is still brute force. But, it simplifies the problem space a little and terminates successfully in less than 10 seconds.
Getting factors of n:
Like #usethedeathstar mentioned, it is possible to test for factors only up to n/2. However, we can do better by testing only up to the square root of n:
let n = 36
=> factors(n) : (1x36, 2x18, 3x12, 4x9, 6x6, 9x4, 12x3, 18x2, 36x1)
As you can see, it loops around after 6 (the square root of 36). We also don't need to explicitly return the factors, just find out how many there are... so just count them off with a generator inside of sum():
import math
def get_factors(n):
return sum(2 for i in range(1, round(math.sqrt(n)+1)) if not n % i)
Testing the triangular numbers
I have used a generator function to yield the triangular numbers:
def generate_triangles(limit):
l = 1
while l <= limit:
yield sum(range(l + 1))
l += 1
And finally, start testing:
def test_triangles():
triangles = generate_triangles(100000)
for i in triangles:
if get_factors(i) > 499:
return i
Running this with the profiler, it completes in less than 10 seconds:
$ python3 -m cProfile euler12.py
361986 function calls in 8.006 seconds
The BIGGEST time saving here is get_factors(n) testing only up to the square root of n - this makes it heeeaps quicker and you save heaps of memory overhead by not generating a list of factors.
As I said, it still isn't pretty - I am sure there are more elegant solutions. But, it fits the bill of being faster :)
I got my answer to run in 1.8 seconds with Python.
import time
from math import sqrt
def count_divisors(n):
d = {}
count = 1
while n % 2 == 0:
n = n / 2
try:
d[2] += 1
except KeyError:
d[2] = 1
for i in range(3, int(sqrt(n+1)), 2):
while n % i == 0 and i != n:
n = n / i
try:
d[i] += 1
except KeyError:
d[i] = 1
d[n] = 1
for _,v in d.items():
count = count * (v + 1)
return count
def tri_number(num):
next = 1 + int(sqrt(1+(8 * num)))
return num + (next/2)
def main():
i = 1
while count_divisors(i) < 500:
i = tri_number(i)
return i
start = time.time()
answer = main()
elapsed = (time.time() - start)
print("result %s returned in %s seconds." % (answer, elapsed))
Here is the output showing the timedelta and correct answer:
$ python ./project012.py
result 76576500 returned in 1.82238006592 seconds.
Factoring
For counting the divisors, I start by initializing an empty dictionary and a counter. For each factor found, I create key of d[factor] with value of 1 if it does not exist, otherwise, I increment the value d[factor].
For example, if we counted the factors 100, we would see d = {25: 1, 2: 2}
The first while loop, I factor out all 2's, dividing n by 2 each time. Next, I begin factoring at 3, skipping two each time (since we factored all even numbers already), and stopping once I get to the square root of n+1.
We stop at the square_root of n because if there's a pair of factors with one of the numbers bigger than square_root of n, the other of the pair has to be less than 10. If the smaller one doesn't exist, there is no matching larger factor.
https://math.stackexchange.com/questions/1343171/why-only-square-root-approach-to-check-number-is-prime
while n % 2 == 0:
n = n / 2
try:
d[2] += 1
except KeyError:
d[2] = 1
for i in range(3, int(sqrt(n+1)), 2):
while n % i == 0 and i != n:
n = n / i
try:
d[i] += 1
except KeyError:
d[i] = 1
d[n] = 1
Now that I have gotten each factor, and added it to the dictionary, we have to add the last factor (which is just n).
Counting Divisors
Now that the dictionary is complete, we loop through each of the items, and apply the following formula: d(n)=(a+1)(b+1)(c+1)...
https://www.wikihow.com/Determine-the-Number-of-Divisors-of-an-Integer
All this formula means is taking all of the counts of each factor, adding 1, then multiplying them together. Take 100 for example, which has factors 25, 2, and 2. We would calculate d(n)=(a+1)(b+1) = (1+1)(2+1) = (2)(3) = 6 total divisors
for _,v in d.items():
count = count * (v + 1)
return count
Calculate Triangle Numbers
Now, taking a look at tri_number(), you can see that I opted to calculate the next triangle number in a sequence without manually adding each whole number together (saving me millions of operations). Instead I used T(n) = n (n+1) / 2
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/runsums/triNbProof.html
We are providing a whole number to the function as an argument, so we need to solve for n, which is going to be the whole number to add next. Once we have the next number (n), we simply add that single number to num and return
S=n(n+1)2
S=n2+n2
2S=n2+n
n2+n−2S=0
At this point, we use the quadratic formula for : ax2+bx+c=0.
n=−b±√b2−4ac / 2a
n=−1±√1−4(1)(−2S) / 2
n=−1±√1+8S / 2
https://socratic.org/questions/how-do-you-solve-for-n-in-s-n-n-1-2
So all tri_number() does is evaluate n=1+√1+8S / 2 (we ignore the negative equation here). The answer that is returned is the next triangle number in the sequence.
def tri_number(num):
next = 1 + int(sqrt(1+(8 * num)))
return num + (next/2)
Main Loop
Finally, we can look at main(). We start at whole number 1. We count the divisor of 1. If it is less than 500, we get the next triangle number, then try again and again until we get a number with > 500 divisors.
def main():
i = 1
while count_divisors(i) < 500:
i = tri_number(i)
return i
I am sure there are additional ways to optimize but I am not smart enough to understand those ways. If you find any better ways to optimize python, let me know! I originally solved project 12 in Golang, and that run in 25 milliseconds!
$ go run project012.go
76576500
2018/07/12 01:56:31 TIME: main() took 23.581558ms
one of the hints i can give is
def genfact(n):
t = []
for i in xrange(1, n+1):
if n%i == 0:
t.append(i)
return t
change that to
def genfact(n):
t=[]
for i in xrange(1,numpy.sqrt(n)+1):
if(n%i==0):
t.append(i)
t.apend(n/i)
since if a is a divisor than so is b=n/a, since a*b=a*n/b=n, That should help a part already (not sure if in your case a square is possible, but if so, add another case to exclude adding the same number twice)
You could devise a recursive thing too, (like if it is something like for 28, you get 1,28,2,14 and at the moment you are at knowing 14, you put in something to actually remember the divisors of 14 (memoize), than check if they are alraedy in the list, and if not, add them to the list, together with 28/d for each of the divisors of 14, and at the end just take out the duplicates
If you think my first answer is still not fast enough, ask for more, and i will check how it would be done to solve it faster with some more tricks (could probably make use of erastothenes sieve or so too, and some other tricks could be thought up as well if you would wish to really blow up the problem to huge proportions, like to check the first one with over 10k divisors or so)
while True:
c=0
n=1
m=1
for i in range(1,n+1):
if n%i==0:
c=c+1
m=m+1
n=m*(m+1)/2
if c>500:
break
print n
this is not my code but it is so optimized.
source: http://code.jasonbhill.com/sage/project-euler-problem-12/
import time
def num_divisors(n):
if n % 2 == 0: n = n / 2
divisors = 1
count = 0
while n % 2 == 0:
count += 1
n = n / 2
divisors = divisors * (count + 1)
p = 3
while n != 1:
count = 0
while n % p == 0:
count += 1
n = n / p
divisors = divisors * (count + 1)
p += 2
return divisors
def find_triangular_index(factor_limit):
n = 1
lnum, rnum = num_divisors(n), num_divisors(n + 1)
while lnum * rnum < 500:
n += 1
lnum, rnum = rnum, num_divisors(n + 1)
return n
start = time.time()
index = find_triangular_index(500)
triangle = (index * (index + 1)) / 2
elapsed = (time.time() - start)
print("result %s returned in %s seconds." % (triangle, elapsed))